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A B S T R A C T

There is currently no systematic method for evaluating digital forensic datasets. This makes it difficult to judge
their suitability for specific use cases in digital forensic education and training. Additionally, there is limited
comparability in the quality of synthetic datasets or the strengths and weaknesses of different data synthesis
approaches. In this paper, we propose the concept of a quantitative, metrics-based assessment of forensic datasets
as a first step toward a systematic evaluation approach. As a concrete implementation of this approach, we
introduce Mass Disk Processor, a tool that automates the collection of metrics from large sets of disk images. It
enables a privacy-preserving retrieval of high-level disk image characteristics, facilitating the assessment of not
only synthetic but also real-world disk images. We demonstrate two applications of our tool. First, we create a
comprehensive datasheet for publicly available, scenario-based synthetic disk images. Second, we propose a
formal definition of synthetic data realism that compares properties of synthetic data to properties of real-world
data and present results from an examination of the realism of current scenario-based disk images.

1. Introduction

Datasets have been identified as fundamental to the development of
digital forensics as a science (Garfinkel et al., 2009). There has been
some effort to classify (Breitinger and Jotterand, 2023) and to index
them (NIST, 2024a). However, cataloging specific, detailed properties of
available datasets has not been performed, meaning that locating a
dataset that is suitable for a specific purpose is still challenging.

Synthetic disk images have become an essential part of the available
data since the release of real-world data is highly restricted for security,
privacy, and legal reasons. Even sharing synthetic data can be difficult if
care is not taken, as it may become contaminated with information from
the creator or creation environment (e.g., IP addresses). While scrubbing
data is an option, it can be challenging to be comprehensive and
maintain a consistent image.

Nevertheless, synthetic disk images remain the best alternative to
real-world data and are even preferable in some use cases. For example,
in tool testing, synthetic disk images might focus on edge cases or un-
likely scenarios to test the capabilities of tools under challenging or
atypical conditions (i.e. error-focused datasets) (NIST, 2024b; Har-
greaves et al., 2024b). In other contexts, such as scenario-based teach-
ing, efforts have beenmade to automate parts of the disk image synthesis
process and to make synthetic disk images better resemble those

encountered in real-world investigations (Moch and Freiling, 2009,
2012; Du et al., 2021; Göbel et al., 2022; Schmidt et al., 2023;Wolf et al.,
2024; Voigt et al., 2024). Others have questioned whether realism is
necessary (Göbel et al., 2023), or have considered what realismmeans in
the context of synthetic disk images (Voigt et al., 2024).

Individual efforts to improve the scenario-based data generation
process have suggested that certain metrics might be used to assess the
benefits of different methods (Du et al., 2021; Voigt et al., 2024).
However, a general approach for evaluating one automation framework
against another has not been explored, and certainly not
operationalized.

Through the design, implementation, and application of a system to
collect a series of metrics from disk images at scale, this work makes
several contributions in these areas:

• Design and development of a software framework to extract, orga-
nize, and present metrics for large sets of disk images.

• Collection and indexing of 25 publicly available, sce-nario-based
disk images, with a demonstration of the framework used to collect
metrics from them.

• Creation of datasheets summarizing 98 metrics for each of the 25
publicly available, scenario-based disk images.
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• Proposal of a formalized definition of realism in the context of syn-
thetic disk images.

• Demonstration of applying the proposed definition using compara-
tive metrics from 11 real-world disk images, the 25 publicly available
disk images, and 37 internal disk images created for scenario-based
digital forensics teaching in university environments.

The remainder of this paper is structured as follows: Section 2 pro-
vides background and related work in this area. Section 3 explains the
methodology used in this work. The results are presented in the
following sections: Section 4 describes the software framework used to
extract disk metrics. Section 5 details the results of the data collection
and analysis of publicly available, scenario-based disk images. Section 6
provides a definition of realism based on a security game-inspired
model, followed by insights gained from this quantitative view of real-
ism in Section 7, where synthetic disk images are compared with those
containing ‘real-world usage.’ Finally, Section 8 discusses the overall
results and outlines future work, and Section 9 provides the conclusion.
A summary table for the metrics retrieved for the public datasets, indi-
vidual datasheets, and the code for our metrics-retrieval framework are
available in a repository.1

2. Related work

Some of the previous work on using automation to enhance synthetic
disk images that was discussed in the introduction has utilized specific
metrics as a means of inspecting the results of disk image synthesis. Du
et al. (2021) used Plaso on synthesized disk images to examine the in-
crease in events after automated actions were performed on a system.
The timeline entry types considered were for files of the following types:
event log, Windows Registry, web history, log, PE, link, and OLECF.
Schmidt et al. (2023) collected a similar set of metrics with Plaso,
focusing on events related to event logs, Windows Registry hives, SQLite
databases, OLECF, prefetch, and link files. They compared the metrics of
their proposed computer vision approach to Powershell and
Python-based user emulation approaches. More recently, Voigt et al.
(2024) included metrics from different sources, including the number of
files listed by fiwalk, the number of days between the first and last file
system creation time, and the total events listed by log2timeline.

Commercial tools also incorporate metrics to some extent. For
example, Magnet AXIOM presents the ‘Number of artifacts’ in the case
overview after extraction, dividing them by category into: operating
system, media, web-related, documents, refined results, custom, appli-
cation usage, communication, encryption & credentials, email
&calendar, and cloud storage.

Overall, metrics have been considered in digital forensics, either to
provide an overview of potentially interesting artifacts in data sources
added to a case or to measure the success of automation frameworks in
improving synthetic disk images. However, most prior work has relied
on Plaso or fiwalk output, meaning the results were limited to the
number of events (of different categories), counting files, or the differ-
ence between file system timestamps. None have developed a bespoke
set of metrics, systematized them around specific desirable attributes for
synthetic disk images, or have provided a mechanism to calculate those
metrics at scale.

3. Methodology

The limitations of prior work described above lead to the guiding
question of this paper: Can a metrics-based view help us assess the status
quo of publicly available, scenario-based synthetic disk images and
assess their level of realism? In the following, we describe the method-
ology employed to address this question.

3.1. Data collection

To compile our dataset, we collected two distinct types of disk im-
ages: synthetic disk images and real-world disk images, only considering
scenario-based disks for the former.

To be able to commence our data collection, we first had to clarify
what is meant by real-world, synthetic, and scenario-based disk images.
For our data collection, leaning on existing definitions of Breitinger and
Jotterand (2023) and Garfinkel et al. (2009), we define a real-world disk
image as follows:

Definition 1. (Real-world disk image) A real-world disk image is an
image of a disk on which regular day-to-day activities were carried out by one
or more users without the intention of creating data for digital forensic
analysis or investigation.

This contrasts with our definition of synthetic disk images. Those disk
images were produced with the intention of creating data that can be
utilized for digital forensic purposes.

Our use of the term scenario-based data corresponds to the definition
of Breitinger and Jotterand (2023): “Scenario data, on the other hand,
has a higher complexity, is generated over a longer time frame, or is
based on real scenarios (as it tries to mimic them).” Therefore, we
considered synthetic disk images created in accordance with a scenario
for digital forensic investigation, such as disks from the M− 57 scenarios
in the Digital Corpora (Garfinkel, 2024) or disk images created for
forensic capture-the-flags (CTFs) with a storyline.

With this understanding of the terminology, we subsequently
compiled our three datasets of publicly available scenario-based, inter-
nal scenario-based, and real-world disk images. For simplicity, in the
following, we refer to them as Public, Internal, and Real-world datasets or
disk images, respectively.

We conducted our data collection in September 2024, focusing
exclusively on disk images originating from Windows systems. We
excluded other operating systems and storage media without an oper-
ating system, such as USB drives. Our Public dataset is a best-effort
collection of publicly available, scenario-based disk images, see
Appendix A. We searched the Digital Corpora (Garfinkel, 2024) and
CFReDS (NIST, 2024a) repositories, using a snowballing approach to
find further data, and conducted Google searches for forensic scenario
disk images. The dataset includes disk images published by digital fo-
rensics educators or companies, teaching scenarios, or scenario-based
CTFs. We excluded disk images that were only available for download
with considerably limited transfer rates.

Additionally, we compiled an Internal dataset, acknowledging that
while many educational institutions do not publicly release their syn-
thetic disk images, they still provide valuable insight into the data used
for teaching. We collected scenario-based synthetic Windows disk im-
ages employed for educational and demonstration purposes from five
different institutions.

Ultimately, we acquired a limited set of Real-world disk images
available to the researchers. This dataset comprises drives from personal
computers that were used without the intention of generating data for
this purpose. These drives were in use by the researchers between June
2012 and September 2024. It is worth noting that one of the drives
originated from a virtual machine, yet still fits our definition of real-
world usage.

3.2. Collecting a comprehensive set of disk image metrics

To enable the retrieval of metrics from disk image datasets, we
developed the extensible Mass Disk Processor (MDP) framework. This
framework includes plugins for collecting various metrics and summa-
rizing the results for all disks in a dataset. We give details on the MDP
framework and the types of metrics collected in Section 4.

1 https://github.com/lenavoigt/mass-disk-processor.
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3.3. Analysis and presentation of results

Finally, we analyzed the results from theMDPmetric retrieval for the
Public, Internal, and Real-world datasets. We inspected values across
different categories and datasets, calculating the mean, median, range,
variance, and standard deviation. Upon examining the metrics, we
observed that most metrics did not appear to be normally distributed.
Therefore, we predominantly use the median to report our findings after
introducing the MDP framework.

4. The Mass Disk Processor (MDP) framework

In this section, we describe the system design and currently sup-
ported plugins of the Mass Disk Processor (MDP) framework, which we
implemented for bulk metrics retrieval of disk image datasets. More-
over, we outline the application of MDP for extracting metrics from our
datasets, detailing the employed configurations and parameters.

4.1. System design

The Mass Disk Processor (MDP) framework is built on pytsk (Cohen,
2024) and libewf (Metz, 2024) to provide access to disk image partitions
and file systems. It then provides a wrapper around those packages,
combined with a plugin-based architecture that enables the collection of
data points or metrics from disk images. Individual plugins also leverage
other Python libraries that offer relevant functionalities, such as pyr-
egistry (Ballenthin, 2024b) and python-evtx (Ballenthin, 2024a). It is also
possible to integrate existing tools like Plaso.

We have designed the MDP framework to allow for the activation
and deactivation of plugins, supporting use-case-specific configurations,
such as restricting plugins to ensure privacy-preserving metrics when
collecting real-world data. For bulk processing of disks, users need to
specify a primary directory containing subdirectories, each corre-
sponding to different cases with one or more disk images. Additionally,
users must select the plugins to be utilized for obtaining metrics from the
disk image dataset.

The MDP framework offers optional preprocessing steps, such as
retrieving file signatures and computing SHA-1 hashes for files below a
specified size limit. While these steps can increase processing time
considerably, they are necessary to run specific plugins, as signature
mismatch counts and comparison of file hashes against a given hash set.
Without appropriate preprocessing, these plugin outputs are omitted,
and a warning is given. Additionally, there is an optional feature to store
file lists, along with their hashes and signatures, in a database. This
stored information can be leveraged in subsequent processing runs.

The bulk disk image processing in MDP generates a summary in both
TSV and JSON format, providing an overview of the outputs from all
plugins for each disk processed in a run. Within each case folder, plugin
results are also stored separately, including a plugin description, the
source file path, and a timestamp indicating when the result was
generated.

4.2. Supported plugins

Within MDP, we have focused our implementation on Windows-
based plugins, as Windows has maintained the largest global market
share among desktop operating systems for personal computers since at
least 2009, with a share of 73.4 % as of September 2024 (StatCounter,
2024b), mirroring the report of Windows being most commonly
encountered by practitioners in the DFPulse 2024 Practitioner Survey
(Hargreaves et al., 2024a). However, selected cross-platform modules
are available. Appendix B gives an overview of the plugins currently
implemented.

The plugins are categorized according to five types of high-level
properties of disk images, which are called Configuration, Longevity,
Activity, Volume, and Notables.

The Configuration plugins provide insight into the system setup by
extracting details such as disk size, number of partitions, and the pres-
ence of various operating system types (Windows, macOS, Linux). For
Windows systems, they can provide additional information about the
Windows version, user and application count, screen resolution, and the
presence of different browsers (Chrome, Edge, Firefox) along with the
default browser.

The available Longevity plugins retrieve the time span of both the file
system and the operating system, providing insight into the duration of
system usage. The current file system time span plugin analyzes the
creation timestamps of files. For Windows, the lifetime plugin extracts
Windows Registry data to determine the installation date and the last
shutdown time.

The Activity plugins in MDP gather several indicators of system use
and user interaction. They collect data from Windows event logs on the
overall number of logins, failed and successful login attempts, and un-
lock events. Additionally, the plugins retrieve the total number of link
files and recent link files in user folders and the start menu, the count of
prefetch files, and the number of USB mass storage connections. For the
browsers Chrome, Edge (v79+), and Firefox, the plugins record the
overall counts of website visits and the number of searches across the
search engines Google, Bing, and DuckDuckGo from the browser history.

The Volume plugins in MDP focus on measuring the quantity of files
on the disk image. They provide counts of the total number of files and
the number and percentage of files in user directories. Files are cate-
gorized and counted by type based on typical file extensions, e.g., for
audio, compressed, office, PDF, and video files. Additionally, there are
plugins to calculate total disk usage and file size metrics, including mean
and median file sizes. It is also possible to count the number of files that
are not included in a hash database of known files, such as Reference
Data Sets (RDS) of the National Software Reference Library (NSRL)
(NIST, 2024c). For counting non-NSRL files, an NSRL RDS comprising
known SHA-1 hashes must be specified to compare with file hashes on
the disk image. It should be noted that for NSRL databases, this often
means that the count of non-NSRL files also excludes zero-sized files.

The Notables plugins in MDP are designed to identify potential
anomalies or points of interest. Currently, they count files with mis-
matches between their signature and extension, as well as the number of
clock change events. The latter is also included in the Activity category.
Additional plugins, for instance, for identifying encrypted files (such as
VeraCrypt containers or encrypted ZIP files), detecting specific key-
words, or locating files present in a hash database of notable files, are
conceivable for future development. However, the focus has so far pri-
marily been on plugins from the other categories.

4.3. Dataset processing setup

To process the Public, Internal, and Real-world datasets considered
in this work, we utilized all available MDP plugins except the Plaso
plugin. Although Plaso’s integration was initially demonstrated, our
current analysis relies solely on custom MDP plugins. These plugins
provide precise control over the origins of metrics retrieval and help
ensure privacy-conscious handling of real-world data.

For the non-NSRL file count, we used the NSRL RDS 2024.03.1
Modern Minimal. During preprocessing, we retrieved the first eight bytes
of each file on a disk image to check the file signatures and computed
SHA-1 hashes for all files with sizes up to the maximum file size in the
selected NSRL RDS (approximately 137.5 GB). Furthermore, we chose
not to store file lists with hashes and signatures, given that we work with
real-world data.

5. Insights from Public disk image metrics

Selecting an appropriate disk image for specific purposes, for
example, in digital forensic education, requires an understanding of the
characteristics of available synthetic disk images. Despite the limited

L.L. Voigt et al.
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number of public disk images from forensic dataset collections, company
websites, or individual sources, manually assessing the suitability of
each image is a time-consuming task. Although forensic datasets often
provide descriptions, metadata records, or tags, they may omit features
of particular interest to educators. Solution notes accompanying some
public disk images can aid in understanding the disk image’s properties.
However, forensic data publishers may choose to make solutions avail-
able only upon request or not at all. Moreover, the need to navigate
solution write-ups to get a first impression of an image’s suitability poses
a barrier to data reuse.

To address this challenge, we propose to utilize MDP to retrieve
metrics about disk image collections automatically. With this, users can
identify the most relevant disk images for the purpose they have in mind
before having to conduct a further in-depth, manual analysis. Addi-
tionally, MDP-retrieved metrics offer a means of assessing the current
state of publicly available, scenario-based synthetic disk images.

In this section, we present selected insights from our assessment of
publicly available, scenario-based disk images. We collected a total of 25
disk images from different resources (see Appendix A) that meet the
selection criteria for scenario-based synthetic Windows disk images we
detail in Section 3. We created an overview of their properties retrieved
withMDP as well as a datasheet for each of them that can be found in our
repository. Table 2 shows selected metrics from different categories that
we now discuss in more detail.

5.1. Configuration

Within our set of Public disk images, Windows 10 is the most rep-
resented, with eight images. Windows XP follows with six images.
Windows 11 and Windows 8.1 are each found in three images, while
Windows 7 appears in two. Additionally, our collection includes one
disk image each of Windows Server (2008), Windows Server 2022, and
Windows Vista (see Table 1).

The median of installed applications listed in the uninstall Registry
key is 29 in our Public dataset, with a maximum of 309 entries in the
Windows 7 disk image MagnetCTF20. Additionally, the Edge browser is
present on all disk images, while Chrome is found on 52%, and Firefox is
present on 44 % of the disk images.

5.2. Longevity

To determine the lifetime of the systems associated with the disk
images, we retrieved two different types of metrics: the file system time
span and the Windows operating system lifetime. We observed that the
file system time span we retrieved from the created timestamps gave
little insight into the actual lifetime of the system due to files associated
with software on the system having timestamps earlier than the system
was set up. An alternative metric for assessing the file system time span
could involve retrieving accessed or modified timestamps, which may

provide more insights. This metric could be considered alongside the
Windows lifetime, which we solely focus on in the following. It should
be noted that scenarios might include the tampering of values we
retrieve for our metrics, highlighting the goal of establishing several
metrics for the same aspect.

The first setup system in the dataset is NIST04, a Windows XP
installation from August 2004. The newest system is Bart23, featuring
Windows 11 installed in October 2023. The median Windows lifetime is
23 days. The majority of systems, specifically 19 out of 25, were used for
less than three months. Only one system, the Windows 10 DFRWSRo-
deo24, has a calculated lifetime exceeding one year. This system also
accounts for the most recent shutdown recorded in our dataset, which
occurred in March 2024.

5.3. Activity

The total login count across systems shows a median of 11 logins,
with the highest count of 96 logins observed in the M57-09Pat system.
Regarding browser history, there is a median of 236 website visits and
15 searches. The richest browser history is found in LoneWolf18, with
2,289 website visits and 229 searches.

5.4. Volume

For the disk images in our Public dataset, the median total number of
files is 125.6K, though this figure alone is not particularly illustrative. To
provide additional context, the number of files in user folders has a
median of 6.2K, with the MagnetCTF23 system having the highest
number at 111.2K. Furthermore, the number of non-NSRL files has a
median of 77.0K, with OpenUni22 having the most at 231.1K.

6. A quantitative view on realistic disk images

From our collection process, we know that the disk images from the
previous section were synthetic. Had we not known this, some of the
statistics (especially from the Longevity category) might strongly hint
towards categorizing them as synthetic. However, it remains highly
unclear whether scenario-based disk images can be clearly distinguished
from real-world disk images. This observation is relevant in the context
of discussions in the literature about how ‘realistic’ scenario-based disk
images are or need to be (Voigt et al., 2024). While realism is a desirable
property often intuitively postulated by early disk image synthesis tools
(Moch and Freiling, 2009), it is a rather evasive concept that is hard to
define precisely.

Realism should certainly not be considered the sole quality criterion.
For example, disk images containing edge cases like partition loops or
ambiguous file system partitions (Schneider et al., 2022) and other
error-focused datasets (Hargreaves et al., 2024b) may be less likely to be
encountered in practice but are still vital for testing the limits of analysts
and tools. Nevertheless, a metrics-based look at disk images can help to
establish a definition of realism that is both precise and useful.

6.1. Definition based on indistinguishability

There are many possible ways to define what we mean by a synthetic
disk image being ‘realistic.’ Intuitively, a synthetic image can be
considered realistic if it ‘looks similar’ to a real-world disk image as
defined in Definition 1.

We use this intuition to define the concept of realism of synthetic disk
images using tools borrowed from cryptography where central security
definitions are based on the concept of indistinguishability: Roughly
speaking, if an attacker cannot distinguish an encrypted message from a
random string, then the encryption technique guarantees confidentiality
in the given circumstances. Since there are many attack strategies, such
security definitions are based on the notion of a game between an
attacker and defender that behave according to predefined rules. The

Table 1
Number of Public and Internal scenario-based synthetic disk images as well as
Real-world disk images in our dataset.

Windows Version Public Internal Real-world

Windows 11 3 – 2
Windows 10 8 11 5
Windows 8.1 3 – –
Windows 7 2 19 3
Windows Vista 1 1 –
Windows XP 6 5 1
Windows Server 2008 1 – –
Windows Server 2022 1 – –
Windows Server 2019 – 1 –

Total 25 37 11

L.L. Voigt et al.
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defender uses a security primitive, like an encryption scheme, which the
attacker attempts to break. If the defender consistently wins the game,
the security primitive is considered secure.

Borrowing from standard cryptographic terminology of authentica-
tion protocols (Menezes et al., 1996, Chapter 10), we abstractly define
two roles: the prover and the verifier. The prover has constructed a set of
synthetic disk images and claims that they are realistic in the sense that
they are indistinguishable from real-world disk images. The verifier is an
entity that claims to be able to distinguish real-world from synthetic disk
images. The game now consists of several rounds in which the verifier
can study a given disk image and must eventually decide whether it is a
real-world disk image or a synthetic one. Given multiple rounds of the
game, the verifier may correctly classify some disks as synthetic but may
also confuse synthetic ones with real-world ones. The prover wins if the
best strategy that the verifier applies to distinguish synthetic from
real-world disks is equivalent to random guessing; otherwise, the veri-
fier wins. If the prover wins, the synthetic disk images produced by the
prover can be considered realistic.

The definition implicitly assumes that both the prover and the veri-
fier want to win the game and that the verifier has some common
knowledge of what real-world disk images look like. The outcome of the
game also depends on the type and amount of information that the
verifier can derive from the image under consideration. In typical ex-
ercise situations, some aspects of the disk image are often ‘out of scope’
for the analysis, e.g., whether the image exhibits virtualization artifacts.
Therefore, in our definition of realism, we want to regulate this infor-
mation. Otherwise, the verifier is unrestricted in its activities; in
particular, it can apply arbitrary computational resources.

6.2. The realism game

We begin by defining two sets of disk images, the set R of real-world
images and the set S of synthentic images. Elements of S were artificially
constructed by the prover, and elements of R were collected in the real
world (as described in Section 3). To regulate the amount of information
derivable from an image, we define a set F= {f1, f2,…} of features of disk

images, where a feature is the result of computing a metric, i.e., a
measurable value that can be derived from any image through a well-
defined process. Examples of such features have been discussed above
in Section 5. To restrict the verifier’s queries, we define a subset A ⊂ F of
allowed features. This is useful when, in practice, certain aspects of the
disk image should be ignored (e.g., virtualization artifacts).

The setting of the realism game is depicted in Fig. 1: We assume that
the verifier has some world knowledge of real-world disk images that it
can analyze arbitrarily to ‘learn’ as many aspects of realism as possible.
The verifier then sits in front of a black box that hides the execution
details of the game. Within the black box is also a (sufficiently large)
reference set R of real-world disk images. The prover provides a set S of
synthetic images.

Definition 2. (Realism game) The realism game between prover and
verifier operates in several rounds as follows: At the beginning of each round,
one disk image D is randomly selected from either S or R. Then, the verifier
can direct an arbitrary but finite number of queries for allowed features to the
black box. If the requested feature f is allowed (i.e., if f ∈ A), then the black
box returns the value of the measurement of f on D. Otherwise, the value ⊥

(‘undefined’) is returned. Eventually, the verifier has to output its verdict of
whether the image is a synthetic or real-world one. If the answer is correct (i.
e., the image is correctly classified as coming from S or R) then the verifier
wins. Otherwise, the prover wins. This ends the round, and the next round
starts.

6.3. Defining realism

This realism game is played for many rounds. In each round, a new
disk image D is randomly selected. After n rounds, we calculate the
probability of a correct choice as the number of wins of the verifier over
n. This is a number between 0 and 1. If the verifier can reliably distin-
guish between synthetic and real-world images, then the number should
be close to 1. Similarly, if the verifier consistently thinks a synthetic
image is a real-world one and vice versa, i.e., if the verifier consistently
loses, the number should be close to 0. If the verifier merely performs
random guessing, the probability of winning is 1

2. If the best that the

Table 2
Summary of a subset of 98 metrics computed with MDP for the 25 publicly available, scenario-based disk images listed in Table 3.

Configuration Longevity Activity Volume

ID Version Applications Installation/Shutdown Logins Browser Visits Browser Searches Files Non-NSRL Files Files in User Folder

Bart23 Windows 11 16 2023-10/2023-10 10 278 50 257394 97824 13780
BelkaCTF1 Windows 10 23 2020-08/2021-02 6 80 15 154706 86277 13443
BelkaCTF5 Windows 10 24 2022-06/2022-07 0 464 87 386144 85805 23859
CCIKip Windows 7 114 2014-01/2014-01 14 82 9 68304 20864 4151
CCITucker Windows 8.1 17 2013-12/2013-12 4 156 10 89883 15222 3656
CellebriteCTF21 Windows 10 44 2021-03/2021-07 0 154 30 410790 145014 48299
DefenitCTF20 Windows 10 24 2020-05/2020-05 0 70 24 125575 81481 5705
DFRWSRodeo24 Windows 10 20 2019-03/2024-03 33 0 0 267949 139864 4916
Hadi1 Win. Server 08 13 2015-08/2015-09 0 0 0 55671 19844 219
Hadi2 Windows 8.1 48 2016-06/2016-06 3 421 150 114137 16499 11224
Hadi3 Windows 8.1 14 2015-12/2015-12 3 0 0 91879 7955 1924
InCTF20 Windows XP 39 2020-03/2020-07 22 85 12 12899 6047 2710
LoneWolf18 Windows 10 29 2018-03/2018-03 23 2289 229 152543 104577 8364
M57-08 Windows XP 40 2008-05/2008-07 84 489 40 31909 17834 6226
M57-09Charlie Windows XP 113 2009-11/2009-12 51 1080 40 29555 14598 4475
M57-09Jo Windows XP 108 2009-11/2009-12 32 422 17 31073 15799 4958
M57-09Pat Windows XP 111 2009-11/2009-12 96 295 13 36765 20763 11989
M57-09Terry Windows Vista 38 2009-11/2009-12 24 140 0 82988 39185 6140
MagnetCTF19 Windows 10 13 2018-07/2019-03 ​ 592 2 162283 111612 8103
MagnetCTF20 Windows 7 309 2020-02/2020-04 24 471 115 162533 76977 10164
MagnetCTF22 Windows 11 16 2022-02/2022-02 7 236 14 324089 161010 17596
MagnetCTF23 Windows 11 21 2022-11/2023-01 0 1078 113 253443 81328 111193
NIST_04 Windows XP 32 2004-08/2004-08 15 0 0 11501 7387 1197
OpenUni22 Win. Server 22 14 2023-09/2024-02 ​ 40 10 316515 231130 4643
Owl19 Windows 10 52 2017-01/2017-01 11 792 116 320849 104225 11409
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verifier can do is not better than random guessing, the verifier cannot
reliably distinguish real-world and synthetic disk images. And, if syn-
thetic disk images cannot be distinguished from real-world disk images,
we call the synthetic disk images realistic.

Definition 3. (Realism of synthetic disk images) Let ω be the number
of wins of the verifier within a sequence of n rounds (0≤ ω ≤ n) of the realism
game. We define the advantage of the verifier after n rounds of the realism
game as follows:

α = |
ω
n
−
1
2
|

If, for increasing numbers of n, the value of α approaches 0 (or generally is
below some small number ϵ), we call the set S of synthetic disk images
realistic with respect to the allowed feature set A.

7. Insights from a comparison of Synthetic and Real-world disk
images

From our experience, the definition of realism from the previous
section resembles how prior work has envisioned to approach the con-
struction of ‘interesting’ disk images by successively expanding the
generation capabilities of the synthesis tool to cover “most aspects of
digital investigations” (Moch and Freiling, 2009, p. 80). Therefore, the
degree of realism can be practically assessed by looking at selected
properties of synthetic disk images and comparing them to those of
real-world disks.

In the following, using the results of bulk processing our datasets
with MDP, we illustrate selected findings from our metrics-based
assessment of the scenario-based synthetic disk images, Public and In-
ternal, compared to the Real-world disk images in our dataset. While we
are aware that these results are not representative, they give first in-
sights into the disparity of properties in scenario-based synthetic versus
real-world datasets.

For certain metrics, we observed considerable differences across
Windows versions within all three of our datasets. That is why we focus
on presenting these metrics for Windows 10 disk images, as the overall
dataset predominantly consists of Windows 7 and 10 images, with
Windows 10 being more evenly distributed across the Public, Internal,
and Real-world datasets. For brevity, we focus on the metrics from four
categories: Configuration, Longevity, Activity, and Volume.

7.1. Configuration

When examining the Configuration category, three plugins showed
notable results: the number of installed applications, the number of
systems with different browsers (Edge, Chrome, Firefox) present, and
the screen ratio.

Browsers Present: To assess the presence of browsers on the disk im-
ages, we can compare our datasets against browser usage statistics to
determine how closely they reflect real-world trends. According to
StatCounter (StatCounter, 2024a), as of September 2024, Chrome leads
the global desktop browser market with a 64.8 % share, followed by
Edge at 13.8 %, Safari at 9.2 %, and Firefox at 6.6 %. Although this
statistic does not account for different operating systems, and we would
not expect to find Safari on 9.2 % of ourWindowsmachines, it highlights
Chrome’s prevalence and Firefox’s relatively low usage. This trend dates
back to January 2015, with Chrome consistently above 50 % and Firefox
below 20 %.

In our dataset, Edge was unsurprisingly present on all Windows
Systems. However, in all three datasets, Firefox’s presence was higher
than the usage statistic suggests: It appeared on 47.8 % of Public, 63.6 %
of Real-world, and 38.9 % of Internal disk images, with the Internal
dataset being closest to the usage statistics. This also underscores the
limited representativeness of our Real-world dataset, showing a clear
bias toward Firefox. Chrome was present in 56.5 % of Public, 17.8 % of
Internal, and 81.8 % of Real-world systems. These shares for the Public
and Real-world datasets align more closely with the market statistics,
with Chrome notably underrepresented in the Internal dataset. It should
be noted that we excluded the Windows server disk images from this
comparison.

Screen Ratio: For the comparison of screen ratios, we focused on
systems with Windows 8 and newer due to the compatibility constraints
of our MDP plugin, and we further excluded Server versions. In modern
computers, we would expect a considerable portion of systems to have a
screen aspect ratio of 16:9 or 16:10. In our Real-world dataset, this
expectation is met, with five out of seven systems having a 16:9 ratio and
one system having a 16:10 ratio. However, in the Public dataset, only
five out of 14 systems featured a 16:9 ratio, and none had 16:10. The
Internal dataset showed no systems with either of these ratios. Instead,
eight out of 14 Public and seven out of 11 Internal disk images had a 4:3
aspect ratio. This likely results from synthetic disk images often being
created in virtual machines.

Installed Applications: The inspection of the number of installed ap-
plications retrieved from the uninstall Registry key revealed differences
between the Windows 10 systems in our three datasets. In our Real-
world dataset, the median number of applications listed per disk is
79.5, while the median number of applications in the Public and Internal
datasets is 24 and 19, respectively.

7.2. Longevity

An examination of Windows operating system lifetimes across our
Internal, Public, and Real-world datasets shows notable differences in
system longevity, as illustrated in Fig. 2. In the Internal dataset, the
median lifetime is 21.1 days, with a maximum of 338.4 days. The Public

Fig. 1. The realism game: A verifier has to distinguish whether a disk image provided by a prover is a real-world or synthetic one. The image is selected at random.
The verifier can make a series of feature queries and must eventually give a verdict of whether the image is a synthetic or real-world one.
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dataset shows a median lifetime of 22.8 days and a maximum of 1809.0
days, translating to almost 5 years. In contrast, the Real-world dataset
presents a remarkably longer median lifetime of 720.2 days, approxi-
mately two years, with a maximum of 1526 days, or roughly 4.2 years.

7.3. Activity

Analyzing the Activity category reveals various differences in the
value distributions across the datasets. We observed notable variations
in the number of link files in the user folders in total, as well as the
number of recent link files, the number of browser history visits and
searches, the login count and the number of clock changes from the
event logs, and the number of USB connections.

Link Files: Comparing the Windows 10 disk images from the different
datasets, we observed the highest number of both total and recent link
files in the user folders in the Real-world dataset, with medians of 321.5
and 144.5 files, respectively. In contrast, the Public dataset shows a
median of 146 total and 22 recent link files. The Internal dataset displays
the lowest median, with 130 total and 12 recent link files.

Browser History: The browser history metrics further differentiate the
datasets, see Fig. 3. The Real-world dataset’s median number of visits is
428, and the median number of searches is 156, with mean numbers at
3431.2 and 295.2, respectively. The Public dataset has a median of 236
visits and 15 searches, with means of 388.6 and 43.8. The Internal

dataset again presents the lowest activity, with medians for both visits
and searches at 0 and mean numbers of 53.7 visits and 8.9 searches. This
is partially due to the fact that more than half of the disk images (21 of
37) in the Internal dataset have an empty browser history, compared to
four of 25 in the Public dataset and only two of 11 in the Real-world
dataset.

User Logins: For Windows 10 disk images, the Real-world dataset has
a median login count of 619, with four out of five images exceeding 100
logins. The Public dataset’s median is markedly lower, with only six
logins. The Internal dataset shows a median of 17, with one image
standing out with 10,145 logins. All other Internal and Public disk im-
ages in our datasets have login counts of less than 100.

Event Logs: We expected the number of clock change events to be an
indicator of time manipulation attempts, for example, in forensic
teaching scenarios. However, the analysis of the Windows 10 systems in
our dataset revealed a median of 15 clock change events recorded in the
event logs in our Real-world dataset, on systems where no time
manipulation attempts had been made. In the Public and Internal
datasets, the median number of such events was 8.5 and 4, respectively.

USB Connections: Differences are also apparent in the count of USB
connections recorded in the SetupAPI.dev.log. The Real-world dataset
exhibits the highest number of USB connections, with a median of 2.5
and a mean of 5.5. In comparison, the Public dataset’s mean is at 1.1,
while the Internal dataset’s mean is at 1.3, with the medians being 0 and
1, respectively. Furthermore, the disk image with the highest number of
USB connections in the Real-world dataset reaches up to 18 connections,
compared to a maximum of eight in the Public and six in the Internal
dataset.

7.4. Volume

There are also notable differences in the number of files stored on the
systems between the synthetic datasets, Public and Internal, and the
Real-world dataset. These differences are noticeable, e.g., in the total
number of files, the files not included in the NSRL RDS, and the number
of different file types. Since the number of files can vary considerably
between different Windows versions, we present a comparison of the
Windows 10 systems in the following. However, the general trend of
disk images in our Real-world dataset containing a notably higher
number of files was also observed across the other versions.

Number of Files: Real-world disk images exhibit the highest number of
files per disk image, with a median of 547.1K files overall and 118.0K
within user folders. In contrast, Public disk images have a median of
215.1K files overall and 9.9K within user folders. The Internal dataset
shows the lowest medians, with 150.8K files and 4.0K in user folders.

Non-NSRL Files: Excluding files listed in the NSRL dataset reduces the

Fig. 2. Box plots and outliers for the Windows operating system lifetimes across
our different datasets.

Fig. 3. Mean number of browser history visits across our different datasets.

Fig. 4. Mean number of selected file types across our different datasets.
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overall file count, yet a substantial number of files remains. The Real-
world dataset shows a median of 405.0K files not in the NSRL. The
Public dataset has a median of 104.4K non-NSRL files, while the Internal
dataset has a median of only 52.8K.

File Types: This trend is also evident across various commonly user-
generated file types, see Fig. 4. The mean number of office, PDF,
audio, and video files in the Real-world dataset is notably higher than in
the Internal and Public datasets.

8. Discussion

In this section, we discuss the need for both quantitative and quali-
tative metrics in assessing synthetic data realism, outline additional
potential application scenarios for a metrics-based view on disk images,
and describe limitations and future work.

8.1. Quantitative versus qualitative metrics

While quantitative metrics can provide many insights into the nature
of scenario-based synthetic disk images, they have limitations in that
they cannot capture certain properties that would be useful for assess-
ment. Additional quantitative metrics could be derived, but not from the
disk image itself, e.g., the number of relevant artifacts to locate within
the disk image. However, there remain challenges in precisely grasping
and expressing the notion of relevant evidence, which is dependent on
the investigative hypotheses and the artifact’s abstraction level (Gruber
and Humml, 2023), e.g., whether a relevant artifact is a database file or a
row within a database. The digital forensics tool Autopsy allows for the
bookmarking of files and ‘artifacts’ (e.g., an extracted search term from a
browser database), which could be used to describe these. Nevertheless,
a more universal approach is needed, e.g., using the Cyber-investigation
Analysis Standard Expression (CASE) (Casey et al., 2017).

However, other properties do not inherently lend themselves to
quantitative metrics, e.g., the complexity of evidence recovery. Perhaps
this could be proxied based on the artifact’s location and assigning
‘difficulty of interpretation’ scores to the containing file type, but it is
unclear how this would work in practice. Other qualitative measures are
described by Voigt et al. (2024), e.g., “narrative coherence.” This could
also be combined with the measurement of scenario realism during the
“scenario construction” and “storyboarding” stages (Hargreaves, 2017),
e.g., whether the scenario captured by the disk image is feasible or
probable in real-world investigations, likely needing the collaboration
with practitioners for curriculum development called for in Hargreaves
et al. (2024a).

These qualitative measures are important because it is possible to
improve certain quantitative metrics without necessarily maintaining
narrative coherence. For example, one could increase Volumemetrics by
depositing large numbers of random files onto the disk. This might be
detectable through techniques that identify a large number of files being
deposited during a single login session from an external source (Chow
et al., 2007).

To enhance Activity scores, programs could be launched arbitrarily,
or a browser could be set to visit random web pages. The latter could be
detected if none of the visited web pages in the browser history are
logically linked to one another (Hargreaves, 2009). Additionally, atyp-
ical browser usage, such as when users frequently access websites by
manually typing complicated URLs, rather than navigating via clickable
links, might be identified through transition types stored in Chrome’s
history (Boucher et al., 2022).

Moreover, Longevity could be improved through clock manipula-
tions. However, this may lead to inconsistencies in cached content,
which would not align with the supposed time of the actions being
performed, potentially causing detectable discrepancies in timestamp or
timing information (Vanini et al., 2024; Dreier et al., 2024).

Overall, content-aware, narrative-driven measures, qualitative or
quantitative, are essential to provide not just a numerical high-realism

but a disk image that is realistic in an intuitive sense. Nevertheless,
the quantitative metrics used in this paper, as well as a framework for
computing such metrics at scale, are critical first steps towards this next-
generation realism.

8.2. Further application scenarios

While the benefits of a metrics-based look at disk images have been
demonstrated for improving dataset accessibility and for defining the
realism of scenario-based synthetic disk images, many other applica-
tions cannot be demonstrated in this paper due to space constraints and
are, therefore, only briefly mentioned here.

Evaluating forensic artifact knowledge
When forensic knowledge of artifacts is applied at scale, in the course

of developing MDP plugins, it is possible to identify limitations in that
knowledge. For example, when recovering the Windows version, it
became apparent that Windows 11 reports as Windows 10 in some
Registry keys. This is documented online and likely known to forensic
tool vendors, but no public information was found on this in a forensic
context.

If those undertaking artifact research could express their findings in
code and wrap them in an MDP plugin, then their ‘artifact interpreta-
tion’ hypothesis could be evaluated at scale.

Tool testing
Similar to testing artifact knowledge, the framework could also be

used to test tools as scale. Command line tools at least, can be wrapped
as an MDP plugin and applied to a large number of disk images to
determine if the tool operates without crashing and that the output is as
expected, which can be manually verified.

Triage
Disk metrics may also be applicable in the triage domain. Given some

of the metrics calculated, e.g., Windows installation and shutdown, it
could be possible to identify devices that were potentially in use during
the time of an incident. Additionally, NSRL lookups could be substituted
with a database of notable files. The number of link files, prefetch files,
or other metrics within the Activity category could be used to identify a
device of interest, similar to the “identification of ‘hot drives”’ suggested
by Garfinkel (2006) and Patterson and Hargreaves (2012).

Forensic lab metrics
It may also be possible to correlate disk metrics with other case-

related data, e.g., analysis time and outcome. By combining these in-
puts, insights could be gained for resource estimation for an unseen disk
based solely on disk metrics calculated using a quick triage process.

Further insights into metric effectiveness
In the course of this research, it was determined that some metrics

are less useful than initially expected. For example, the ‘file system time
span’ did not provide as much insight as the ‘Windows lifetime.’
Although it was anticipated that the number of clock changes recorded
in event logs would be higher on synthetic systems due to time manip-
ulation, this was not the case. Therefore, when a metric is applied to
large sets of disk images, it can be assessed whether the metric provides
meaningful insights.

Metric-sharing for non-publishable disk images
Access to real-world datasets for forensic research remains severely

restricted as it is “difficult to obtain and manage, and is increasingly
surrounded by ethical and legal concerns” (Du et al., 2021). However,
some research may not need full access to disk images, and high-level
metrics may suffice. For example, software requirements for browser
history visualization could be derived from the metrics related to
browser history visits and searches, providing insights into the scale of
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the visualization problem that needs to be addressed. The privacy im-
plications of sharing high-level summary statistics are lower than those
associated with the release of an individual’s disk image.

8.3. Limitations and future work

TheMDP framework currently has 21 plugins, generating 98metrics.
This is obviously a limited subset of all metrics that could be computed
for a disk image. However, as MDP has been implemented with a plugin-
based architecture, the addition of new plugins and, therefore, new
metrics is straightforward. Furthermore, it is possible to run external
tools via a plugin and capture and extrapolate output and metrics. Thus,
not every metric needs implementation from scratch. While not pre-
sented in this paper, a Plaso wrapper is provided in our repository to
allow re-implementation of the metrics of Du et al. (2021) and Schmidt
et al. (2023).

However, the metrics selected have been designed to be minimally
intrusive from a privacy perspective, e.g., by capturing only the total
number of web searches or visits rather than details of their content.
Consequently, future work could involve a study of volunteers’ disks to
collect additional real-world metrics for better comparison. Using tools
like Plaso for this purpose is inappropriate for reasons of time and
privacy.

There is a need for a larger-scale collection of real-world metrics to
allow better comparison, as this research could only use 11 real-world
disk images. Further work in this area could involve the volunteer
data-donation study described earlier, with appropriate ethics and pri-
vacy procedures in place. It could also be complemented by an organi-
zation using MDP internally, where high-level metrics, even aggregate
ones, could be collected. The summary statistics could be released with
minimal privacy or legal concerns.

Another class of metrics that has not been implemented is cross-
plugin metrics. For example, given the lifetime of a device and the
number of logins, a normalized metric of ‘mean logins per day’ could be
calculated. There are many other possibilities for more sophisticated
metrics such as ‘mean time between Google searches,’ ‘mean login
duration’ (combining login and logout events), or ‘non-NSRL files in
home folders,’ which may further highlight differences between real-
world disk images and synthetic ones.

Moreover, now that these metrics can be calculated, it is possible to
assess the output from different automation frameworks. However, no
publicly available disk images were found that were created with
TraceGen (Du et al., 2021), ForTrace (Göbel et al., 2022), pyautoqemu
(Schmidt et al., 2023), or ForTrace++ (Wolf et al., 2024). Two were
found for Re-imagen (Voigt et al., 2024), but they were not full
scenario-based disk images. In future developments in this area,
releasing datasets that demonstrate the capabilities of new or updated
data synthesis frameworks would be beneficial, so that metrics can be
calculated and compared. The open-source MDP framework can be used
as the basis for that.

During our collection of scenario-based disk images, it became
apparent that many scenario-based datasets are not disk images but
mobile phone extractions, either backup-based or logical file extractions
in ZIP or TAR format. This reflects the growing prevalence of mobile
devices and, therefore, mobile device-based evidence. The MDP frame-
work will soon be updated to process such datasets. As shown in Table 4
in the Appendix, some of the currently supported plugins are cross-

platform, e.g., chrome_history_entries, firefox_searches, but others need
updating to accommodate formats that are not disk-image-based, e.g.,
no_files. Additionally, new plugins need to be created for Android and
iOS, e.g., safari_history_entries.

9. Conclusion

Availability of datasets is fundamental to the development of any
science, and digital forensics has struggled with this for many years.
Efforts have been made to collate datasets (Garfinkel et al., 2009; NIST,
2024a), categorize them (Breitinger and Jotterand, 2023), and to in-
crease the quality of synthetic ones (Moch and Freiling, 2009, 2012; Du
et al., 2021; Göbel et al., 2022; Schmidt et al., 2023; Wolf et al., 2024;
Voigt et al., 2024).

This work has made multiple improvements in this area. It has
indexed 25 publicly available, scenario-based disk images and devel-
oped an open-source framework that has enabled 98 different metrics to
be computed for each of those disk images, resulting in an easy-to-access
summary as well as detailed datasheets. The developed framework also
has many other potential applications (discussed in Section 8.2).

Additionally, this work has addressed the ongoing lack of clarity
regarding the realism of synthetic disk images. It has shown that using a
cryptography-inspired ‘realism game,’ quantitative metrics can be used
to measure this otherwise elusive concept. This has been demonstrated
by comparing 11 real-world disk images against scenario-based syn-
thetic ones, providing insights into the differences (based on Configu-
ration, Longevity, Activity, and Volume) and, in some cases, potential
deficiencies of data synthesis efforts.

However, this paper has also discussed the limits of a quantitative
view of realism. Nevertheless, together with recent work by Voigt et al.
(2024), it paves the way for a mixed approach to considering realism,
where the quantitative aspects of Configuration, Longevity, Activity, and
Volume could be combined with the qualitative aspects of coherence and
narrative, that are described in Voigt et al. (2024). Combining these el-
ements may enhance the quality of scenario-based synthetic disk im-
ages, offering potential benefits for digital forensic education, training,
and beyond.
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Appendix

A. Public scenario disk images considered

Table 3 gives details of all public scenario-based disk images considered in this paper.

Table 3
Public scenario-based disk images considered (source provided as clickable link).

Identifier Year Case Name Origin

Bart23 2023 Bart the hacker Instituto Politécnico de Beja
BelkaCTF1 2021 Insider Threat Belkasoft
BelkaCTF5 2022 Party Girl Missing Belkasoft
CCIKip 2019 Kip Case California Cybersecurity Institute
CCITucker 2019 Tucker Case California Cybersecurity Institute,
CellebriteCTF21 2021 Cellebrite CTF Cellebrite
DefenitCTF20 2020 Find Tangential Cipher Defenit CTF
DFRWSRodeo24 2024 DFRWS EU Rodeo Byte Busters University of Zaragoza
Hadi1 n/a Challenge 1- Web Server Case Ali Hadi’s Digital Forensics Challenge Images
Hadi2 n/a Challenge 2 - User Policy Violation Case Ali Hadi’s Digital Forensics Challenge Images
Hadi3 n/a Challenge 3 - Mystery Hacked System Ali Hadi’s Digital Forensics Challenge Images
InCTF20 2020 Lookout Foxy InCTF Internationals 2020
LoneWolf18 2018 Lone Wolf Scenario Digital Corpora
M57-08 2008 M57 Digital Corpora
M57-09Charlie 2009 M57 Digital Corpora
M57-09Jo 2009 M57 Digital Corpora
M57-09Pat 2009 M57 Digital Corpora
M57-09Terry 2009 M57 Digital Corpora
MagnetCTF19 2019 Magnet CTF Magnet Forensics
MagnetCTF20 2020 Magnet CTF Magnet Forensics
MagnetCTF22 2022 Magnet CTF Magnet Forensics
MagnetCTF23 2023 Magnet Virtual Summit CTF Magnet Forensics
NIST04 2004 Hacking Case National Institute of Standards and Technology
OpenUni22 2022 Compromised Windows Server The Open University
Owl19 2019 Owl Digital Corpora

B. MDP plugin overview

Table 4 lists all currently supported plugins of MDP with further details.

Table 4
MDP Plugin Overview sorted by categories (Cat.) indicating Configuration, Activity, Longevity, Volume, Notables,
with Cross-Platform property (CP) and Data Origin.

Plugin Name Cat. CP Data Origin

disk_size C ✓ Filesystem
total_sectors C ✓ Filesystem
no_partitions C ✓ Filesystem
(linux| mac| windows)_found C ✓ Filesystem
win_build C ​ Registry
win_registered_org_present C ​ Registry
win_version_(id| str) C ​ Registry
win_no_users C ​ Registry
screen_(pixels| ratio)e C ​ Registry
screen_resolution_(x| y)e C ​ Registry
win_app_count_app_path_registry C ​ Registry
win_app_count_uninstall_registry C ​ Registry
(chrome| edge| firefox)_present C ​ Registry
(chrome| edge| firefox)_defaultb C ​ Registry
(earliest| latest)_fs_cr L ✓ Filesystem
lifespan_fs_cr L ✓ Filesystem
win_os_lifetime L ​ Registry
win_install_time L ​ Registry
win_last_shutdown_time L ​ Registry
win_login_count_(max| total) A ​ Registry
no_lnk_files_in_user_folders A ​ Filesystem
no_recent_lnk_(max| total) A ​ Filesystem
no_start_menu_lnk_(max| total) A ​ Filesystem
no_prefetch_files A ​ Filesystem
no_usb_mass_storage_attached_setupapid A ​ Setup API Log
firefox_searches_(max| total)a A ✓ Firefox History
firefox_history_entries_(max| total) A ✓ Firefox History
firefox_no_history_files A ✓ Firefox History
chrome_searches_(max| total)a A ✓ Chrome History

(continued on next page)
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https://cfreds.nist.gov/all/NunoMourinho%2FEstigBeja/BartthehackerForensicVMshowcase2023
https://belkasoft.com/ctf_march/
https://belkasoft.com/ctf_july_2022/
https://cci.calpoly.edu/2019-digital-forensics-downloads
https://cci.calpoly.edu/2019-digital-forensics-downloads
https://cfreds.nist.gov/all/Cellebrite/Cellebrite2021CTF
https://ctftime.org/task/11945
https://ctfs.unizar.es/rodeo/
https://www.ashemery.com/dfir.html#Challenge1
https://www.ashemery.com/dfir.html#Challenge2
https://www.ashemery.com/dfir.html#Challenge3
https://github.com/teambi0s/InCTFi/tree/master/2020/Forensics/Lookout%20Foxy
https://digitalcorpora.org/corpora/scenarios/2018-lone-wolf-scenario/
https://digitalcorpora.org/corpora/scenarios/m57-jean/
https://corp.digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/
https://corp.digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/
https://corp.digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/
https://corp.digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/
https://corp.digitalcorpora.org/corpora/scenarios/magnet/
https://corp.digitalcorpora.org/corpora/scenarios/magnet/
https://corp.digitalcorpora.org/corpora/scenarios/magnet/
https://magnetvirtualsummit.com/capture-the-flag/
https://cfreds.nist.gov/all/NIST/HackingCase
https://ordo.open.ac.uk/articles/dataset/Compromised_Windows_Server_2022_simulation_/26038642/1?file=47113612
https://digitalcorpora.org/corpora/scenarios/2019-owl/
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Table 4 (continued )

Plugin Name Cat. CP Data Origin

chrome_history_entries_(max| total) A ✓ Chrome History
chrome_no_history_files A ✓ Chrome History
edge_searches_(max| total)a,c A ​ Edge History
edge_history_entries_(max| total)c A ​ Edge History
edge_no_history_filesc A ​ Edge History
browser_history_total A ✓ Internet History
browser_searches_total A ✓ Internet History
evtx_failed_logins_4625 A ​ Event Logs
evtx_success_logins_4624_2 A ​ Event Logs
evtx_unlocks_4624_7 A ​ Event Logs
evtx_clock_change_4616 A, N ​ Event Logs
no_files V ✓ Filesystem
no_non_nsrl_files(_incl_zero) V ✓ Filesystem
no_files_in_users_folder V ✓ Filesystem
no_(audio| image| video)_files V ✓ Filesystem
no_compressed_files V ✓ Filesystem
no_(office| pdf)_files V ✓ Filesystem
disk_usage_percent V ✓ Filesystem
file_size_(mean| median| total) V ✓ Filesystem
no_signature_mismatches N ✓ Filesystem
a Separate plugins exist for searches conducted with different search engines (Google, Bing, and DuckDuckGo).
b Compatibility Restriction: Windows 7+.
c Compatibility Restriction: Edge version 79+.
d Compatibility Restriction: Windows Vista+.
e Compatibility Restriction: Windows 8+, some Windows 7+ systems.
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