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About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

● Interpretation: kernel structures locationing and 
exploration

● Analysis: analysis and correlation of forensics evidence

To locate and explore kernel structs we use profiles:

● contain location of kernel global variables

● contain description of kernel structs

● different OS versions and/or kernel configurations 
require different profiles
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Why Different Profiles?

Why we need a different profile for each 
different kernel version?

● Each OS use different structs to represent 
same data

● Kernel structs layout evolves
○ Add/remove of a field
○ Change of field type
○ Change in embedded structs

⇒ avalanche effect!

● Kernel global variables change location

● Kernel compiled with different options 
(Linux only)
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⇒ Analysis of Linux, macOS and 
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most 
affected by the use of a compatible profile?

● Guidelines in case of missing profile

Static Analysis of Linux Kernel Source Code

⇒ Analysis of ALL the Linux kernel 
compilation options at the same time

● How Kernel options evolves?

● How Kernel options affect structs?

● Which class of options modifies data 
structures the most?

Unfortunately sometimes the correct profile is not available… Is it possible to 
use a “compatible” profile that contains (partially) correct structure 
definitions?

⇒ We have to characterize and measure how the kernel structs change among 
the different kernel releases and how many errors we introduce using a 
compatible profile
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1. Collect kernel executables (2298)
○ 509 Linux (2.6.32 -> 6.5, Debian)
○ 195 macOS (10.6 -> 14.3, all available)
○ 1594 Windows (Vista -> Windows 11)

2. Retrieve debug symbols

3. Create Volatility 3 JSON profiles

4. Diff “adjacent” versions

5. Collect and analyze
○ Add/removed struct/unions
○ Add/removed fields
○ Change in embedded structs
○ Change in field offset
○ Change in global variables location
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We track the evolution of the most 
used forensics data structures 

● 29 Linux → 1452 changes

● 36 macOS → 333 changes

● 44 Windows → 279 changes

We track three different class of fields: 
data fields, pointers and embedded structs.

● Linux → 93% of new fields are add in the 
middle of a struct ⇒ avalanche effect!

● macOS → High ratio of data fields that 
change location

● Windows → High ratio of changes in types 
of embedded structures and their offsets
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Affected Volatility Plugins

● Plugins that list processes using linked-list walk
⇒ pslist, pstree, psaux, ps_env, threads

● Plugins that analyze processes are indirectly affected 
⇒ dump_map, elf, procdump, librarylist, dump

● Other affected plugins: 
○ macOS ⇒ lsof, listraw
○ Windows ⇒ all Registry plugins
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Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to 
start a forensics analysis:

● To determine the KASLR offset
● To identify the processes linked list
● To identify the kernel modules linked list

In Windows:

● change in 44% of adjacent kernel versions 
(vs 14% on Linux and 21% on macOS)

● 76% of the offset shift is less than the 
page size (4KB)
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Select The most Compatible Profile

We can reach an high compatibility between kernel data structures if we use 
structure definitions taken by the previous

Linux    ⇒ minor release

macOS    ⇒ major release (or first minor near the major one)

Windows  ⇒ patch release

Global variables can require to be brute forced…

Suppose that we don’t have the correct profile, 
how can we select the most compatible one?

⇒ Is it possible to automate the creation of a profile from a 
near one? 

  RESEARCH IN PROGRESS
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● The KConfig options influence:
○ the kernel behaviour
○ the layout of data structures

How the KConfig options influence the 
forensics data structures layout?

Which KConfig options have the major 
impact?
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● Volatility 3 profiles approach not 
applicable …

⇒ ..compare directly the source code!

● We parse and compare source code of 
adjacent kernel versions 
○ We exclude Hardware drivers
○ Focus on x64 and ARM64

● 77 different minor versions
○ from 2.6.32 up to 6.7
○ covering 96.6% of C structs
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Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

● CONFIG_LOCKDEP_CROSSRELEASE in 4.14 in 
lockdep_map struct

● Introduce runtime deadlock detection
⇒ enabled by all major distributions

● lockdep_map embedded in 1451 structs, 
⇒ 12 forensics structures
 e.g. task_struct, module, and inode

● … avalanche effect!

● CONFIG_LOCKDEP_CROSSRELEASE removed in 4.15 due 
to huge performance penalty
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Most Relevant KConfigs for Forensics Structures

Which type of KConfig affect more 
forensics data structures?

● “Kernel Hacking” ⇒ support to debug 
and performance tools. Rarely used in 
embedded devices.

● Other important groups:
⇒ CGroups, Security, FS, MM

● CONFIG_SECURITY ⇒ most influencing one
○ Support for AppArmor and SELinux

● CONFIG_MEMCG
○ Support for Memory CGroup

● CONFIG_IPV6 
○ Support for IPv6
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In this study we have:

● Shown how the structure are influenced by the different 
development cycle of the OS.

● Shown which Volatility plugins are affected more by the changing 
in the structure offsets.

● Introduced minimal guidelines to help analysts to use the most 
compatible profile when the correct one is not available.

● Shown the avalanche effect of KConfigs on Linux kernel structs.

● Identified most influence KConfigs on forensics structs.

… and we release Volatility 3 profile dataset and code to the community!
  https://s3.eurecom.fr/datasets/

Conclusions

https://s3.eurecom.fr/datasets/


Questions?



Appendix: Forensics Structures

Linux: address_space, anon_vma, cred, dentry, file, file_system_type, inet_sock, inode, 
kmem_cache, mm_struct, module, module_kobject, neighbour, neigh_table, nf_hook_ops, path, 
proto, resource, rtable, seq_operations, sk_buff, sock, sock_common, super_block, 
task_struct, timespec, tty_struct, vm_area_struct, vfsmount

macOS: cpu_data, dyld_all_image_infos, fileglob, fileproc, fs_event_watcher, inpcb, ifnet, 
kauth_scope, kmod_info, kmod_info_t, mac_policy_list, mac_policy_list_element, 
memory_object_control, mount, pmap, proc, protosw, queue_entry, session, sockaddr, socket, 
socket_filter, sysctl_oid, task, thread, ubc_info, _vm_map, vm_map_header, vm_map_links, 
vm_map_entry, vm_map_object, vm_object, vm_page, vnode, vnodeopv_desc, zone

Windows: _CM_KEY_NODE, _CMHIVE, _CONTROL_AREA, _DEVICE_OBJECT, _DISPATCHER_HEADER, 
_DRIVER_OBJECT, _EPROCESS, _ETHREAD, _FILE_OBJECT, _HHIVE, _HANDLE_TABLE, 
_HANDLE_TABLE_ENTRY, _HEAP_ENTRY, _KMUTANT, _KPCR, _KPRCB, _KPROCESS, 
_LDR_DATA_TABLE_ENTRY, _LUID_AND_ATTRIBUTES, _MM_AVL_TABLE, _MMADDRESS_NODE, _MMPFN, 
_MM_SESSION_SPACE, _MMVAD, _MMVAD_FLAGS, _OBJECT_HEADER, _OBJECT_SYMBOLIC_LINK, 
_OBJECT_TYPE, _PEB, _PEB_LDR_DATA, _POOL_HEADER, _POOL_TRACKER_BIG_PAGES, 
_POOL_TRACKER_TABLE, _RTL_USER_PROCESS_PARAMETERS, _SUBSECTION, _SECTION_OBJECT_POINTERS, 
_SEP_TOKEN_PRIVILEGES, _SHARED_CACHE_MAP, _SID_AND_ATTRIBUTES, _SID, 
_SID_IDENTIFIER_AUTHORITY, _TEB, _TOKEN, _VACB  



The Development Cycle Influence the Struct Definitions

Blue dots: total number of C structs/unions

Green crosses: percentage of structs changed 
between two consecutive kernel versions

Linux: after 4.x random and changes, 
rolling release model

macOS: new types at major releases

Windows: “commercial code names” are major 
releases



Structs KConfig Dependency: Forensics Structs

How the KConfig options affect forensics 
structures?

In blue: Total number of KConfig options

● ⇒ Linearly increase across the entire 
kernel history

In red: KConfig percentage affecting 
forensics structs

● ⇒ Decreasing before 4.x and increase 
after it.

● 85 (4.0) —> 150 (6.7) different options


