
DFRWS EU 2025 - Selected Papers from the 12th Annual Digital Forensics Research Conference Europe

Beyond the dictionary attack: Enhancing password cracking efficiency
through machine learning-induced mangling rules

Radek Hranický *, Lucia Šírová **, Viktor Rucký ***

Brno University of Technology, Faculty of Information Technology, Božetěchova 2/1, Brno, 612 00, Czech Republic

A R T I C L E I N F O

Keywords:
Password
Rules
John the Ripper
Hashcat
Clustering

A B S T R A C T

In the realm of digital forensics, password recovery is a critical task, with dictionary attacks representing one of
the oldest yet most effective methods. To increase the attack power, developers of cracking tools have introduced
password-mangling rules that apply modifications to the dictionary entries such as character swapping, substi
tution, or capitalization. Despite several attempts to automate rule creation that have been proposed over the
years, creating a suitable ruleset is still a significant challenge. The current research lacks a deeper comparison
and evaluation of the individual methods and their implications. We present RuleForge, a machine learning-
based mangling-rule generator that leverages four clustering techniques and 19 commands with configurable
priorities. Key innovations include an extended command set, advanced cluster representative selection, and
various performance optimizations. We conduct extensive experiments on real-world datasets, evaluating
clustering-based methods in terms of time, memory use, and hit ratios. Additionally, we compare RuleForge to
existing rule-creation tools, password-cracking solutions, and popular existing rulesets. Our solution with an
improved MDBSCAN clustering method achieves up to an 11.67%pt. Higher hit ratio than the original method
and also outperformed the best yet-known state-of-the-art solutions for automated rule creation.

1. Introduction

Since the advent of password authentication in computing, password
cracking has been a significant area of focus. This technique is used not
only by malicious hackers but also by the “good guys” such as law
enforcement, cyber defense organizations, penetration testers, security
analysts to measure password strength (Proctor et al., 2002; Vu et al.,
2007), or individuals recovering lost credentials. In digital forensics,
recovering passwords is crucial for accessing encrypted evidence,
making it an essential step in the investigative process.

Among the wide range of strategies invented and employed over the
years, dictionary attacks have stood the test of time as one of the oldest
yet still prevalent methods of breaching password-secured entry points.
These attacks, leveraging a predefined list of potential passwords,
exploit the human tendency to use memorable, hence often weak,
passwords (Bishop and V. Klein, 1995).

The introduction of password-mangling rules (Peslyak, 2017; Steube,
2024) to dictionary attacks has significantly enhanced their effectivity,
enabling attackers to systematically test modifications of candidate

passwords far beyond simple wordlist matching. These rules apply a
series of modifications, such as character substitution, insertion, dele
tion, and capitalization, to each entry in a wordlist to expand the attack
vector by orders of magnitude. This approach preys on the common
practice of creating passwords that are slight variations of dictionary
words or predictable patterns (Bishop and V. Klein, 1995).

Despite advances in cracking techniques, the process of creating and
optimizing mangling rules has for many years been largely manual,
time-consuming, and somewhat esoteric. In recent years, researchers
and developers have proposed several methods to automate the rule-
creation process (Marechal, 2012; Kacherginsky, 2013; Steube, 2020;
Drdák, 2020; Li et al., 2022). Recent approaches leverage machine
learning, particularly clustering (Drdák, 2020; Li et al., 2022), with
MDBSCAN (Li et al., 2022) being the latest method proposed. While
these approaches show significant potential, they lack a comprehensive
comparison of clustering methods and rule-creation strategies, leaving
room for further research and improvements.

* Corresponding author.
** Corresponding author.
*** Corresponding author.

E-mail addresses: hranicky@fit.vut.cz (R. Hranický), xsirov01@stud.fit.vutbr.cz (L. Šírová), xrucky01@stud.fit.vutbr.cz (V. Rucký).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301865

Forensic Science International: Digital Investigation 52 (2025) 301865

Available online 24 March 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:hranicky@fit.vut.cz
mailto:xsirov01@stud.fit.vutbr.cz
mailto:xrucky01@stud.fit.vutbr.cz
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301865
https://doi.org/10.1016/j.fsidi.2025.301865
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301865&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

1.1. Contributions

Firstly, we conduct a comprehensive evaluation of ruleset creation
with four clustering methods, assessing generation time, memory usage,
and hit ratios on real-world datasets. Secondly, we introduce optimi
zations to the rule creation process, including an extended rule com
mand set and advanced techniques for selecting cluster representatives,
improving flexibility and efficiency. Third, we test these optimizations
on MDBSCAN and benchmark our solution against the state-of-the-art
approach of Li et al. (2022), achieving an improvement of up to
11.67 % points in the hit ratio. Next, we compare our approach with
other rule-creation and password-guessing tools, achieving the highest
average hit ratio among all studied methods. Lastly, we compare the hit
rate with popular widely used rulesets, outperforming nearly all of them.
We also analyze the rules created and the strength of the recovered
passwords. Our contributions are demonstrated through RuleForge, a
clustering-based mangling-rule generator we developed as both a
proof-of-concept and a practical tool for password research and
real-world password cracking. Its flexibility allows to create of
context-specific rulesets to match the unique characteristics of each
investigation.

1.2. Structure of the paper

The paper is structured as follows. Section 2 overviews existing
research in smart password guessing, the history and the current state of
using password-mangling rules for dictionary attacks. In Section 3, we
propose the design and a proof-of-concept implementation of our
machine-learning-based rule generator. This section also describes our
proposed enhancements to the rule-creation process. Section 4 describes
the experimental evaluation of the rule generator and a comparison of
ruleset-creation methods. Finally, Section 5 discusses the achieved re
sults and pinpoints ways for possible future improvements.

2. Background and related work

Users frequently choose simple, memorable passwords (Bishop and
V. Klein, 1995) that make them vulnerable to intelligent
password-guessing techniques that mimic human behavior in password
creation. Narayanan and Shmatikov (2005) proposed password guessing
based on character distribution represented by Markovian models, later
adopted by the famous Hashcat tool (Steube, 2020) as the default
method for creating passwords in brute-force attacks. Düermuth et al.
(2015) presented OMEN (the Ordered Markov ENumerator), an algo
rithm based on iterating over bins in order of decreasing likelihood,
outperforming previously-known Markov-based password guessers.
Weir et al. (2009) introduced password cracking with Probabilistic
Context-Free Grammars (PCFG). The method was further improved by
Houshmand et al. (2015), who added keyword and multiword patterns,
Hranický et al. (2019, 2020), who proposed a faster and a distributed
version, and Veras et al. (2014), who added semantic patterns, dividing
password fragments into categories by semantic topics like names,
sports, etc. Kanta et al. (2022, 2023) utilized contextual information for
creating fine-tailored password dictionaries against specific targets. In
recent years, deep-learning approaches for password guessing have been
introduced. Ciaramella et al. (2006) studied Principal Component
Analysis (PCA) preprocessing and different architectures of neural net
works for password guessing. Melicher et al. (2016) deployed the “Fast,
Lean, and Accurate” (FLA) technique for measuring password strength
based on Recurrent Neural Networks (RNN). Hitaj et al. (2019) proposed
creating passwords with Generative Adversarial Networks (GAN) and
released the PassGAN generator. Xia et al. (2019) introduced password
guessing based on PCFG, Long Short-Term Memory (LSTM) and a model
called GENPass based on Convolutional Neural Networks (CNN).

Despite the invention of sophisticated techniques for guessing pass
words in the past decades, the dictionary attack is still one of the most

widely used methods, often used with additional mangling rules that
multiply the number of password candidates and increase the chance of
finding the correct password.

2.1. The evolution of password-mangling rules

The origins of password-mangling rules for dictionary attacks date
back to 1991 when Alec Muffett released the legendary Crack program
(Muffett, 1996). Crack offered a programmable dictionary generator and
mangling rules that applied additional modifications to candidate
passwords. The 1995 version 5.0 contained 21 pre-defined rulesets and a
cookbook for creating new ones using 29 supported commands like
character substitution or appending. The syntax was similar to those
used in state-of-the-art cracking tools like John the Ripper (Peslyak,
2015) and Hashcat (Steube, 2020).

In 1996, Alexander “Solar Designer” Peslyak created the John the
Ripper (JtR) tool as a replacement for the popular Cracker Jack UNIX
password cracker. In addition to a complete redesign of the tool, Peslyak
(2015) added support for mangling rules compatible with those used in
the original Crack program. Over the years, various improvements to
John’s rule engine have been added, including word shifting and
memorization.

Jens “atom” Steube later decided to fix the missing multi-threading
support in JtR’s dictionary attack mode. In 2009, he released the
Hashcat tool (Steube, 2020), originally called “atomcrack.” The initial
version was a simple yet very fast dictionary cracker. Hashcat had a
native support for password-mangling rules and adopted the syntax and
semantics from JtR.

The release of NVIDIA CUDA and OpenCL started a revolution in the
password cracking. Developers quickly reacted by adding GPU support
to their tools (Steube, 2020; Peslyak, 2019). Steube was no exception
and, in 2010, released cudaHashcat and oclHashcat, the latter being
eventually transformed into a single unified tool named just “hashcat”.
OpenCL support was also added to JtR in 2012 (Peslyak, 2019). Unlike
Cracker Jack and JtR, Hashcat applied the rules directly inside the GPU
kernel, which dramatically reduced the number of necessary PCI-E
transfers. Hashcat also introduced new such as ASCII value incre
mentation, character block operations, or separator-based character
toggling (Steube, 2024). To the best of our knowledge, Hashcat is the
only password cracker with an in-kernel rule engine and a
self-proclaimed “world’s fastest password cracker” (Steube, 2020). This
could be true as Hashcat now computes all hash algorithms on OpenCL
devices using highly optimized kernels. Moreover, the team Hashcat
won several years of DEFCON and DerbyCon “Crack Me If You Can”
(CMIYC) contests.1 The latest 2022 v6.2.6 release of Hashcat supports
56 unique mangling-rule commands (Steube, 2024).

2.2. Approaches to automated rule creation

While both Hashcat and JtR provide several default rulesets and their
respective websites document the syntax and semantics of the supported
mangling rules (Peslyak, 2017; Steube, 2024), creating new rulesets is
not a trivial task. To this day, several approaches have been proposed to
automate the rule creation (Marechal, 2012; Kacherginsky, 2013;
Steube, 2020; Drdák, 2020; Li et al., 2022).

The hashcat-utils repository includes generate-rules.c, a simple utility
by Jens Steube that generates random password-mangling rules based
on a time-based or user-defined seed. While the generated ruleset can
theoretically be used for password cracking, their form is purely random
without any deeper meaning, as there is no sophisticated system for their
creation. From a research perspective, the tool serves as a baseline for
comparing more advanced techniques. The algorithm was later inte
grated directly into hashcat (Steube, 2020).

1 https://contest.korelogic.com/.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

2

https://contest.korelogic.com/

Marechal (2012) proposed generating mangling rules by applying
handpicked or randomly generated initial rules to a wordlist, producing
mangled passwords. Their algorithm identifies the largest common
substring among the results and derives append/prepend operations to
recreate it from the remaining passwords. These operations represented
rules that were then ranked according to the number of passwords
created. Marechal’s proof-of-concept tool, rulesfinder, remains actively
maintained. Although the approach is working, its major drawback is
the need for an existing set of rules.

Peter ”iphelix” Kacherginsky (2013) introduced a novel technique
and a proof-of-concept tool called Rulegen within the Password Analysis
and Cracking Kit (PACK). It uses a similarity-based approach but does
not apply clustering in the true sense of the word. For each candidate
password, it creates a group of similar passwords. For each group,
Rulegen calculates the Levenshtein distance (Levenshtein, 1966) be
tween the originating password and other passwords in the group. By
analyzing the calculated distances, the optimal sequence of operations is
found and described by a series of rules (Kacherginsky, 2013).

Between 2019 and 2020, Drdák and Hranický (Drdák, 2020)
explored using machine learning for automated rule creation by clus
tering a training dictionary based on password similarity. From each
cluster, a password was chosen as a representative. Mangling rules were
then created to describe necessary modifications for transforming the
representative to the remaining passwords in the cluster. Using Affinity
Propagation (AP) (Frey and Dueck, 2007), Drdák developed a
proof-of-concept with promising results published in his bachelor’s
thesis (Drdák, 2020). While the general idea has been later proven
useable by other researchers (Li et al., 2022), Drdák’s study had its
limitations. Firstly, Drdák tested only a single clustering method. The
second issue was an extremely long computing of the distance matrix for
larger training dictionaries.

The same issue was independently identified and later addressed by
Li et al. (2022). They proposed a novel method called MDBSCAN, a
modified version of the classic DBSCAN algorithm (Ester et al., 1996),
that was customized for clustering passwords. To accelerate the distance
calculation, they used the SymSpell (Garbe, 2012) fuzzy search algo
rithm. The research on using MDBSCAN for the rule generation problem
shows great success in experimental results, even compared to PCFG
(Weir et al., 2009) and PassGAN (Hitaj et al., 2019).

While MDBSCAN (Li et al., 2022) is, to the best of our knowledge, the
most efficient clustering-based technique for automated rule creation,
the authors focused mainly on DBSCAN and MDBSCAN and have not
tested other clustering methods like Affinity Propagation (Frey and
Dueck, 2007) or Hierarchical Agglomerative Clustering (HAC) (Han
et al., 2012). The rule-creation method is also not optimal, namely in
terms of cluster representative selection, and, as we demonstrate in our
paper, fails in certain scenarios. Also, a selection of only 14 rules was
implemented. Moreover, we have not found any released
proof-of-concept implementation of the proposed method.

2.3. Research goals

Although several approaches for automated mangling-rule creation
have been proposed, significant gaps and unanswered questions remain.
To fill these gaps and advance the state of the art in the field we have
decided to:

1. Compare tested and yet-untested clustering methods: DBSCAN (Ester
et al., 1996), MDBSCAN (Li et al., 2022), AP (Frey and Dueck, 2007),
HAC (Han et al., 2012).

2. Implement missing rule commands and experimentally verify their
contributions.

3. Explore other possibilities for choosing a cluster representative and
verify their benefits.

4. Compare these clustering-based approaches to other mangling-rule
creation methods like PACK/Rulegen and other password-guessing
tools like OMEN, etc.

5. Create an open-source proof-of-concept implementation to allow
researchers and forensics practitioners to experiment with auto
mated rule creation.

6. Analyze the hit ratio of the generated rules and compare it with
existing popular rulesets.

3. The proposed mangling-rule generator

To fulfill the research goals from Section 2 and also to provide a tool
for both experimental and actual password-cracking purposes, we pro
pose a design and a proof-of-concept implementation of RuleForge, an
ML-based mangling-rule generator with four clustering methods: AP
(Frey and Dueck, 2007), HAC (Han et al., 2012), DBSCAN (Ester et al.,
1996), and MDBSCAN (Li et al., 2022). Our tool is also equipped with an
extended rule command set, enhanced methods for choosing cluster
representatives, and configurable rule command priorities.

3.1. Design

The RuleForge rule generation process consists of several key steps,
illustrated in Fig. 1. The workflow starts with processing the training
password dictionary. For DBSCAN and MDBSCAN clustering methods,
we find similar passwords according to the Damerau–Levenshtein
(Damerau, 1964) distance and use the SymSpell (Garbe, 2012) fuzzy
search algorithm to accelerate the process, like Li et al. (2022) proposed.
For AP and HAC, we calculate a classic edit-distance matrix utilizing the

Fig. 1. Rule generation process.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

3

Levenshtein distance metric (Levenshtein, 1966). Password clusters are
then created using the selected method.

Next, we select strings to be considered representatives of their
respective cluster. The reason is to create rules based on comparing
passwords within a cluster with their given representative and model
necessary transformations by the produced rules. With AP, the repre
sentative is determined by the clustering method itself. For the
remaining methods, the representative is selected using one of the
techniques from Section 3.3. DBSCAN and MDBSCAN do not necessarily
categorize every element into a cluster; they put these unclusterable
elements into an “outlier cluster”. Creating rules from this cluster is,
understandably, ineffective. Therefore, we added an option to exclude
these outliers from rule creation.

Once clusters are created and their representatives selected, the
process of generating passwords starts. RuleForge generates rules by
leveraging a user-provided rule-command priority file, specifying the
sequence in which rules are formulated. The process is thoroughly
explained in Section 3.4. Finally, RuleForge creates an output ruleset
consisting of rules sorted by frequency or, optionally, a ruleset with a
user-specified top number of rules.

3.2. Clustering methods

As discussed above, RuleForge uses clustering to find groups of
similar passwords. Once identified, we can notice differences between
passwords in a group. These differences typically reveal how users
create their passwords and serve as anchors for rule identification.
Applying different clustering methods may lead to varied ways of
grouping passwords and creating diverse rules. By experimenting with
these methods within the tool, it is possible to attain varying password-
cracking success rates. The following paragraphs describe the supported
clustering methods and their use in RuleForge.

3.2.1. AP
Affinity Propagation treats all objects as potential exemplars,

exchanging messages to identify high-quality exemplars and clusters
(Frey and Dueck, 2007). Key parameters are damping, which is the extent
to which the current value is maintained relative to incoming values,
and convergence_iter, representing how many iterations without change
stop the clustering. In our experiments, convergence_iter is 15, while
damping is 0.7, as these settings produced the best results.

3.2.2. HAC
The Hierarchical Agglomerative Clustering method places each ob

ject into a cluster of its own. The clusters are then merged into larger
clusters according to the criterion set by distance_threshold (Han et al.,
2012). Our setup uses distance_threshold of 3, which has been experi
mentally verified to be the most effective for our use case.

3.2.3. DBSCAN
Density-Based Spatial Clustering of Applications with Noise iden

tifies core points—objects that have at least MinPts neighbors within ϵ
distance. Each core point initially forms a cluster with itself and then
expanding by including neighboring objects. The result is a set of clus
ters and a set of non-clustered noise objects. We set ϵ as 1 and MinPts to
3. In our experience, higher values of ϵ lead the algorithm to output a
single cluster containing the vast majority of passwords. Higher values
of MinPts categorize the majority of passwords as noise.

3.2.4. MDBSCAN
Modified MDBSCAN (Li et al., 2022) addresses DBSCAN’s tendency

to form one large cluster when clustering passwords by introducing a
truncation metric. MDBSCAN’s parameters are ϵ1, ϵ2, and MinPts, where
ϵ1 and MinPts are equivalent to DBSCAN’s. An object is only added to a
cluster if its Jaro–Winkler distance (Winkler, 1990) to the initial point of
the cluster is less than or equal to ϵ2. The truncation allows a higher ϵ1 by

breaking up the large cluster, reducing noise. We set ϵ1 to 2, ϵ2 to 0.25,
and MinPts to 3. Setting ϵ1 above 2 leads to enormously large clusters.
High ϵ2 leads to the creation of too many useless single-password clus
ters, whereas higher values produce too large clusters. MinPts configu
ration has the same impact as with DBSCAN.

Algorithm 1. Rule identification
Global: Vector rp

→
= [r1, r2,…, r19] of rule commands in priority order, where r1 and r19

are commands with the highest and lowest priority respectively
Input: Password P from a cluster ci, representative Prep of a cluster ci
Output: Sequence of rule commands R generated by transforming P to Prep
while P ∕= Prep do

rf = None ▹ Initialize rf value to check whether
▹ a suitable rule command was found.

for each rule command r ∈ rp
→ do

Calculate the number of transformations n using
levenshtein_distance(P, Prep).
Create a password Pm by modifying password P
with rule command r.
Calculate the new number of transformations nm
using levenshtein_distance(Pm, Prep).
if nm < n then

▹ Suitable rule command rf found.
P = Pm
rf = r
break ▹ Stop looking for other commands.

if rf ∕= None then
R.append(rf)

else
break ▹ No other possible modification found.

return R ▹ Return the final command sequence.

3.3. Choosing cluster representatives

Once the clusters are created, it is necessary to select a representative
for each cluster and search for possible transformations to the remaining
passwords in the cluster.

3.3.1. Levenshtein Method
Existing works that use clustering for rule creation (Drdák, 2020; Li

et al., 2022) always choose a representative as a concrete password from
the cluster, concretely, the one with the lowest mean Levenshtein dis
tance to others. Therefore, we call it this technique the “Levenshtein
Method”. Nevertheless, this approach is rather limiting. Assume the
password clusters in Fig. 2. The blue candidates are representatives
chosen by this method. In the leftmost cluster, hello1 is selected as a
representative. Assuming the rule commands from Table 1, possible
transformations to hello2 and hello3 are (1) deleting the last char
acter and appending “2” or “3”, (2) overwriting the 6th character with
“2” or “3”, or (3) replacing all occurrences of “1” with “2” or “3”.
Obviously, such modifications are only useable in very specific cases.
What we want are rules that have general use.

Fig. 2. A visual comparison of cluster representative selection methods.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

4

3.3.2. Substring Method
To overcome the obstacles of the previous approach, we invented an

alternative called the “Substring Method”, which works as follows.
Firstly, we transform all characters of the substring to lowercase. This
way we obtain more general words to which capitalization rules may
easily be applied. Next, we undo all “leetspeak-based” transformations
like a → @ or s → $. As we have observed, removing leetspeak often
allows the extraction of original words and sentence fragments that
inspired the password creator. Finally, we calculate the longest common
substring of all passwords in the cluster. The resulting string is the
cluster representative. Note that the representative created by this
method may not always be an actual existing password from the cluster.

3.3.3. Combo Method
While the Substring Method allows the creation of more generally

useable rules, the sole method is not extremely powerful. Therefore, we
propose a third option that combines the previous two methods, leading
to the best experimental results from all (See Section 4.). This “Combo
Method” works as follows:

1. For each cluster, choose a representative using the Levenshtein
Method and generate all possible rules (See Section 3.4.).

2. For each cluster, choose a representative using the Substring Method.
Generate all possible rules to extend the previously created ruleset.

3. The top n most frequent rules create the final ruleset.

3.4. Rule creation

The rule-generation process utilizes the Levenshtein distance
(Levenshtein, 1966) to determine the number of editing operations
required to transform a password within a cluster to its representative.
Measuring edit distance helps find specific rule commands that, when
used on passwords, make the edit distance smaller. A command that
decreases the edit distance is deemed appropriate and incorporated into
the generated rule. Multiple commands (such as sXY and oNX) may
achieve identical modifications in certain instances. Therefore, Rule
Forge introduces a rule-command priority system, specifying which
commands it prioritizes. The configuration can be specified in a priority
file, where one can determine which rule commands RuleForge should
utilize and in which priority. The generator proposed by Li et al. (2022)
supports 14 different rule commands. With RuleForge, we expanded this
number to 19. The commands supported by RuleForge are displayed in
Table 1. Other Hashcat rule commands that have not yet been imple
mented are considered for future work. This approach of using

rule-command priority allows the exploration of different priority con
figurations, leading to different password-cracking hit rates. The rule
generation process is illustrated in Algorithm 1.

3.5. Proof-of-concept implementation

To create a proof-of-concept implementation of RuleForge, we chose
a combination of two languages: Python and C#. Python for its popu
larity, common knowledge among researchers, extensive data-analysis
support. And C# chiefly because of our dependence on the SymSpell
library, which is written therein, but also due to its better multithreading
performance, which is useful in effectively computing distance matrices.
We used the Python Scikit Learn2 library to perform HAC and AP clus
tering. For DBSCAN and MDBSCAN, we made our own implementation
in C# and made use of the SymSpell library. MDBSCAN was imple
mented, to the best of our efforts, according to the paper from Li et al.
(2022). RuleForge is accessible on GitHub3 under the MIT License.

4. Experimental results

In this section, we analyze clustering and rule creation with the
discussed methods and evaluate them on real-world datasets. Next, we
compare the original (Li et al., 2022) and RuleForge’s implementations
of MDBSCAN, focusing also on different representative-selection
methods. Next, we compare the hit ratio of RuleForge with other tech
niques and state-of-the-art tools. Finaly, we compare hit rates with
popular rulesets. In the experiments, we use various password dictio
naries. Table A.5 describes each of them. All are also available on our
GitHub repository.3 Note, for some experiments, we use abbreviations
(from the “Ab.” column) instead of full names.

4.1. Benchmarking of clustering and rule creation

Time and space complexities are critical deciding factors, and thus,
we first analyzed the computing time and memory requirements for
clustering and rule creation with the four examined methods. We ran a
series of benchmarks with dictionaries of different sizes on an AMD
Ryzen 5 2600X workstation with 64 GB of RAM. The inputs were
pseudo-random subsamples with 1000 to 100,000 passwords from the
RockYou dictionary. We used RuleForge in the “Combo” mode (See
Section 3.) with AP, HAC, DBSCAN, and MDBSCAN. Fig. 3 shows the
time and maximum resident set size (RSS) required to create clusters and
generate mangling rules for inputs of different sizes. Dashed lines indi
cate extrapolated values for wordlist-size values that could not be
measured due to a lack of memory in our workstation.

DBSCAN, MDBSCAN, and HAC demonstrate comparable and decent
performance, all processing dictionaries with 100,000 passwords in
under 5 min. In contrast, AP exhibits significantly poorer performance,
requiring about 21 h to handle the same workload.

In terms of memory requirements, DBSCAN and MDBSCAN show
linear complexity, whereas AP and HAC display quadratic complexity,
which is due to the necessity of computing the full distance matrix, as
mandated by the Scikit Learn library. In concrete values, at 100,000
passwords, DBSCAN and MDSBCAN require about 200 MB of memory,
HAC requires 137 GB, and AP 247 GB. DBSCAN and MDBSCAN’s effi
cient linear memory usage is achieved by leveraging the SymSpell li
brary (Garbe, 2012) for finding similar passwords.

The doubling of memory usage from HAC to AP is caused by the fact
that HAC can utilize a 1-byte integer distance matrix, whereas AP re
quires at least a 2-byte float distance matrix. Note that the memory re
quirements for AP and HAC are much higher than just the size of their
distance matrices (for 100,000 passwords, this would be 10 GB and 20

Table 1
Rule commands implemented in RuleForge, applied on “Password” (bold are
newly added).

Rule Description E.g. Output

: Do nothing : Password
l Lowercase all letters l password
u Uppercase all letters c PASSWORD
c Uppercase all letters c PASSWORD
t Toggle case t pASSWORD
TN Toggle case at position N T2 PaSsword
zN Duplicate first character N times z2 PPPassword
ZN Duplicate last character N times Z2 Passworddd
$X Append character X to end $1 Password1
^X Prepend character X to front ^_ _Password
[Delete first character [assword
] Delete last character] Passwor
DN Delete character at position N D2 Pasword
iNX Insert character X at position N i4! Pass!word
oNX Overwrite ch. at pos. N with X o2$ Pa$sword
} Rotate the word right } dPasswor
{ Rotate the word left { asswordP
r Reverse the entire word r drowssaP
sXY Replace all Xes with Y ss$ Pa$$word

2 https://scikit-learn.org/.
3 https://github.com/nesfit/RuleForge/.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

5

https://scikit-learn.org/
https://github.com/nesfit/RuleForge/

GB for HAC and AP, respectively). This is caused–as we observed–by
some inefficiencies in Scikit Learn’s handling of distance-matrix
clustering.

DBSCAN and MDBSCAN are thus very well suited for processing any-
sized dictionaries. AP and HAC, on the other hand, are barely useable for
larger dictionaries due to extensive memory requirements.

4.2. Cross-checking clustering methods and rule creation on different
wordlists

Next, we compared the achievable hit ratios of rules generated from
the clusters produced by each of the four clustering methods. For this
purpose, we employed RuleForge in the “Combo” mode, except for AP
which selects cluster representatives natively. We experimented with
four training (t) dictionaries (tl, r65, ms, dw) for creating rulesets. Each
ruleset was gradually applied to words from four attack dictionaries (pr,
tm, en, dp) in a dictionary-cracking session with Hashcat 6.2.6 in
plaintext mode. The target “hashlist” was RockYou-75 (See Table A.5.),
for which, we calculated the number of hits. To maintain fair conditions
for all methods, we used the best (i.e. first) 1000 rules generated by each
method.

Table 2 shows the hit ratios. On average, MDBSCAN produced rules
with the best hit ratios. The second best-achiving method was AP which,
for r65+en, it even outperformed MDBSCAN. We believe this success of
AP is caused by its virtually optimal cluster representative selection, but
this is reclaimed by high computational and memory costs, as shown in
the previous experiment.

4.3. Comparison of MDBSCAN-based implementations

In this experiment, we focused on the best-performing MDBSCAN
method and compared its implementations. As a baseline, we used the
original version from Li et al. (2022), which we compared with Rule
Forge in the Levenshtein (RF-leven), Substring (RF-substr), and Combo
(RF-combo) modes. The dictionaries were the same as in the previous
experiment. Likewise, we used Hashcat 6.2.6 and the first 1000 gener
ated rules.

Table 3 describes the hit ratio of attacks on RockYou-75 and Table 4
on Xato-net-100k. RF-combo produced the highest average hit ratio and,
in all cases, outperformed the original version from Li et al. (2022),
emphasizing our contributions. Interestingly, in the r65+en attack on
RockYou-75, the Substring Method resulted in a higher hit ratio than
Combo. Note that this is the same combination as where AP produced
better results than MDBSCAN. Similarly, in the tl + tm attack on
Xato-Net-100k, the Levenshtein Method also performed better than
Combo. Such anomalies are caused by the nature of passwords in the
chosen dictionaries and demonstrate that there is no optimal method for
all cases.

4.4. Comparison of rule-creation methods

In this experiment, we compared hit rates of dictionary attacks with
rulesets generated by different methods. As both the training dataset and
the attack wordlist, we used a pseudo-random subsample of 960,000
passwords from the RockYou dataset, named “RockYou-960.” Using
Hashcat 6.2.6, we conducted a series of cracking sessions with the first n
rules from the ruleset, where n = 100, …, 29000, and measured the hit
rate on Xato-net-100k and phpbb-m dictionaries from Table A.5. We
tested the original MDBSCAN, as proposed by Li et al. (2022), and
RuleForge’s implementation of MDBSCAN and DBSCAN in both Lev
enshtein and Combo modes. AP and HAC were not used in this experi
ment as they would require a minimum of 461 GB memory, which was
beyond the capabilities of our experimental machine.

To compare our attacks in a broader scope, we also deployed several
tools from related work (See Section 2.). Concretely, we tested iphelix’s

Fig. 3. Time (a) and peak memory (b) requirements for generating rules from
wordlists of different sizes.

Table 2
Attacks on rockyou-75-m.

Rules Hit ratio

ta Method pr tm en dp

tl mdbscan 56.54 % 51.56 % 22.60 % 2.60 %
dbscan 47.46 % 40.13 % 16.48 % 1.89 %
hac 48.61 % 42.40 % 17.82 % 1.95 %
ap 53.49 % 47.32 % 20.43 % 2.29 %

r65 mdbscan 57.43 % 53.23 % 23.22 % 2.66 %
dbscan 47.28 % 39.95 % 16.52 % 1.88 %
hac 44.24 % 37.49 % 16.88 % 1.89 %
ap 57.14 % 51.46 % 23.31 % 2.61 %

ms mdbscan 55.85 % 50.15 % 21.30 % 2.43 %
dbscan 48.48 % 41.34 % 16.90 % 1.87 %
hac 51.35 % 46.40 % 19.07 % 2.10 %
ap 49.72 % 42.61 % 17.37 % 1.90 %

dw mdbscan 55.99 % 52.05 % 23.02 % 2.72 %
dbscan 47.62 % 40.25 % 17.13 % 2.61 %
hac 45.11 % 38.53 % 17.84 % 1.84 %
ap 55.09 % 49.57 % 22.34 % 2.68 %

a Training dictionary.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

6

PACK/Rulegen (Kacherginsky, 2013). Next, we used PCFG as originally
proposed by Weir et al. (2009), i.e., without enhancements like Markov,
etc. We also deployed the Ordered Markov ENumerator (OMEN), pro
posed by Düermuth et al. (2015), and PassGAN by Hitaj et al. (2019). As
the last three methods do not produce mangling rules, equivalent
numbers of password guesses were generated instead, using
RockYou-960 as the training dictionary for creating models. Finally, we
used a random ruleset generated by Hashcat to serve as a baseline for
other methods.

Experimental results are displayed in Fig. 4. Note that the results
from our RuleForge generator use shorthands in the legend: (M)
DBSCAN-RF-{leven,combo}. The horizontal axis indicates the num
ber of rules (top) and corresponding guesses (bottom), calculated as the
dictionary size multiplied by the rule count. The vertical axis displays
the hit ratio.

The best average hit ratio was achieved by RuleForge’s MDBSCAN in
the Combo mode, which also showed the best absolute hit ratio in most
measurements. Anomalies were observed at around 800 rules on Xato-
net-100k, where it was briefly exceeded by the classic Levenshtein
method of RuleForge, and around 1600 rules on phpbb-net, where PACK
performed better than MDBSCAN. Interestingly, for lower guess counts

on phpbb-m, all methods were surpassed by PCFG, which then degraded
to one of the worst methods in our scenario. RuleForge’s DBSCAN in
both modes also performed well and, in many measurements, exceeded
the original MDBSCAN from Li et al. (2022).

Our improvements are best illustrated by the difference between
MDBSCAN-RF-combo (the solid black line) and MDBSCAN Li et al. (the
solid red line). The biggest change was a 6.68%pt. improvement at 6400
rules on Xato and a 11.67%pt. improvement at 18,000 rules on phpbb-
m. Those are marked by black-lined arrowed segments.

We also examined the strength of the passwords recovered by the
MDBSCAN-RF-Combo ruleset of 29k rules using zxcvbn,4 which calcu
lates the strength as an estimated number of guesses required to crack
the password.

From Xato-net-100k, we recovered 93.63 % of all passwords. For
those with strength under e14, we recovered the majority: 95.08 %. From
passwords with strength higher or equal e14 and lower than e18, we
cracked 65.70 %. About 1 % had strength over or equal to e18, where the
success rate was 21.83 %.

From PhpBB, we recovered 62.14 % of all passwords. For strengths
under e14, we cracked 85.16 % of passwords. For strengths higher or
equal e14 and lower than e18, the success was 45.63 %. About 19.89 %
had strength over or equal to e18, where the success was 10.68 %.

Contrary to the experiments of Li et al. (2022), PACK surpassed the
original version of MDBSCAN at higher guess counts and even out
performed MDBSCAN-RF over a specific short range on phpbb-m. OMEN
performed slightly worse than the previously mentioned rule-based
methods, but still followed closely. The nature of password guessing
with Markovian chains created a curve with a stairs-like shape.
PCFG-based guessing generates passwords in a probability order, start
ing from the most probable candidate password. Interestingly, PCFG
showed much better performance on phpbb-m, where it had the highest
hit ratios on smaller amounts of guesses, than on Xato-net-100k, where
the increments in hit ratio were minimal. PassGAN performed rather
poorly, notably at lower amounts of guesses. Execution times were also
high, which prevented us from conducting measurements for high
numbers of guesses, as it would take weeks to generate the passwords. Its
success rate grew with increasing numbers of guesses but never excee
ded OMEN or the clustering-based methods. As anticipated, the
randomly generated ruleset showed the lowest hit ratios.

4.5. Comparison with popular rulesets

Lastly, we compared MDBSCAN and DBSCAN against widely used
popular password cracking rulesets: d3ad0ne and Insidepro-
PasswordsPro from the Hashcat repository, OneRuleToRuleThemStill5

from the stealthspolit repository, and Unicorn30kGenerated6 from
Unic0rn28. The settings are the same as in the previous experiment.
Hashcat random rules again serve as a baseline.

The resulting hit ratios in Fig. 5 show that RuleForge’s MDBSCAN in
the combo mode outperformed all except OneRuleToRuleThemStill.
This high-quality ruleset produced better results mainly between 800
and 3.2k rules. For lower counts, RuleForge was slightly better. From
6.4k rules, the two were comparable, with the ruleset having less than
1%pt. more success. It is important to emphasize that our objective was
not to develop a universally optimal ruleset. Instead, we aimed to create
a tool for automated rule generation that can be tailored to meet the
specific requirements of individual investigations.

The first 1k rules of MDBSCAN-combo consisted exclusively of
single-rule commands like appending, prepending, overwriting and
inserting a single character, but also word truncation, and other com
mands. Case toggles were present on 224 lines of the ruleset. Generally,

Table 3
MDBSCAN RF vs. Li, rockyou-75-m.

Rules Hit ratio

ta Method pr tm en dp

tl Li et al. 52.44 % 46.04 % 18.55 % 2.19 %
RF-leven 55.12 % 51.45 % 21.10 % 2.53 %
RF-substr 53.42 % 48.22 % 22.34 % 2.36 %
RF-combo 56.54 % 51.56 % 22.60 % 2.60 %

r65 Li et al. 55.14 % 50.49 % 19.41 % 2.30 %
RF-leven 55.83 % 51.70 % 21.44 % 2.50 %
RF-substr 53.65 % 47.69 % 23.76 % 2.51 %
RF-combo 57.43 % 53.23 % 23.22 % 2.66 %

ms Li et al. 51.19 % 43.96 % 17.26 % 2.10 %
RF-leven 51.06 % 44.41 % 18.04 % 2.06 %
RF-substr 52.76 % 48.08 % 20.12 % 2.26 %
RF-combo 55.85 % 50.15 % 21.30 % 2.43 %

dw Li et al. 52.49 % 45.87 % 18.42 % 2.27 %
RF-leven 54.01 % 49.84 % 20.91 % 2.58 %
RF-substr 50.99 % 44.69 % 20.48 % 2.24 %
RF-combo 55.99 % 52.05 % 23.02 % 2.72 %

a Training dictionary.

Table 4
MDBSCAN RF vs. Li, Xato-Net-100k.

Rules Hit ratio

ta Method pr tm en dp

tl Li et al. 39.16 % 43.33 % 18.80 % 2.91 %
RF-leven 40.84 % 49.11 % 20.27 % 3.53 %
RF-substr 37.11 % 44.11 % 21.16 % 3.06 %
RF-combo 40.91 % 48.26 % 21.17 % 3.44 %

r65 Li et al. 39.11 % 44.57 % 18.29 % 2.92 %
RF-leven 40.40 % 48.76 % 19.93 % 3.80 %
RF-substr 33.64 % 40.27 % 20.70 % 2.85 %
RF-combo 40.98 % 49.32 % 21.27 % 3.67 %

ms Li et al. 37.00 % 39.80 % 17.51 % 2.61 %
RF-leven 37.93 % 44.47 % 18.41 % 2.96 %
RF-substr 35.03 % 41.82 % 17.74 % 2.56 %
RF-combo 39.62 % 46.46 % 19.75 % 3.17 %

dw Li et al. 39.10 % 42.55 % 18.60 % 3.00 %
RF-leven 40.66 % 48.71 % 20.30 % 3.74 %
RF-substr 34.28 % 39.53 % 18.48 % 2.66 %
RF-combo 41.39 % 49.77 % 21.50 % 3.84 %

a Training dictionary.

4 https://github.com/dropbox/zxcvbn.
5 https://github.com/stealthsploit/OneRuleToRuleThemStill.
6 https://github.com/Unic0rn28/hashcat-rules.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

7

https://github.com/dropbox/zxcvbn
https://github.com/stealthsploit/OneRuleToRuleThemStill
https://github.com/Unic0rn28/hashcat-rules

compared with the other rulesets, ours had significantly more insertion
and truncation commands. The generated rulesets are also available in
the RuleForge repository.

5. Conclusion

Our research demonstrates the significant potential of the clustering-
based generation of password-mangling rules in enhancing dictionary
attacks, often outperforming state-of-the-art guessing methods. AP
produces high-quality clusters, but has prohibitive time and space
complexity, which limits scalability. HAC improves time efficiency, but
still requires substantial memory. DBSCAN and MDBSCAN reduce
memory demands when paired with SymSpell. MDBSCAN, noted for
splitting large password clusters into smaller, more effective ones, ach
ieved the best results among the tested methods.

The quality of the generated rules depends not only on the clusters
produced but also on the selection of their representatives. As demon
strated by our experiments, the traditional Levenshtein Method used by
Li et al. (2022) is not always optimal. Combining it with the
substring-based approach we propose generally yields superior results.

Our Combo Method achieved significantly better outcomes in most
cases.

The rule generation strategy is also crucial. By incorporating com
mands for case toggling, word rotations, reversals, and character over
writes, we achieved higher hit ratios than Li et al. (2022), not only in
MDBSCAN Combo mode but also in the standard Levenshtein mode,
and, unexpectedly, even with classic DBSCAN in most measurements.
With MDBSCAN, we achieved up to an 11.67%pt. improvement in hit
ratio over the original method.

The attack’s success depends on the training and attack wordlists.
Using dictionaries similar to the nature of the target is likely to yield the
best results. In a digital forensic lab, the proposed method can be utilized
to generate context-specific rulesets tailored to the unique characteris
tics of each investigation. Forensic analysts frequently build profiles of
suspects based on known passwords, nationalities, interests, and typical
password modification patterns. Automated rule creation simplifies
crafting case-specific rulesets by training on relevant wordlists and
previously-used passwords. This dramatically reduces the overhead of
manual ruleset development, enhancing investigative efficiency. This
enables forensic practitioners to concentrate on higher-level analytical

Fig. 4. Hit rate comparison with other methods (Training: RockYou960, Attack: RockYou960).

Fig. 5. Hit rate comparison with popular rulesets (Training: RockYou960, Attack: RockYou960).

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

8

tasks without sacrificing performance.
Last but not least, we released RuleForge, an open-source clustering-

based rule generator, as both a proof-of-concept and a practical tool for
password recovery research. The release includes source code, docu
mentation, all referenced password datasets, and rulesets generated for
experiments in this paper.

Looking ahead, we would like to evaluate the behavior of alternative
distance metrics and other methods like Spectral Clustering (Jia et al.,
2014) and their potential benefits to password-mangling rule creation.
We also believe that AP and HAC could be optimized in terms of memory
requirements. The strength analysis of the cracked passwords showed
that a ruleset trained on RockYou-960 worked well with easy to

advanced passwords, but had difficulties with very strong ones. In the
future, we, therefore, plan to train on stronger passwords to create more
sophisticated rules and examine their success. With the spread of AI, we
also intend to explore transformer-based models for rule creation and
evaluation. Additionally, we are currently developing a much faster,
compiled, optimized and GPU-accelerated version of RuleForge.

Acknowledgements

The research presented in this paper has been supported by the
“Smart Information Technology for a Resilient Society” project, no. FIT-
S-23-8209, granted by Brno University of Technology.

Appendix A. Used Dictionaries

Table A.5 provides an overview of all password dictionaries used in our experiments, including their abbreviations, names, password counts, and
descriptions.

Table A.5
Password dictionaries for experimental evaluation

Ab. Name Passwords Description

tl tuscl-m 37,006 Tuscl leak (ASCII, ≤ 10 ch.)
r65 rockyou-65-m 29,596 RockYou subsample (ASCII, ≤ 10 ch.)
ms myspace-m 30,000 MySpace leak (ASCII, ≤ 10 ch.)
dw darkweb2017-top10k-m 9999 Darkweb subsample (ASCII, ≤ 10 ch.)
tm 10-million-list-top-10000 9999 9999 Passwords from the 10-million list
pr probable-v2-top12000 12,645 A subsample from the probable dictionary
en english-6 15,542 English words up to 6 characters
dp default-passwords 1315 Commonly used passwords
– RockYou-960 960,000 A 960k subsample of the RockYou leak
– rockyou-75-m 59,090 ASCII subsample of the RockYou leak
– Xato-net-100k 99,987 Top passwords from the Xato 10m dataset
– phpbb-m 184,344 ASCII passwords from phpBB leak

References

Bishop, M., Klein, D.V., 1995. Improving system security via proactive password
checking. Comput. Secur. 14, 233–249.

Ciaramella, A., D’Arco, P., De Santis, A., Galdi, C., Tagliaferri, R., 2006. Neural network
techniques for proactive password checking. IEEE Trans. Dependable Secure
Comput. 3, 327–339.

Damerau, F.J., 1964. A technique for computer detection and correction of spelling
errors. Commun. ACM 7, 171–176.

Drdák, D., 2020. Automated Creation of Password Mangling Rules. Bachelor’s thesis. FIT,
Brno University of Technology, Czechia.

Düermuth, M., Angelstorf, F., Castelluccia, C., Perito, D., Chaabane, A., 2015. OMEN:
faster password guessing using an ordered markov enumerator. In: Engineering
Secure Software and Systems. Springer, Milan, Italy, pp. 119–132.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings of 2nd
KDD-96. AAAI Press, pp. 226–231.

Frey, B.J., Dueck, D., 2007. Clustering by passing messages between data points. Science
315, 972–976.

Garbe, W., 2012. SymSpell. URL: https://github.com/wolfgarbe/SymSpell. Online;
Accessed: 2024-04-16.

Han, J., Micheline, K., Jian, P., 2012. Data mining: concepts and techniques. Morgan
Kaufmann Series in Data Management Systems, 3 ed. Morgan Kaufmann, Waltham.

Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F., 2019. PassGAN: a deep learning approach
for password guessing. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(Eds.), Applied Cryptography and Network Security. Springer, pp. 217–237.

Houshmand, S., Aggarwal, S., Flood, R., 2015. Next gen PCFG password cracking. IEEE
Trans. Inf. Forensics Secur. 10, 1776–1791.

Hranický, R., Lištiak, F., Mikuš, D., Ryšavý, O., 2019. On practical aspects of PCFG
password cracking. In: Data and Applications Security and Privacy XXXIII. Springer,
pp. 43–60.

Hranický, R., Zobal, L., Ryšavý, O., Kolář, D., Mikuš, D., 2020. Distributed PCFG
password cracking. In: Computer Security – ESORICS 2020. Springer, pp. 701–719.

Jia, H., Ding, S., Xu, X., Nie, R., 2014. The latest research progress on spectral clustering.
Neural Comput. Appl. 24, 1477–1486. https://doi.org/10.1007/s00521-013-1439-2.

Kacherginsky, P., 2013. Password analysis and cracking Kit. URL: https://github.
com/iphelix/pack/. Online; Acc.: 2024-04-06.

Kanta, A., Coisel, I., Scanlon, M., 2022. A novel dictionary generation methodology for
contextual-based password cracking. IEEE Access 10, 59178–59188.

Kanta, A., Coisel, I., Scanlon, M., 2023. Harder, better, faster, stronger: optimising the
performance of context-based password cracking dictionaries. FSI: Digit. Invest. 44,
301507.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10, 707–710.

Li, S., Wang, Z., Zhang, R., Wu, C., Luo, H., 2022. Mangling rules generation with
density-based clustering for password guessing. IEEE Trans. Dependable Secure
Comput. 20, 3588–3600.

Marechal, S., 2012. Automatic mangling rules generation. Passwords^12 Conference.
University of Oslo, Norway.

Melicher, W., Ur, B., Segreti, S.M., Komanduri, S., Bauer, L., Christin, N., Cranor, L.F.,
2016. Fast, lean, and accurate: modeling password guessability using neural
networks. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 175–191.

Muffett, A., 1996. Crack version v5.0 user manual. URL: https://www.techsolvency.
com/pub/src/crack-5.0a/c50a/manual.html.

Narayanan, A., Shmatikov, V., 2005. Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM CCS, New York, NY, USA,
pp. 364–372.

Peslyak, A., 2015. When Was John Created? (John-users Openwall Mailing List). URL:
https://www.openwall.com/lists/john-users/2015/09/10/4. Online; Accessed:
2024-04-06.

Peslyak, A., 2017. John the ripper rules. URL: https://www.openwall.com/john/doc/RU
LES.shtml. Online; Acc: 2024-04-06.

Peslyak, A., 2019. John the Ripper password cracker changelog. version 1.9, Openwall.
URL: https://www.openwall.com/john/doc/CHANGES.shtml. Online; Acessed:
2024-04-06.

Proctor, R.W., Lien, M.C., Vu, K.P.L., Schultz, E.E., Salvendy, G., 2002. Improving
computer security for authentication of users: influence of proactive password
restrictions. Behav. Res. Methods Instrum. Comput. 34, 163–169.

Steube, J., 2020. Hashcat description. URL: https://hashcat.net/wiki/doku.php?id=hash
cat. Online; Accessed: 2021-03-02.

Steube, J., 2024. Hashcat: rule-based attack. URL: https://hashcat.net/wiki/doku.php?
id=rule_based_attack. Online; Accessed: 2024-04-06.

Veras, R., Collins, C., Thorpe, J., 2014. On semantic patterns of passwords and their
security impact. In: Proceedings of the 21st NDSS Symposium, pp. 386–401.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

9

http://refhub.elsevier.com/S2666-2817(25)00004-6/sref1
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref1
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref2
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref2
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref2
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref3
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref3
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref4
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref4
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref5
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref5
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref5
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref6
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref6
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref6
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref7
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref7
https://github.com/wolfgarbe/SymSpell
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref9
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref9
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref10
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref10
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref10
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref11
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref11
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref12
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref12
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref12
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref13
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref13
https://doi.org/10.1007/s00521-013-1439-2
https://github.com/iphelix/pack/
https://github.com/iphelix/pack/
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref16
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref16
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref17
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref17
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref17
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref18
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref18
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref20
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref20
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref21
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref21
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref21
https://www.techsolvency.com/pub/src/crack-5.0a/c50a/manual.html
https://www.techsolvency.com/pub/src/crack-5.0a/c50a/manual.html
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref23
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref23
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref23
https://www.openwall.com/lists/john-users/2015/09/10/4
https://www.openwall.com/john/doc/RULES.shtml
https://www.openwall.com/john/doc/RULES.shtml
https://www.openwall.com/john/doc/CHANGES.shtml
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref27
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref27
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref27
https://hashcat.net/wiki/doku.php?id=hashcat
https://hashcat.net/wiki/doku.php?id=hashcat
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref30
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref30

Vu, K.P.L., Proctor, R.W., Bhargav-Spantzel, A., Tai, B.L.B., Cook, J., Schultz, E.E., 2007.
Improving password security and memorability to protect personal and
organizational information. Int. J. Hum. Comput. Stud. 65, 744–757.

Weir, M., Aggarwal, S., d. Medeiros, B., Glodek, B., 2009. Password cracking using
probabilistic context-free Grammars. In: Proceedings of the 30th IEEE Symposium on
Security and Privacy, Oakland, CA, USA, pp. 391–405.

Winkler, W.E., 1990. String comparator metrics and enhanced decision rules in the
Fellegi–Sunter model of record linkage. In: Proceedings of the Survey Research
Methods Section. American Statistical Association, pp. 354–359.

Xia, Z., Yi, P., Liu, Y., Jiang, B., Wang, W., Zhu, T., 2019. GENPass: a multi-source deep
learning model for password guessing. IEEE Trans. Multimed. 22, 1323–1332.

R. Hranický et al. Forensic Science International: Digital Investigation 52 (2025) 301865

10

http://refhub.elsevier.com/S2666-2817(25)00004-6/sref31
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref31
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref31
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref32
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref32
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref32
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref33
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref33
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref33
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref34
http://refhub.elsevier.com/S2666-2817(25)00004-6/sref34

	Beyond the dictionary attack: Enhancing password cracking efficiency through machine learning-induced mangling rules
	1 Introduction
	1.1 Contributions
	1.2 Structure of the paper

	2 Background and related work
	2.1 The evolution of password-mangling rules
	2.2 Approaches to automated rule creation
	2.3 Research goals

	3 The proposed mangling-rule generator
	3.1 Design
	3.2 Clustering methods
	3.2.1 AP
	3.2.2 HAC
	3.2.3 DBSCAN
	3.2.4 MDBSCAN

	3.3 Choosing cluster representatives
	3.3.1 Levenshtein Method
	3.3.2 Substring Method
	3.3.3 Combo Method

	3.4 Rule creation
	3.5 Proof-of-concept implementation

	4 Experimental results
	4.1 Benchmarking of clustering and rule creation
	4.2 Cross-checking clustering methods and rule creation on different wordlists
	4.3 Comparison of MDBSCAN-based implementations
	4.4 Comparison of rule-creation methods
	4.5 Comparison with popular rulesets

	5 Conclusion
	Acknowledgements
	Appendix A Used Dictionaries
	References

