
Beyond the Dictionary Attack:
Enhancing Password Cracking Efficiency through
Machine Learning-Induced Mangling Rules

Radek Hranický Lucia Šírová Viktor Rucký

Why rules?
FACT: Sysadmins want strong passwords!
Password policies: At least X characters, at least 1 special symbol, …

People frequently use common easy-to-remember patterns:

● Uppercase letter? Most frequently it is the first character.
● Numbers or special symbols? Frequently at the end: Summer2023#
● CamelCase
● L33t$p3@k
● Multiple-words-separated by.special.characters
● Keyboard walks: Qwerty123!, Asdf2020$

Examples of mangling rules
Applied to „Password“

Name Function Example Rule Output Word

Lowercase all letters l l password

Toggle case T t pASSWORD

Duplicate 1st letter N times zN Z2 PPPassword

Append character X to the end $X $1 Password1

Replace Xes with Ys sXY ss$ Pa$$word

Delete first character [[assword

CRACK (1991) - First password cracker with mangling-rule support
JOHN THE RIPPER adopted Crack‘s rules and added more.
HASHCAT supports 56 unique rule commands, all applied on GPU.

How does a ruleset
look like?

i59 o64

o40 R5

o81 i92 oA3

i50 ,6 o77

i69 o75

^4 ^2 r

o1o $1

l $f

^0 ^0 ^1

^8 ^0 r

^3 ^5 r

o4g

l $7 $3

o61 i72 i83 o94

i42 i50 i60 o74

i61 i72 o83 o94

ss1 $9 $8 $9

$7 $1 $4

o51 ss0 $1

$1 $0 $8

i59 o61

i63 o72

^3 ^3 ^3 r

i59 o60

^2 ^0 ^0 ^1 r

[$2 $0 $0 $8

i3i $1

o78 o85

^3 ^1 T2

o3y]

i42 ss0 $0 $5

o0g i1i

o0j $2 $0 $0 $8

How does a ruleset
look like?

Manual creation is possible… but it is PAIN 
How to make a ruleset that is actually „good“?

i59 o64

o40 R5

o81 i92 oA3

i50 ,6 o77

i69 o75

^4 ^2 r

o1o $1

l $f

^0 ^0 ^1

^8 ^0 r

^3 ^5 r

o4g

l $7 $3

o61 i72 i83 o94

i42 i50 i60 o74

i61 i72 o83 o94

ss1 $9 $8 $9

$7 $1 $4

o51 ss0 $1

$1 $0 $8

i59 o61

i63 o72

^3 ^3 ^3 r

i59 o60

^2 ^0 ^0 ^1 r

[$2 $0 $0 $8

i3i $1

o78 o85

^3 ^1 T2

o3y]

i42 ss0 $0 $5

o0g i1i

o0j $2 $0 $0 $8

HOW TO create rulesets? (automatically)

01

04

02

03

Hashcat‘s generate-rules.c
Works but rules are purely RANDOM 

Marechal‘s rulesfinder
Works but require an existing ruleset 

Iphelix‘s PACK/rulegen
Based on password similarity

Clustering?

General idea
Drdák & Hranický (2019-2020), Li et al. (2022)

02 – Create clusters of
similar passwords
by (Damerau-) Levenshtein distance

03 – Select a (representative)
password from each cluster

hello, h3llo DFRWS, dfrws, DFRW$

01 – Take an existing (training)
password dictionary

DFRWS, hello, h3llo, dfrws, DFRW$

hello, h3llo DFRWS, dfrws, DFRW$

04 – Create mangling rules that
transform the representative to
other passwords in the cluster

hello -> h3llo | Replace all „e“ with „3“

dfrws -> DFRWS | Uppercase all letters

dfrws -> DFRW$ | Uppercase all letters AND
Replace all „s“ with „$“

05 – Count rule occurence,
deduplicate and select N most
frequent rules. DONE

Use as few commands as possible. If multiple
are usable, use those with the highest priority.

Timeline of clustering-based approaches

● Affinity propagation clustering method
● Works & provides decent results

● Distance matrix calculation „each x each“ required – O(n2) time & space complexity
-> not usable for bigger training dictionaries

Drdák & Hranický (2019-2020)

● MDBSCAN (modified DBSCAN) clustering -> better handling of outliers -> better rules
● SymSpell fuzzy search algorithm instead of full distance matrix -> faster, less memory

● Cluster representative selection is not optimal
● Limited number of rule commands
● No other clustering methods tested
● No PoC implementation available

Li et al. (2022)

Let‘s improve the representative selection
In the classic „Levenshtein method“ (Drdák et al., Li et al.), the representative is
ALWAYS AN EXISTING PASSWORD -> not always good

1. Revert leetspeak transformations
2. Convert all letters to lowercase
3. Find the longest common substring
4. The substring is the representative

In theory, this should provide more accurate
representations of the „base word“

ISSUE:

The SUBSTRING method
… and thus, we came with

The COMBO method
Was the SUBSTRING method better?

Our final COMBO METHOD

1. Create clusters from passwords
2. For each cluster:

- Select a representative using the LEVENSHTEIN method & generate rules accordingly
- Select a representative using the SUBSTRING method & generate rules accordingly

3. The top n most frequent rules form the final ruleset

Yes, but… not always!

Other contributions of this work

● Toggle case
● Word rotation commands
● Word reversals

More rule commands added!
Overall, RuleForge support the following methods:

● Affinity Propagation (AP)
● Hierarchical Agglomerative Clustering (HAC)
● Density-based spatial clustering with noise

(DBSCAN)
● Modified DBSCAN (MDBSCAN) by Li et al.

Rule-command priorities
updated accordingly

Alternate clustering methods

RuleForge
● PoC implementation
● Password research & experiment tool
● Rule creation for an actual forensics use
● Open-source (MIT License):

https://github.com/nesfit/RuleForge/

Experiments
● Benchmarking of clustering & rule creation
● Comparison of MDBSCAN implementations
● Comparison with alternate methods
● Comparison with popular rulesets

https://github.com/nesfit/RuleForge/

RuleForge

4 clustering methods
3 representative selection methods
2 distance calculation methods
1 ruleset on the output

Features

Python 3 + C# for critical calculations
Open-source (MIT License)

https://github.com/nesfit/RuleForge

First Release

https://github.com/nesfit/RuleForge

We did Benchmarks & Hit rate testing
Observations

● MDBSCAN & AP => best-quality rulesets

● HAC & DBSCAN & MDBSCAN
=> Lowest CPU requirements

● DBSCAN & MDBSCAN + SymSpell
=> Lowest memory requirements

● DBSCAN => sometimes suboptimal
clustering due to a large cluster of outliers

AMD Ryzen 5 2600X workstation with 64 GB RAM, cracking on dual RTX 3070

Best Hitrate / overhead tradeoff

Winner? MDBSCAN

Representative selection comparison

Legend

● Li et al. – The original MDBSCAN with the
Levenshtein method

● RF-leven – RuleForge‘s implementation with
expanded rule command set & Levenshtein

● RF-substr – RuleForge‘s implementation of
MDBSCAN with the Substring method

● RF-combo – RuleForge‘s implementation of
MDBSCAN with the Combo method

ta – training dictionary | columns – wordlists on which rules were applied | target „hashlist“ dictionary: rockyou-75-m

Hit ratio: RuleForge vs. other methods

training AND attack dictionary: RockYou-960

Hit ratio: RuleForge vs. popular rulesets

training AND attack dictionary: RockYou-960

Summary
● Clustering-based rule creation is usable for password cracking

● MDBSCAN provides the best success/overhead tradeoff

● The COMBO METHOD outperformed the original work in all cases

● We achieved up to an 11.67 %pt. improvement over known best-
performing rule creation method (MDBSCAN Li et al.)

● We outperformed almost all widely-used rulesets.

Future work in progress
● Optimized Affinity Propagation and HAC

● GPU-accelerated version of RuleForge

● GenAI-based approaches
(like PassGAN, PassGPT, VAEPass, …)

Thank you for
your attention!

Feel free to contact us!

Lucia Šírová
xsirov01@stud.fit.vutbr.cz

Discord: sirrluc.

Radek Hranický
hranicky@fit.vut.cz

Discord: radekhranicky

Viktor Rucký
rucky01@stud.fit.vutbr.cz

Discord: alpatron

	Snímek 1: Beyond the Dictionary Attack: Enhancing Password Cracking Efficiency through Machine Learning-Induced Mangling Rules
	Snímek 2: Why rules?
	Snímek 3: Examples of mangling rules
	Snímek 4: How does a ruleset look like?
	Snímek 5: How does a ruleset look like?
	Snímek 6: HOW TO create rulesets? (automatically)
	Snímek 7: General idea Drdák & Hranický (2019-2020), Li et al. (2022)
	Snímek 8: Timeline of clustering-based approaches
	Snímek 9: Let‘s improve the representative selection
	Snímek 10: The COMBO method
	Snímek 11: Other contributions of this work
	Snímek 12: RuleForge
	Snímek 15: We did Benchmarks & Hit rate testing
	Snímek 16: Representative selection comparison
	Snímek 17: Hit ratio: RuleForge vs. other methods
	Snímek 18: Hit ratio: RuleForge vs. popular rulesets
	Snímek 19: Summary
	Snímek 20: Thank you for your attention!

