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A B S T R A C T

In the realm of digital forensics, password recovery is a critical task, with dictionary attacks representing one of 
the oldest yet most effective methods. To increase the attack power, developers of cracking tools have introduced 
password-mangling rules that apply modifications to the dictionary entries such as character swapping, substi
tution, or capitalization. Despite several attempts to automate rule creation that have been proposed over the 
years, creating a suitable ruleset is still a significant challenge. The current research lacks a deeper comparison 
and evaluation of the individual methods and their implications. We present RuleForge, a machine learning- 
based mangling-rule generator that leverages four clustering techniques and 19 commands with configurable 
priorities. Key innovations include an extended command set, advanced cluster representative selection, and 
various performance optimizations. We conduct extensive experiments on real-world datasets, evaluating 
clustering-based methods in terms of time, memory use, and hit ratios. Additionally, we compare RuleForge to 
existing rule-creation tools, password-cracking solutions, and popular existing rulesets. Our solution with an 
improved MDBSCAN clustering method achieves up to an 11.67%pt. Higher hit ratio than the original method 
and also outperformed the best yet-known state-of-the-art solutions for automated rule creation.

1. Introduction

Since the advent of password authentication in computing, password 
cracking has been a significant area of focus. This technique is used not 
only by malicious hackers but also by the “good guys” such as law 
enforcement, cyber defense organizations, penetration testers, security 
analysts to measure password strength (Proctor et al., 2002; Vu et al., 
2007), or individuals recovering lost credentials. In digital forensics, 
recovering passwords is crucial for accessing encrypted evidence, 
making it an essential step in the investigative process.

Among the wide range of strategies invented and employed over the 
years, dictionary attacks have stood the test of time as one of the oldest 
yet still prevalent methods of breaching password-secured entry points. 
These attacks, leveraging a predefined list of potential passwords, 
exploit the human tendency to use memorable, hence often weak, 
passwords (Bishop and V. Klein, 1995).

The introduction of password-mangling rules (Peslyak, 2017; Steube, 
2024) to dictionary attacks has significantly enhanced their effectivity, 
enabling attackers to systematically test modifications of candidate 

passwords far beyond simple wordlist matching. These rules apply a 
series of modifications, such as character substitution, insertion, dele
tion, and capitalization, to each entry in a wordlist to expand the attack 
vector by orders of magnitude. This approach preys on the common 
practice of creating passwords that are slight variations of dictionary 
words or predictable patterns (Bishop and V. Klein, 1995).

Despite advances in cracking techniques, the process of creating and 
optimizing mangling rules has for many years been largely manual, 
time-consuming, and somewhat esoteric. In recent years, researchers 
and developers have proposed several methods to automate the rule- 
creation process (Marechal, 2012; Kacherginsky, 2013; Steube, 2020; 
Drdák, 2020; Li et al., 2022). Recent approaches leverage machine 
learning, particularly clustering (Drdák, 2020; Li et al., 2022), with 
MDBSCAN (Li et al., 2022) being the latest method proposed. While 
these approaches show significant potential, they lack a comprehensive 
comparison of clustering methods and rule-creation strategies, leaving 
room for further research and improvements.

* Corresponding author.
** Corresponding author.
*** Corresponding author.

E-mail addresses: hranicky@fit.vut.cz (R. Hranický), xsirov01@stud.fit.vutbr.cz (L. Šírová), xrucky01@stud.fit.vutbr.cz (V. Rucký). 
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1.1. Contributions

Firstly, we conduct a comprehensive evaluation of ruleset creation 
with four clustering methods, assessing generation time, memory usage, 
and hit ratios on real-world datasets. Secondly, we introduce optimi
zations to the rule creation process, including an extended rule com
mand set and advanced techniques for selecting cluster representatives, 
improving flexibility and efficiency. Third, we test these optimizations 
on MDBSCAN and benchmark our solution against the state-of-the-art 
approach of Li et al. (2022), achieving an improvement of up to 
11.67 % points in the hit ratio. Next, we compare our approach with 
other rule-creation and password-guessing tools, achieving the highest 
average hit ratio among all studied methods. Lastly, we compare the hit 
rate with popular widely used rulesets, outperforming nearly all of them. 
We also analyze the rules created and the strength of the recovered 
passwords. Our contributions are demonstrated through RuleForge, a 
clustering-based mangling-rule generator we developed as both a 
proof-of-concept and a practical tool for password research and 
real-world password cracking. Its flexibility allows to create of 
context-specific rulesets to match the unique characteristics of each 
investigation.

1.2. Structure of the paper

The paper is structured as follows. Section 2 overviews existing 
research in smart password guessing, the history and the current state of 
using password-mangling rules for dictionary attacks. In Section 3, we 
propose the design and a proof-of-concept implementation of our 
machine-learning-based rule generator. This section also describes our 
proposed enhancements to the rule-creation process. Section 4 describes 
the experimental evaluation of the rule generator and a comparison of 
ruleset-creation methods. Finally, Section 5 discusses the achieved re
sults and pinpoints ways for possible future improvements.

2. Background and related work

Users frequently choose simple, memorable passwords (Bishop and 
V. Klein, 1995) that make them vulnerable to intelligent 
password-guessing techniques that mimic human behavior in password 
creation. Narayanan and Shmatikov (2005) proposed password guessing 
based on character distribution represented by Markovian models, later 
adopted by the famous Hashcat tool (Steube, 2020) as the default 
method for creating passwords in brute-force attacks. Düermuth et al. 
(2015) presented OMEN (the Ordered Markov ENumerator), an algo
rithm based on iterating over bins in order of decreasing likelihood, 
outperforming previously-known Markov-based password guessers. 
Weir et al. (2009) introduced password cracking with Probabilistic 
Context-Free Grammars (PCFG). The method was further improved by 
Houshmand et al. (2015), who added keyword and multiword patterns, 
Hranický et al. (2019, 2020), who proposed a faster and a distributed 
version, and Veras et al. (2014), who added semantic patterns, dividing 
password fragments into categories by semantic topics like names, 
sports, etc. Kanta et al. (2022, 2023) utilized contextual information for 
creating fine-tailored password dictionaries against specific targets. In 
recent years, deep-learning approaches for password guessing have been 
introduced. Ciaramella et al. (2006) studied Principal Component 
Analysis (PCA) preprocessing and different architectures of neural net
works for password guessing. Melicher et al. (2016) deployed the “Fast, 
Lean, and Accurate” (FLA) technique for measuring password strength 
based on Recurrent Neural Networks (RNN). Hitaj et al. (2019) proposed 
creating passwords with Generative Adversarial Networks (GAN) and 
released the PassGAN generator. Xia et al. (2019) introduced password 
guessing based on PCFG, Long Short-Term Memory (LSTM) and a model 
called GENPass based on Convolutional Neural Networks (CNN).

Despite the invention of sophisticated techniques for guessing pass
words in the past decades, the dictionary attack is still one of the most 

widely used methods, often used with additional mangling rules that 
multiply the number of password candidates and increase the chance of 
finding the correct password.

2.1. The evolution of password-mangling rules

The origins of password-mangling rules for dictionary attacks date 
back to 1991 when Alec Muffett released the legendary Crack program 
(Muffett, 1996). Crack offered a programmable dictionary generator and 
mangling rules that applied additional modifications to candidate 
passwords. The 1995 version 5.0 contained 21 pre-defined rulesets and a 
cookbook for creating new ones using 29 supported commands like 
character substitution or appending. The syntax was similar to those 
used in state-of-the-art cracking tools like John the Ripper (Peslyak, 
2015) and Hashcat (Steube, 2020).

In 1996, Alexander “Solar Designer” Peslyak created the John the 
Ripper (JtR) tool as a replacement for the popular Cracker Jack UNIX 
password cracker. In addition to a complete redesign of the tool, Peslyak 
(2015) added support for mangling rules compatible with those used in 
the original Crack program. Over the years, various improvements to 
John’s rule engine have been added, including word shifting and 
memorization.

Jens “atom” Steube later decided to fix the missing multi-threading 
support in JtR’s dictionary attack mode. In 2009, he released the 
Hashcat tool (Steube, 2020), originally called “atomcrack.” The initial 
version was a simple yet very fast dictionary cracker. Hashcat had a 
native support for password-mangling rules and adopted the syntax and 
semantics from JtR.

The release of NVIDIA CUDA and OpenCL started a revolution in the 
password cracking. Developers quickly reacted by adding GPU support 
to their tools (Steube, 2020; Peslyak, 2019). Steube was no exception 
and, in 2010, released cudaHashcat and oclHashcat, the latter being 
eventually transformed into a single unified tool named just “hashcat”. 
OpenCL support was also added to JtR in 2012 (Peslyak, 2019). Unlike 
Cracker Jack and JtR, Hashcat applied the rules directly inside the GPU 
kernel, which dramatically reduced the number of necessary PCI-E 
transfers. Hashcat also introduced new such as ASCII value incre
mentation, character block operations, or separator-based character 
toggling (Steube, 2024). To the best of our knowledge, Hashcat is the 
only password cracker with an in-kernel rule engine and a 
self-proclaimed “world’s fastest password cracker” (Steube, 2020). This 
could be true as Hashcat now computes all hash algorithms on OpenCL 
devices using highly optimized kernels. Moreover, the team Hashcat 
won several years of DEFCON and DerbyCon “Crack Me If You Can” 
(CMIYC) contests.1 The latest 2022 v6.2.6 release of Hashcat supports 
56 unique mangling-rule commands (Steube, 2024).

2.2. Approaches to automated rule creation

While both Hashcat and JtR provide several default rulesets and their 
respective websites document the syntax and semantics of the supported 
mangling rules (Peslyak, 2017; Steube, 2024), creating new rulesets is 
not a trivial task. To this day, several approaches have been proposed to 
automate the rule creation (Marechal, 2012; Kacherginsky, 2013; 
Steube, 2020; Drdák, 2020; Li et al., 2022).

The hashcat-utils repository includes generate-rules.c, a simple utility 
by Jens Steube that generates random password-mangling rules based 
on a time-based or user-defined seed. While the generated ruleset can 
theoretically be used for password cracking, their form is purely random 
without any deeper meaning, as there is no sophisticated system for their 
creation. From a research perspective, the tool serves as a baseline for 
comparing more advanced techniques. The algorithm was later inte
grated directly into hashcat (Steube, 2020).

1 https://contest.korelogic.com/.
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Marechal (2012) proposed generating mangling rules by applying 
handpicked or randomly generated initial rules to a wordlist, producing 
mangled passwords. Their algorithm identifies the largest common 
substring among the results and derives append/prepend operations to 
recreate it from the remaining passwords. These operations represented 
rules that were then ranked according to the number of passwords 
created. Marechal’s proof-of-concept tool, rulesfinder, remains actively 
maintained. Although the approach is working, its major drawback is 
the need for an existing set of rules.

Peter ”iphelix” Kacherginsky (2013) introduced a novel technique 
and a proof-of-concept tool called Rulegen within the Password Analysis 
and Cracking Kit (PACK). It uses a similarity-based approach but does 
not apply clustering in the true sense of the word. For each candidate 
password, it creates a group of similar passwords. For each group, 
Rulegen calculates the Levenshtein distance (Levenshtein, 1966) be
tween the originating password and other passwords in the group. By 
analyzing the calculated distances, the optimal sequence of operations is 
found and described by a series of rules (Kacherginsky, 2013).

Between 2019 and 2020, Drdák and Hranický (Drdák, 2020) 
explored using machine learning for automated rule creation by clus
tering a training dictionary based on password similarity. From each 
cluster, a password was chosen as a representative. Mangling rules were 
then created to describe necessary modifications for transforming the 
representative to the remaining passwords in the cluster. Using Affinity 
Propagation (AP) (Frey and Dueck, 2007), Drdák developed a 
proof-of-concept with promising results published in his bachelor’s 
thesis (Drdák, 2020). While the general idea has been later proven 
useable by other researchers (Li et al., 2022), Drdák’s study had its 
limitations. Firstly, Drdák tested only a single clustering method. The 
second issue was an extremely long computing of the distance matrix for 
larger training dictionaries.

The same issue was independently identified and later addressed by 
Li et al. (2022). They proposed a novel method called MDBSCAN, a 
modified version of the classic DBSCAN algorithm (Ester et al., 1996), 
that was customized for clustering passwords. To accelerate the distance 
calculation, they used the SymSpell (Garbe, 2012) fuzzy search algo
rithm. The research on using MDBSCAN for the rule generation problem 
shows great success in experimental results, even compared to PCFG 
(Weir et al., 2009) and PassGAN (Hitaj et al., 2019).

While MDBSCAN (Li et al., 2022) is, to the best of our knowledge, the 
most efficient clustering-based technique for automated rule creation, 
the authors focused mainly on DBSCAN and MDBSCAN and have not 
tested other clustering methods like Affinity Propagation (Frey and 
Dueck, 2007) or Hierarchical Agglomerative Clustering (HAC) (Han 
et al., 2012). The rule-creation method is also not optimal, namely in 
terms of cluster representative selection, and, as we demonstrate in our 
paper, fails in certain scenarios. Also, a selection of only 14 rules was 
implemented. Moreover, we have not found any released 
proof-of-concept implementation of the proposed method.

2.3. Research goals

Although several approaches for automated mangling-rule creation 
have been proposed, significant gaps and unanswered questions remain. 
To fill these gaps and advance the state of the art in the field we have 
decided to: 

1. Compare tested and yet-untested clustering methods: DBSCAN (Ester 
et al., 1996), MDBSCAN (Li et al., 2022), AP (Frey and Dueck, 2007), 
HAC (Han et al., 2012).

2. Implement missing rule commands and experimentally verify their 
contributions.

3. Explore other possibilities for choosing a cluster representative and 
verify their benefits.

4. Compare these clustering-based approaches to other mangling-rule 
creation methods like PACK/Rulegen and other password-guessing 
tools like OMEN, etc.

5. Create an open-source proof-of-concept implementation to allow 
researchers and forensics practitioners to experiment with auto
mated rule creation.

6. Analyze the hit ratio of the generated rules and compare it with 
existing popular rulesets.

3. The proposed mangling-rule generator

To fulfill the research goals from Section 2 and also to provide a tool 
for both experimental and actual password-cracking purposes, we pro
pose a design and a proof-of-concept implementation of RuleForge, an 
ML-based mangling-rule generator with four clustering methods: AP 
(Frey and Dueck, 2007), HAC (Han et al., 2012), DBSCAN (Ester et al., 
1996), and MDBSCAN (Li et al., 2022). Our tool is also equipped with an 
extended rule command set, enhanced methods for choosing cluster 
representatives, and configurable rule command priorities.

3.1. Design

The RuleForge rule generation process consists of several key steps, 
illustrated in Fig. 1. The workflow starts with processing the training 
password dictionary. For DBSCAN and MDBSCAN clustering methods, 
we find similar passwords according to the Damerau–Levenshtein 
(Damerau, 1964) distance and use the SymSpell (Garbe, 2012) fuzzy 
search algorithm to accelerate the process, like Li et al. (2022) proposed. 
For AP and HAC, we calculate a classic edit-distance matrix utilizing the 

Fig. 1. Rule generation process.
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Levenshtein distance metric (Levenshtein, 1966). Password clusters are 
then created using the selected method.

Next, we select strings to be considered representatives of their 
respective cluster. The reason is to create rules based on comparing 
passwords within a cluster with their given representative and model 
necessary transformations by the produced rules. With AP, the repre
sentative is determined by the clustering method itself. For the 
remaining methods, the representative is selected using one of the 
techniques from Section 3.3. DBSCAN and MDBSCAN do not necessarily 
categorize every element into a cluster; they put these unclusterable 
elements into an “outlier cluster”. Creating rules from this cluster is, 
understandably, ineffective. Therefore, we added an option to exclude 
these outliers from rule creation.

Once clusters are created and their representatives selected, the 
process of generating passwords starts. RuleForge generates rules by 
leveraging a user-provided rule-command priority file, specifying the 
sequence in which rules are formulated. The process is thoroughly 
explained in Section 3.4. Finally, RuleForge creates an output ruleset 
consisting of rules sorted by frequency or, optionally, a ruleset with a 
user-specified top number of rules.

3.2. Clustering methods

As discussed above, RuleForge uses clustering to find groups of 
similar passwords. Once identified, we can notice differences between 
passwords in a group. These differences typically reveal how users 
create their passwords and serve as anchors for rule identification. 
Applying different clustering methods may lead to varied ways of 
grouping passwords and creating diverse rules. By experimenting with 
these methods within the tool, it is possible to attain varying password- 
cracking success rates. The following paragraphs describe the supported 
clustering methods and their use in RuleForge.

3.2.1. AP
Affinity Propagation treats all objects as potential exemplars, 

exchanging messages to identify high-quality exemplars and clusters 
(Frey and Dueck, 2007). Key parameters are damping, which is the extent 
to which the current value is maintained relative to incoming values, 
and convergence_iter, representing how many iterations without change 
stop the clustering. In our experiments, convergence_iter is 15, while 
damping is 0.7, as these settings produced the best results.

3.2.2. HAC
The Hierarchical Agglomerative Clustering method places each ob

ject into a cluster of its own. The clusters are then merged into larger 
clusters according to the criterion set by distance_threshold (Han et al., 
2012). Our setup uses distance_threshold of 3, which has been experi
mentally verified to be the most effective for our use case.

3.2.3. DBSCAN
Density-Based Spatial Clustering of Applications with Noise iden

tifies core points—objects that have at least MinPts neighbors within ϵ 
distance. Each core point initially forms a cluster with itself and then 
expanding by including neighboring objects. The result is a set of clus
ters and a set of non-clustered noise objects. We set ϵ as 1 and MinPts to 
3. In our experience, higher values of ϵ lead the algorithm to output a 
single cluster containing the vast majority of passwords. Higher values 
of MinPts categorize the majority of passwords as noise.

3.2.4. MDBSCAN
Modified MDBSCAN (Li et al., 2022) addresses DBSCAN’s tendency 

to form one large cluster when clustering passwords by introducing a 
truncation metric. MDBSCAN’s parameters are ϵ1, ϵ2, and MinPts, where 
ϵ1 and MinPts are equivalent to DBSCAN’s. An object is only added to a 
cluster if its Jaro–Winkler distance (Winkler, 1990) to the initial point of 
the cluster is less than or equal to ϵ2. The truncation allows a higher ϵ1 by 

breaking up the large cluster, reducing noise. We set ϵ1 to 2, ϵ2 to 0.25, 
and MinPts to 3. Setting ϵ1 above 2 leads to enormously large clusters. 
High ϵ2 leads to the creation of too many useless single-password clus
ters, whereas higher values produce too large clusters. MinPts configu
ration has the same impact as with DBSCAN. 

Algorithm 1. Rule identification
Global: Vector rp

→
= [r1, r2,…, r19] of rule commands in priority order, where r1 and r19 

are commands with the highest and lowest priority respectively
Input: Password P from a cluster ci, representative Prep of a cluster ci
Output: Sequence of rule commands R generated by transforming P to Prep
while P ∕= Prep do

rf = None ▹ Initialize rf value to check whether
▹ a suitable rule command was found.

for each rule command r ∈ rp
→ do

Calculate the number of transformations n using
levenshtein_distance(P, Prep).
Create a password Pm by modifying password P
with rule command r.
Calculate the new number of transformations nm
using levenshtein_distance(Pm, Prep).
if nm < n then

▹ Suitable rule command rf found.
P = Pm
rf = r
break ▹ Stop looking for other commands.

if rf ∕= None then
R.append(rf)

else
break ▹ No other possible modification found.

return R ▹ Return the final command sequence.

3.3. Choosing cluster representatives

Once the clusters are created, it is necessary to select a representative 
for each cluster and search for possible transformations to the remaining 
passwords in the cluster.

3.3.1. Levenshtein Method
Existing works that use clustering for rule creation (Drdák, 2020; Li 

et al., 2022) always choose a representative as a concrete password from 
the cluster, concretely, the one with the lowest mean Levenshtein dis
tance to others. Therefore, we call it this technique the “Levenshtein 
Method”. Nevertheless, this approach is rather limiting. Assume the 
password clusters in Fig. 2. The blue candidates are representatives 
chosen by this method. In the leftmost cluster, hello1 is selected as a 
representative. Assuming the rule commands from Table 1, possible 
transformations to hello2 and hello3 are (1) deleting the last char
acter and appending “2” or “3”, (2) overwriting the 6th character with 
“2” or “3”, or (3) replacing all occurrences of “1” with “2” or “3”. 
Obviously, such modifications are only useable in very specific cases. 
What we want are rules that have general use.

Fig. 2. A visual comparison of cluster representative selection methods.
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3.3.2. Substring Method
To overcome the obstacles of the previous approach, we invented an 

alternative called the “Substring Method”, which works as follows. 
Firstly, we transform all characters of the substring to lowercase. This 
way we obtain more general words to which capitalization rules may 
easily be applied. Next, we undo all “leetspeak-based” transformations 
like a → @ or s → $. As we have observed, removing leetspeak often 
allows the extraction of original words and sentence fragments that 
inspired the password creator. Finally, we calculate the longest common 
substring of all passwords in the cluster. The resulting string is the 
cluster representative. Note that the representative created by this 
method may not always be an actual existing password from the cluster.

3.3.3. Combo Method
While the Substring Method allows the creation of more generally 

useable rules, the sole method is not extremely powerful. Therefore, we 
propose a third option that combines the previous two methods, leading 
to the best experimental results from all (See Section 4.). This “Combo 
Method” works as follows: 

1. For each cluster, choose a representative using the Levenshtein 
Method and generate all possible rules (See Section 3.4.).

2. For each cluster, choose a representative using the Substring Method. 
Generate all possible rules to extend the previously created ruleset.

3. The top n most frequent rules create the final ruleset.

3.4. Rule creation

The rule-generation process utilizes the Levenshtein distance 
(Levenshtein, 1966) to determine the number of editing operations 
required to transform a password within a cluster to its representative. 
Measuring edit distance helps find specific rule commands that, when 
used on passwords, make the edit distance smaller. A command that 
decreases the edit distance is deemed appropriate and incorporated into 
the generated rule. Multiple commands (such as sXY and oNX) may 
achieve identical modifications in certain instances. Therefore, Rule
Forge introduces a rule-command priority system, specifying which 
commands it prioritizes. The configuration can be specified in a priority 
file, where one can determine which rule commands RuleForge should 
utilize and in which priority. The generator proposed by Li et al. (2022)
supports 14 different rule commands. With RuleForge, we expanded this 
number to 19. The commands supported by RuleForge are displayed in 
Table 1. Other Hashcat rule commands that have not yet been imple
mented are considered for future work. This approach of using 

rule-command priority allows the exploration of different priority con
figurations, leading to different password-cracking hit rates. The rule 
generation process is illustrated in Algorithm 1.

3.5. Proof-of-concept implementation

To create a proof-of-concept implementation of RuleForge, we chose 
a combination of two languages: Python and C#. Python for its popu
larity, common knowledge among researchers, extensive data-analysis 
support. And C# chiefly because of our dependence on the SymSpell 
library, which is written therein, but also due to its better multithreading 
performance, which is useful in effectively computing distance matrices. 
We used the Python Scikit Learn2 library to perform HAC and AP clus
tering. For DBSCAN and MDBSCAN, we made our own implementation 
in C# and made use of the SymSpell library. MDBSCAN was imple
mented, to the best of our efforts, according to the paper from Li et al. 
(2022). RuleForge is accessible on GitHub3 under the MIT License.

4. Experimental results

In this section, we analyze clustering and rule creation with the 
discussed methods and evaluate them on real-world datasets. Next, we 
compare the original (Li et al., 2022) and RuleForge’s implementations 
of MDBSCAN, focusing also on different representative-selection 
methods. Next, we compare the hit ratio of RuleForge with other tech
niques and state-of-the-art tools. Finaly, we compare hit rates with 
popular rulesets. In the experiments, we use various password dictio
naries. Table A.5 describes each of them. All are also available on our 
GitHub repository.3 Note, for some experiments, we use abbreviations 
(from the “Ab.” column) instead of full names.

4.1. Benchmarking of clustering and rule creation

Time and space complexities are critical deciding factors, and thus, 
we first analyzed the computing time and memory requirements for 
clustering and rule creation with the four examined methods. We ran a 
series of benchmarks with dictionaries of different sizes on an AMD 
Ryzen 5 2600X workstation with 64 GB of RAM. The inputs were 
pseudo-random subsamples with 1000 to 100,000 passwords from the 
RockYou dictionary. We used RuleForge in the “Combo” mode (See 
Section 3.) with AP, HAC, DBSCAN, and MDBSCAN. Fig. 3 shows the 
time and maximum resident set size (RSS) required to create clusters and 
generate mangling rules for inputs of different sizes. Dashed lines indi
cate extrapolated values for wordlist-size values that could not be 
measured due to a lack of memory in our workstation.

DBSCAN, MDBSCAN, and HAC demonstrate comparable and decent 
performance, all processing dictionaries with 100,000 passwords in 
under 5 min. In contrast, AP exhibits significantly poorer performance, 
requiring about 21 h to handle the same workload.

In terms of memory requirements, DBSCAN and MDBSCAN show 
linear complexity, whereas AP and HAC display quadratic complexity, 
which is due to the necessity of computing the full distance matrix, as 
mandated by the Scikit Learn library. In concrete values, at 100,000 
passwords, DBSCAN and MDSBCAN require about 200 MB of memory, 
HAC requires 137 GB, and AP 247 GB. DBSCAN and MDBSCAN’s effi
cient linear memory usage is achieved by leveraging the SymSpell li
brary (Garbe, 2012) for finding similar passwords.

The doubling of memory usage from HAC to AP is caused by the fact 
that HAC can utilize a 1-byte integer distance matrix, whereas AP re
quires at least a 2-byte float distance matrix. Note that the memory re
quirements for AP and HAC are much higher than just the size of their 
distance matrices (for 100,000 passwords, this would be 10 GB and 20 

Table 1 
Rule commands implemented in RuleForge, applied on “Password” (bold are 
newly added).

Rule Description E.g. Output

: Do nothing : Password
l Lowercase all letters l password
u Uppercase all letters c PASSWORD
c Uppercase all letters c PASSWORD
t Toggle case t pASSWORD
TN Toggle case at position N T2 PaSsword
zN Duplicate first character N times z2 PPPassword
ZN Duplicate last character N times Z2 Passworddd
$X Append character X to end $1 Password1
^X Prepend character X to front ^_ _Password
[ Delete first character [ assword
] Delete last character ] Passwor
DN Delete character at position N D2 Pasword
iNX Insert character X at position N i4! Pass!word
oNX Overwrite ch. at pos. N with X o2$ Pa$sword
} Rotate the word right } dPasswor
{ Rotate the word left { asswordP
r Reverse the entire word r drowssaP
sXY Replace all Xes with Y ss$ Pa$$word

2 https://scikit-learn.org/.
3 https://github.com/nesfit/RuleForge/.
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GB for HAC and AP, respectively). This is caused–as we observed–by 
some inefficiencies in Scikit Learn’s handling of distance-matrix 
clustering.

DBSCAN and MDBSCAN are thus very well suited for processing any- 
sized dictionaries. AP and HAC, on the other hand, are barely useable for 
larger dictionaries due to extensive memory requirements.

4.2. Cross-checking clustering methods and rule creation on different 
wordlists

Next, we compared the achievable hit ratios of rules generated from 
the clusters produced by each of the four clustering methods. For this 
purpose, we employed RuleForge in the “Combo” mode, except for AP 
which selects cluster representatives natively. We experimented with 
four training (t) dictionaries (tl, r65, ms, dw) for creating rulesets. Each 
ruleset was gradually applied to words from four attack dictionaries (pr, 
tm, en, dp) in a dictionary-cracking session with Hashcat 6.2.6 in 
plaintext mode. The target “hashlist” was RockYou-75 (See Table A.5.), 
for which, we calculated the number of hits. To maintain fair conditions 
for all methods, we used the best (i.e. first) 1000 rules generated by each 
method.

Table 2 shows the hit ratios. On average, MDBSCAN produced rules 
with the best hit ratios. The second best-achiving method was AP which, 
for r65+en, it even outperformed MDBSCAN. We believe this success of 
AP is caused by its virtually optimal cluster representative selection, but 
this is reclaimed by high computational and memory costs, as shown in 
the previous experiment.

4.3. Comparison of MDBSCAN-based implementations

In this experiment, we focused on the best-performing MDBSCAN 
method and compared its implementations. As a baseline, we used the 
original version from Li et al. (2022), which we compared with Rule
Forge in the Levenshtein (RF-leven), Substring (RF-substr), and Combo 
(RF-combo) modes. The dictionaries were the same as in the previous 
experiment. Likewise, we used Hashcat 6.2.6 and the first 1000 gener
ated rules.

Table 3 describes the hit ratio of attacks on RockYou-75 and Table 4
on Xato-net-100k. RF-combo produced the highest average hit ratio and, 
in all cases, outperformed the original version from Li et al. (2022), 
emphasizing our contributions. Interestingly, in the r65+en attack on 
RockYou-75, the Substring Method resulted in a higher hit ratio than 
Combo. Note that this is the same combination as where AP produced 
better results than MDBSCAN. Similarly, in the tl + tm attack on 
Xato-Net-100k, the Levenshtein Method also performed better than 
Combo. Such anomalies are caused by the nature of passwords in the 
chosen dictionaries and demonstrate that there is no optimal method for 
all cases.

4.4. Comparison of rule-creation methods

In this experiment, we compared hit rates of dictionary attacks with 
rulesets generated by different methods. As both the training dataset and 
the attack wordlist, we used a pseudo-random subsample of 960,000 
passwords from the RockYou dataset, named “RockYou-960.” Using 
Hashcat 6.2.6, we conducted a series of cracking sessions with the first n 
rules from the ruleset, where n = 100, …, 29000, and measured the hit 
rate on Xato-net-100k and phpbb-m dictionaries from Table A.5. We 
tested the original MDBSCAN, as proposed by Li et al. (2022), and 
RuleForge’s implementation of MDBSCAN and DBSCAN in both Lev
enshtein and Combo modes. AP and HAC were not used in this experi
ment as they would require a minimum of 461 GB memory, which was 
beyond the capabilities of our experimental machine.

To compare our attacks in a broader scope, we also deployed several 
tools from related work (See Section 2.). Concretely, we tested iphelix’s 

Fig. 3. Time (a) and peak memory (b) requirements for generating rules from 
wordlists of different sizes.

Table 2 
Attacks on rockyou-75-m.

Rules Hit ratio

ta Method pr tm en dp

tl mdbscan 56.54 % 51.56 % 22.60 % 2.60 %
dbscan 47.46 % 40.13 % 16.48 % 1.89 %
hac 48.61 % 42.40 % 17.82 % 1.95 %
ap 53.49 % 47.32 % 20.43 % 2.29 %

r65 mdbscan 57.43 % 53.23 % 23.22 % 2.66 %
dbscan 47.28 % 39.95 % 16.52 % 1.88 %
hac 44.24 % 37.49 % 16.88 % 1.89 %
ap 57.14 % 51.46 % 23.31 % 2.61 %

ms mdbscan 55.85 % 50.15 % 21.30 % 2.43 %
dbscan 48.48 % 41.34 % 16.90 % 1.87 %
hac 51.35 % 46.40 % 19.07 % 2.10 %
ap 49.72 % 42.61 % 17.37 % 1.90 %

dw mdbscan 55.99 % 52.05 % 23.02 % 2.72 %
dbscan 47.62 % 40.25 % 17.13 % 2.61 %
hac 45.11 % 38.53 % 17.84 % 1.84 %
ap 55.09 % 49.57 % 22.34 % 2.68 %

a Training dictionary.
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PACK/Rulegen (Kacherginsky, 2013). Next, we used PCFG as originally 
proposed by Weir et al. (2009), i.e., without enhancements like Markov, 
etc. We also deployed the Ordered Markov ENumerator (OMEN), pro
posed by Düermuth et al. (2015), and PassGAN by Hitaj et al. (2019). As 
the last three methods do not produce mangling rules, equivalent 
numbers of password guesses were generated instead, using 
RockYou-960 as the training dictionary for creating models. Finally, we 
used a random ruleset generated by Hashcat to serve as a baseline for 
other methods.

Experimental results are displayed in Fig. 4. Note that the results 
from our RuleForge generator use shorthands in the legend: (M) 
DBSCAN-RF-{leven,combo}. The horizontal axis indicates the num
ber of rules (top) and corresponding guesses (bottom), calculated as the 
dictionary size multiplied by the rule count. The vertical axis displays 
the hit ratio.

The best average hit ratio was achieved by RuleForge’s MDBSCAN in 
the Combo mode, which also showed the best absolute hit ratio in most 
measurements. Anomalies were observed at around 800 rules on Xato- 
net-100k, where it was briefly exceeded by the classic Levenshtein 
method of RuleForge, and around 1600 rules on phpbb-net, where PACK 
performed better than MDBSCAN. Interestingly, for lower guess counts 

on phpbb-m, all methods were surpassed by PCFG, which then degraded 
to one of the worst methods in our scenario. RuleForge’s DBSCAN in 
both modes also performed well and, in many measurements, exceeded 
the original MDBSCAN from Li et al. (2022).

Our improvements are best illustrated by the difference between 
MDBSCAN-RF-combo (the solid black line) and MDBSCAN Li et al. (the 
solid red line). The biggest change was a 6.68%pt. improvement at 6400 
rules on Xato and a 11.67%pt. improvement at 18,000 rules on phpbb- 
m. Those are marked by black-lined arrowed segments.

We also examined the strength of the passwords recovered by the 
MDBSCAN-RF-Combo ruleset of 29k rules using zxcvbn,4 which calcu
lates the strength as an estimated number of guesses required to crack 
the password.

From Xato-net-100k, we recovered 93.63 % of all passwords. For 
those with strength under e14, we recovered the majority: 95.08 %. From 
passwords with strength higher or equal e14 and lower than e18, we 
cracked 65.70 %. About 1 % had strength over or equal to e18, where the 
success rate was 21.83 %.

From PhpBB, we recovered 62.14 % of all passwords. For strengths 
under e14, we cracked 85.16 % of passwords. For strengths higher or 
equal e14 and lower than e18, the success was 45.63 %. About 19.89 % 
had strength over or equal to e18, where the success was 10.68 %.

Contrary to the experiments of Li et al. (2022), PACK surpassed the 
original version of MDBSCAN at higher guess counts and even out
performed MDBSCAN-RF over a specific short range on phpbb-m. OMEN 
performed slightly worse than the previously mentioned rule-based 
methods, but still followed closely. The nature of password guessing 
with Markovian chains created a curve with a stairs-like shape. 
PCFG-based guessing generates passwords in a probability order, start
ing from the most probable candidate password. Interestingly, PCFG 
showed much better performance on phpbb-m, where it had the highest 
hit ratios on smaller amounts of guesses, than on Xato-net-100k, where 
the increments in hit ratio were minimal. PassGAN performed rather 
poorly, notably at lower amounts of guesses. Execution times were also 
high, which prevented us from conducting measurements for high 
numbers of guesses, as it would take weeks to generate the passwords. Its 
success rate grew with increasing numbers of guesses but never excee
ded OMEN or the clustering-based methods. As anticipated, the 
randomly generated ruleset showed the lowest hit ratios.

4.5. Comparison with popular rulesets

Lastly, we compared MDBSCAN and DBSCAN against widely used 
popular password cracking rulesets: d3ad0ne and Insidepro- 
PasswordsPro from the Hashcat repository, OneRuleToRuleThemStill5

from the stealthspolit repository, and Unicorn30kGenerated6 from 
Unic0rn28. The settings are the same as in the previous experiment. 
Hashcat random rules again serve as a baseline.

The resulting hit ratios in Fig. 5 show that RuleForge’s MDBSCAN in 
the combo mode outperformed all except OneRuleToRuleThemStill. 
This high-quality ruleset produced better results mainly between 800 
and 3.2k rules. For lower counts, RuleForge was slightly better. From 
6.4k rules, the two were comparable, with the ruleset having less than 
1%pt. more success. It is important to emphasize that our objective was 
not to develop a universally optimal ruleset. Instead, we aimed to create 
a tool for automated rule generation that can be tailored to meet the 
specific requirements of individual investigations.

The first 1k rules of MDBSCAN-combo consisted exclusively of 
single-rule commands like appending, prepending, overwriting and 
inserting a single character, but also word truncation, and other com
mands. Case toggles were present on 224 lines of the ruleset. Generally, 

Table 3 
MDBSCAN RF vs. Li, rockyou-75-m.

Rules Hit ratio

ta Method pr tm en dp

tl Li et al. 52.44 % 46.04 % 18.55 % 2.19 %
RF-leven 55.12 % 51.45 % 21.10 % 2.53 %
RF-substr 53.42 % 48.22 % 22.34 % 2.36 %
RF-combo 56.54 % 51.56 % 22.60 % 2.60 %

r65 Li et al. 55.14 % 50.49 % 19.41 % 2.30 %
RF-leven 55.83 % 51.70 % 21.44 % 2.50 %
RF-substr 53.65 % 47.69 % 23.76 % 2.51 %
RF-combo 57.43 % 53.23 % 23.22 % 2.66 %

ms Li et al. 51.19 % 43.96 % 17.26 % 2.10 %
RF-leven 51.06 % 44.41 % 18.04 % 2.06 %
RF-substr 52.76 % 48.08 % 20.12 % 2.26 %
RF-combo 55.85 % 50.15 % 21.30 % 2.43 %

dw Li et al. 52.49 % 45.87 % 18.42 % 2.27 %
RF-leven 54.01 % 49.84 % 20.91 % 2.58 %
RF-substr 50.99 % 44.69 % 20.48 % 2.24 %
RF-combo 55.99 % 52.05 % 23.02 % 2.72 %

a Training dictionary.

Table 4 
MDBSCAN RF vs. Li, Xato-Net-100k.

Rules Hit ratio

ta Method pr tm en dp

tl Li et al. 39.16 % 43.33 % 18.80 % 2.91 %
RF-leven 40.84 % 49.11 % 20.27 % 3.53 %
RF-substr 37.11 % 44.11 % 21.16 % 3.06 %
RF-combo 40.91 % 48.26 % 21.17 % 3.44 %

r65 Li et al. 39.11 % 44.57 % 18.29 % 2.92 %
RF-leven 40.40 % 48.76 % 19.93 % 3.80 %
RF-substr 33.64 % 40.27 % 20.70 % 2.85 %
RF-combo 40.98 % 49.32 % 21.27 % 3.67 %

ms Li et al. 37.00 % 39.80 % 17.51 % 2.61 %
RF-leven 37.93 % 44.47 % 18.41 % 2.96 %
RF-substr 35.03 % 41.82 % 17.74 % 2.56 %
RF-combo 39.62 % 46.46 % 19.75 % 3.17 %

dw Li et al. 39.10 % 42.55 % 18.60 % 3.00 %
RF-leven 40.66 % 48.71 % 20.30 % 3.74 %
RF-substr 34.28 % 39.53 % 18.48 % 2.66 %
RF-combo 41.39 % 49.77 % 21.50 % 3.84 %

a Training dictionary.

4 https://github.com/dropbox/zxcvbn.
5 https://github.com/stealthsploit/OneRuleToRuleThemStill.
6 https://github.com/Unic0rn28/hashcat-rules.
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compared with the other rulesets, ours had significantly more insertion 
and truncation commands. The generated rulesets are also available in 
the RuleForge repository.

5. Conclusion

Our research demonstrates the significant potential of the clustering- 
based generation of password-mangling rules in enhancing dictionary 
attacks, often outperforming state-of-the-art guessing methods. AP 
produces high-quality clusters, but has prohibitive time and space 
complexity, which limits scalability. HAC improves time efficiency, but 
still requires substantial memory. DBSCAN and MDBSCAN reduce 
memory demands when paired with SymSpell. MDBSCAN, noted for 
splitting large password clusters into smaller, more effective ones, ach
ieved the best results among the tested methods.

The quality of the generated rules depends not only on the clusters 
produced but also on the selection of their representatives. As demon
strated by our experiments, the traditional Levenshtein Method used by 
Li et al. (2022) is not always optimal. Combining it with the 
substring-based approach we propose generally yields superior results. 

Our Combo Method achieved significantly better outcomes in most 
cases.

The rule generation strategy is also crucial. By incorporating com
mands for case toggling, word rotations, reversals, and character over
writes, we achieved higher hit ratios than Li et al. (2022), not only in 
MDBSCAN Combo mode but also in the standard Levenshtein mode, 
and, unexpectedly, even with classic DBSCAN in most measurements. 
With MDBSCAN, we achieved up to an 11.67%pt. improvement in hit 
ratio over the original method.

The attack’s success depends on the training and attack wordlists. 
Using dictionaries similar to the nature of the target is likely to yield the 
best results. In a digital forensic lab, the proposed method can be utilized 
to generate context-specific rulesets tailored to the unique characteris
tics of each investigation. Forensic analysts frequently build profiles of 
suspects based on known passwords, nationalities, interests, and typical 
password modification patterns. Automated rule creation simplifies 
crafting case-specific rulesets by training on relevant wordlists and 
previously-used passwords. This dramatically reduces the overhead of 
manual ruleset development, enhancing investigative efficiency. This 
enables forensic practitioners to concentrate on higher-level analytical 

Fig. 4. Hit rate comparison with other methods (Training: RockYou960, Attack: RockYou960).

Fig. 5. Hit rate comparison with popular rulesets (Training: RockYou960, Attack: RockYou960).
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tasks without sacrificing performance.
Last but not least, we released RuleForge, an open-source clustering- 

based rule generator, as both a proof-of-concept and a practical tool for 
password recovery research. The release includes source code, docu
mentation, all referenced password datasets, and rulesets generated for 
experiments in this paper.

Looking ahead, we would like to evaluate the behavior of alternative 
distance metrics and other methods like Spectral Clustering (Jia et al., 
2014) and their potential benefits to password-mangling rule creation. 
We also believe that AP and HAC could be optimized in terms of memory 
requirements. The strength analysis of the cracked passwords showed 
that a ruleset trained on RockYou-960 worked well with easy to 

advanced passwords, but had difficulties with very strong ones. In the 
future, we, therefore, plan to train on stronger passwords to create more 
sophisticated rules and examine their success. With the spread of AI, we 
also intend to explore transformer-based models for rule creation and 
evaluation. Additionally, we are currently developing a much faster, 
compiled, optimized and GPU-accelerated version of RuleForge.
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Appendix A. Used Dictionaries

Table A.5 provides an overview of all password dictionaries used in our experiments, including their abbreviations, names, password counts, and 
descriptions.

Table A.5 
Password dictionaries for experimental evaluation

Ab. Name Passwords Description

tl tuscl-m 37,006 Tuscl leak (ASCII, ≤ 10 ch.)
r65 rockyou-65-m 29,596 RockYou subsample (ASCII, ≤ 10 ch.)
ms myspace-m 30,000 MySpace leak (ASCII, ≤ 10 ch.)
dw darkweb2017-top10k-m 9999 Darkweb subsample (ASCII, ≤ 10 ch.)
tm 10-million-list-top-10000 9999 9999 Passwords from the 10-million list
pr probable-v2-top12000 12,645 A subsample from the probable dictionary
en english-6 15,542 English words up to 6 characters
dp default-passwords 1315 Commonly used passwords
– RockYou-960 960,000 A 960k subsample of the RockYou leak
– rockyou-75-m 59,090 ASCII subsample of the RockYou leak
– Xato-net-100k 99,987 Top passwords from the Xato 10m dataset
– phpbb-m 184,344 ASCII passwords from phpBB leak
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