Beyond the Dictionary Attack:

Enhancing Password Cracking Efficiency through
Machine Learning-Induced Mangling Rules

Radek Hranicky Lucia Sirova Viktor Rucky

- BRNO FACULTY
r UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Why rules?

FACT: Sysadmins want strong passwords!
Password policies: At least X characters, at least 1 special symboal, ...

People frequently use common easy-to-remember patterns:

Uppercase letter? Most frequently it is the first character.

Numbers or special symbols? Frequently at the end: Summer2023#
CamelCase

L33t$p3@k

Multiple-words-separated by.special.characters

Keyboard walks: Qwerty123!, Asdf2020$

8o o

Examples of mangling rules

Applied to ,Password“

Name Function Example Rule | Output Word
Lowercase all letters I | password
Toggle case T t PpASSWORD
Duplicate 1st letter N times zZN Z2 PPPassword
Append character X tothe end | $X $1 Passwordl
Replace Xes with Ys sXY ss$ Password
Delete first character [[assword

CRACK (1991) - First password cracker with mangling-rule support
JOHN THE RIPPER adopted Crack’s rules and added more.
HASHCAT supports 56 unique rule commands, all applied on GPU.

Advanced Password
Recovery

How does a ruleset
look like?

i59 o064 o4g A3 A3 "3 r
040 R5 187 $3 i59 o060

o8l i92 oA3 o6l i72 i83 094 ~2 ~0 “0 *1 r
i50 ,6 o077 i42 i50 i60 o074 [$2 S0 $0 s$8
169 o075 i6l i72 o083 094 i3i $1

"4 22 r ssl $9 $8 $9 o078 o085

olo $1 $7 $1 $4 A3 ~1 T2

1 Sf o51 ss0O0 $1 o3y]

~0 ~0 ~1 $1 $0 $8 i42 ss0 $0 $5
“8 “0 r i59 o061 o0g ili

A3 A5 r 163 o072 o0j $2 $0 $0 $8

i59 o064
040 R5

081 i%2 oA3
i50 ,6 o077
i69 075

“4 ~"2 r
olo $1

1l $f

0 ~0 ~1
“8 “0 r

A3 A5 r

How does a ruleset
look like?

o4g

1 $7 $3

o6l i72 i83 094
i4d2 i50 i60 o074
i6l i72 o083 094
ssl $9 $8 $9

$7 $1 $4

o51 ss0 $1

$1 $0 $8

i59 o6l

i63 o072

A3 23 "3 r
i59 o060

~2 ~0 “0 *1 r
[$2 S0 $0 $8
i3i $1

o078 085

A3 21 T2

o3y |

i42 ss0 $0 $5
o0g ili

o0j $2 $0 $0 s$8

Manual creation is possible... but itis PAIN ®

How to make a ruleset that is actually ,good“?

HOW TO creadte rulesets? (automatically)

01 02

Hashcat’s generate-rules.c Marechal’s rulesfinder
Works but rules are purely RANDOM ® Works but require an existing ruleset ®

03 04

Iphelix’s PACK/rulegen Clustering?
Based on password similarity

=~\\{

01 - Take an existing (training)
password dictionary

DFRWS, hello, h3llo, dfrws, DFRW$

02 - Create clusters of
similar passwords

by (Damerau-) Levenshtein distance

hello, h3llo DFRWS, dfrws, DFRW$

03 - Select a (representative)
password from each cluster

hello, h3llo DFRWS, dfrws, DFRW$

04 - Create mangling rules that
transform the representative to
other passwords in the cluster

hello -> h3llo | Replace all ,e” with ,3"
dfrws -> DFRWS | Uppercase all letters

dfrws -> DFRW$ | Uppercase all letters AND
Replace all ,,s” with ,,$"

Use as few commands as possible. If multiple
are usable, use those with the highest priority.

05 - Count rule occurence,
deduplicate and select N most
frequent rules. DONE

General idea

Drdék & Hranicky (2019-2020), Li et al. (2022)

Timeline of clustering-based approaches

Drdék & Hranicky (2019-2020)

o

Affinity propagation clustering method
Works & provides decent results

) Distance matrix calculation ,each x each“ required — O(n2) time & space complexity
—~ -> not usable for bigger training dictionaries
Li et al. (2022)

oF

MDBSCAN (modified DBSCAN) clustering -> better handling of outliers -> better rules
SymSpell fuzzy search algorithm instead of full distance matrix -> faster, less memory

Cluster representative selection is not optimal
Limited number of rule commands

No other clustering methods tested

No PoC implementation available

Let’s improve the representative selection

ISSUE: In the classic ,Levenshtein method“ (Drdak et al., Li et al.), the representative is
‘ ALWAYS AN EXISTING PASSWORD -> not always good ®

... and thus, we came with P - Lo T T T
7 Pa$$Word_123 > .’ o
The SUBSTRING method P@ssword! Yo QWSRYI@AL
\ ' Sl QwarTy%2024 |
1. Revertleetspeak transformations ~ P@55WOrD - P@$$w0rb2024 -~ |
2. Convert all letters to lowercase T~ __ - - - | QW3rty 142 K
3. Find the longest common substring - T T T T~ qwerty T /
4. The substring is the representative N hello . v Qwerty$123!
| | '_hello2 hello3 S
In theory, this should provide more accurate AN y . L :
: P i ~ - - evenshtein method
representations of the ,base word ;@}J / -
hello password . Substring method

The COMBO method

Was the SUBSTRING method better?
Yes, but... not always!

Our final COMBO METHOD

1. Create clusters from passwords
2. Foreachcluster:

- Select a representative using the LEVENSHTEIN method & generate rules accordingly
- Select a representative using the SUBSTRING method & generate rules accordingly
3. The top n most frequent rules form the final ruleset

Other contributions of this work

More rule commands added! Alternate clustering methods

e Toggle case Overall, RuleForge support the following methods:

e \Word rotation commands

e Affinity Propagation (AP)
e \Wordreversals

e Hierarchical Agglomerative Clustering (HAC)
Rule-command priorities e Density-based spatial clustering with noise
updated accordingly (DBSCAN)

e Modified DBSCAN (MDBSCAN) by Li et al.

RuleForge .
Experlments
PoC implementation

Password research & experiment tool
Rule creation for an actual forensics use
Open-source (MIT License):
https://github.com/nesfit/RuleForge/

Benchmarking of clustering & rule creation
Comparison of MDBSCAN implementations
Comparison with alternate methods
Comparison with popular rulesets

https://github.com/nesfit/RuleForge/

RuleForge

Features

4 clustering methods

3 representative selection methods
2 distance calculation methods

1 ruleset on the output

First Release

Python 3 + C# for critical calculations
Open-source (MIT License)

https://github.com/nesfit/RuleForge

Loading training dictionary

Clustering method

DBSCAN, MDBSCAN HAC, AP

Finding similar passwords
with SymSpell

Calculating a distance

matrix
T T I]
DBSCAN MDBSCAN HAC Ap
v
DBSCAN ‘ | MDBSCAN l | HAG ‘ Affinity
propagration

Cluster
representative selection
method

C(TED SUBSTRING LEVENSHTEIN
Combination ‘ Substring ‘ ‘ Levenshtein

——

. Rule-command
Creating rules from clusters

priority
|

Saving rules to a .rule file

Ll LR

https://github.com/nesfit/RuleForge

We did Benchmarks & Hit rate testing

Observations

o rpmenbine

e MDBSCAN & AP => best-quality rulesets

e HACS DBSCAN & MDBSCAN
=> Lowest CPU requirements

e DBSCAN S MDBSCAN + SymSpell
=> Lowest memory requirements

e DBSCAN => sometimes suboptimal
clustering due to a large cluster of outliers

Winner? MDBSCAN

Best Hitrate / overhead tradeoff

AMD Ryzen 5 2600X workstation with 64 GB RAM, cracking on dual RTX 3070

Representative selection comparison

Rules Hit ratio
t* | Method pr tm en dp

Liet al. | 52.44% | 46.04% | 18.55% | 2.19%
i RF-leven | 55.12% | 51.45% | 21.10% | 2.53%
RF-substr | 53.42% | 48.22% | 22.34% | 2.36%
RF-combo | 56.54% | 51.56% | 22.60% | 2.60%
Liet al. | 55.14% | 50.49% | 19.41% | 2.30%
65 RF-leven | 55.83% | 51.70% | 21.44% | 2.50%
RF-substr | 53.65% | 47.69% | 23.76% | 2.51%
RF-combo | 57.43% | 53.23% | 23.22% | 2.66%
Liet al. | 51.19% | 43.96% | 17.26% | 2.10%
s RF-leven | 51.06% | 44.41% | 18.04% | 2.06%
RF-substr | 52.76% | 48.08% | 20.12% | 2.26%
RF-combo | 55.85% | 50.15% | 21.30% | 2.43%
Liet al. | 52.49% | 45.87% | 18.42% | 2.27%
dw RF-leven | 54.01% | 49.84% | 20.91% | 2.58%
RF-substr | 50.99% | 44.69% | 20.48% | 2.24%
RF-combo | 55.99% | 52.05% | 23.02% | 2.72%

Legend

Li et al. — The original MDBSCAN with the
Levenshtein method

RF-leven - RuleForge‘s implementation with
expanded rule command set & Levenshtein

RF-substr — RuleForge‘s implementation of
MDBSCAN with the Substring method

RF-combo - RuleForge‘s implementation of
MDBSCAN with the Combo method

t2 — training dictionary | columns — wordlists on which rules were applied | target ,hashlist” dictionary: rockyou-75-m

Hit ratio: RuleForge vs. other methods

—— MDBSCAN-RF-combo - MDBSCAN-RF-leven - DBSCAN-RF-leven DBSCAN-RF-combo
—— MDBSCAN Lietal. - - - PACK/Rulegen - - PCFG --- PassGAN
--- OMEN ——— Hashcat random «—— Best improvement
100 800 3.2k 29k rules 100 800 3.2k 29k rules
T I LI | I I I I LI LI | I |: I 1 T ' 1 :l 1
2 60% |- |
& 80% L] |
5 : _
§ : I
T 60% Col 0% o
2 . | i
: | | !
5 40% : : o :
-E I I I 20% — : -
= : : : :
QO%TH:J ! L1 |:||| |: Ll :, |_ Lol] Lo 1 |: Loaor 1l] :I]
108 10° 100 108 10° 10"
Number of guesses Number of guesses
(a) Target: Xato-net-100k (b) Target: phpbb-m

training AND attack dictionary: RockYou-960

Ratio of passwords recovered

Hit ratio: RuleForge vs. popular rulesets

80%

60%

40%

20%

0%

- d3adOne ~ - - OneRuleToRuleThemS§Still - - - InsidePro-PasswordsPro - - - Unicorn30kGenerated
—— MDBSCAN-RF-combo MDBSCAN Lietal. —— Hashcat random +— Best improvement
100 800 3.2k 29k rules 100 800 3.2k 29k rules
I 1 |:| I I I I I |:| Il I I:_F -I -I ——I |_ |___||: __ __7|___ | 1 I LI | I I I I LI :l 1 | I I: I 1 LB ' 1 :I 1
. e ‘ 60% |- B
| — :
I I
B Vo o
" P Ls -~ I
| - : 40% |
| I
l | |
| | | 20% |
| = 1 s | |
|__(’_ r, ’ | |
Iy I - I I
¥ = T | |
IH- - I I I [(7 | I I
1 L1 - | 1 1 T | 1] I | 1 Ll 1 00 1 L1 = = 1= | | I | 1
108 10° 10'° 108 10°

Number of guesses

(a) Target: Xato-net-100k

Number of guesses

(b) Target: phpbb-m

training AND attack dictionary: RockYou-960

summary

e Clustering-based rule creation is usable for password cracking
e MDBSCAN provides the best success/overhead tradeoff
e The COMBO METHOD outperformed the original work in all cases

e \We achieved uptoan 11.67 %pt. improvement over known best-
performing rule creation method (MDBSCAN Li et al.)

e We outperformed almost all widely-used rulesets.

Future work in progress

e Optimized Affinity Propagation and HAC
e GPU-accelerated version of RuleForge

e GenAl-based approaches
(like PassGAN, PassGPT, VAEPass, ...)

Thank you for /ﬁ

your attention! =

Radek Hranicky NN Viktor Rucky

hranicky@fit.vut.cz rucky01@stud.fit.vutbr.cz
Discord: alpatron

Discord: radekhranicky Lucia Sirova
xsirov01l®@stud.fit.vutbr.cz

Discord: sirrluc.

	Snímek 1: Beyond the Dictionary Attack: Enhancing Password Cracking Efficiency through Machine Learning-Induced Mangling Rules
	Snímek 2: Why rules?
	Snímek 3: Examples of mangling rules
	Snímek 4: How does a ruleset look like?
	Snímek 5: How does a ruleset look like?
	Snímek 6: HOW TO create rulesets? (automatically)
	Snímek 7: General idea Drdák & Hranický (2019-2020), Li et al. (2022)
	Snímek 8: Timeline of clustering-based approaches
	Snímek 9: Let‘s improve the representative selection
	Snímek 10: The COMBO method
	Snímek 11: Other contributions of this work
	Snímek 12: RuleForge
	Snímek 15: We did Benchmarks & Hit rate testing
	Snímek 16: Representative selection comparison
	Snímek 17: Hit ratio: RuleForge vs. other methods
	Snímek 18: Hit ratio: RuleForge vs. popular rulesets
	Snímek 19: Summary
	Snímek 20: Thank you for your attention!

