
A Study on the Evolution of Kernel Data

Types Used in Memory Forensics

and Their Dependency on Compilation Options

Andrea Oliveri¹, Nikola Nemes², Branislav Andjelic², Davide Balzarotti¹

@IridiumXOR

oliveri@eurecom.fr

¹EURECOM ²University of Novi Sad

https://twitter.com/IridiumXOR
mailto:oliveri@eurecom.fr

About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

● Interpretation: kernel structures locationing and
exploration

About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

● Interpretation: kernel structures locationing and
exploration

● Analysis: analysis and correlation of forensics evidences

About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

● Interpretation: kernel structures locationing and
exploration

● Analysis: analysis and correlation of forensics evidence

To locate and explore kernel structs we use profiles:

● contain location of kernel global variables

About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

● Interpretation: kernel structures locationing and
exploration

● Analysis: analysis and correlation of forensics evidence

To locate and explore kernel structs we use profiles:

● contain location of kernel global variables

● contain description of kernel structs

About OS Profiles

Memory forensics process is composed of 3 main phases:

● Acquisition: copy RAM content to a non-volatile storage

● Interpretation: kernel structures locationing and
exploration

● Analysis: analysis and correlation of forensics evidence

To locate and explore kernel structs we use profiles:

● contain location of kernel global variables

● contain description of kernel structs

● different OS versions and/or kernel configurations
require different profiles

Why Different Profiles?

Why we need a different profile for each
different kernel version?

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

● Kernel structs layout evolves

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

● Kernel structs layout evolves
○ Add/remove of a field

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

● Kernel structs layout evolves
○ Add/remove of a field
○ Change of field type

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

● Kernel structs layout evolves
○ Add/remove of a field
○ Change of field type
○ Change in embedded structs

⇒ avalanche effect!

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

● Kernel structs layout evolves
○ Add/remove of a field
○ Change of field type
○ Change in embedded structs

⇒ avalanche effect!

● Kernel global variables change location

Why Different Profiles?

Why we need a different profile for each
different kernel version?

● Each OS use different structs to represent
same data

● Kernel structs layout evolves
○ Add/remove of a field
○ Change of field type
○ Change in embedded structs

⇒ avalanche effect!

● Kernel global variables change location

● Kernel compiled with different options
(Linux only)

How Kernel structs Evolve?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

How Kernel structs Evolve?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most
affected by the use of a compatible profile?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most
affected by the use of a compatible profile?

● Guidelines in case of missing profile

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most
affected by the use of a compatible profile?

● Guidelines in case of missing profile

Static Analysis of Linux Kernel Source Code

⇒ Analysis of ALL the Linux kernel
compilation options at the same time

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most
affected by the use of a compatible profile?

● Guidelines in case of missing profile

Static Analysis of Linux Kernel Source Code

⇒ Analysis of ALL the Linux kernel
compilation options at the same time

● How Kernel options evolves?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most
affected by the use of a compatible profile?

● Guidelines in case of missing profile

Static Analysis of Linux Kernel Source Code

⇒ Analysis of ALL the Linux kernel
compilation options at the same time

● How Kernel options evolves?

● How Kernel options affect structs?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

How Kernel structs Evolve?

Analysis of Volatility 3 Profiles

⇒ Analysis of Linux, macOS and
Windows kernels

● How structs change in relation to OS version?

● Which Volatility plugins are the most
affected by the use of a compatible profile?

● Guidelines in case of missing profile

Static Analysis of Linux Kernel Source Code

⇒ Analysis of ALL the Linux kernel
compilation options at the same time

● How Kernel options evolves?

● How Kernel options affect structs?

● Which class of options modifies data
structures the most?

Unfortunately sometimes the correct profile is not available… Is it possible to
use a “compatible” profile that contains (partially) correct structure
definitions?

⇒ We have to characterize and measure how the kernel structs change among
the different kernel releases and how many errors we introduce using a
compatible profile

Volatility 3 Profiles Analysis

1. Collect kernel executables (2298)
○ 509 Linux (2.6.32 -> 6.5, Debian)
○ 195 macOS (10.6 -> 14.3, all available)
○ 1594 Windows (Vista -> Windows 11)

Volatility 3 Profiles Analysis

1. Collect kernel executables (2298)
○ 509 Linux (2.6.32 -> 6.5, Debian)
○ 195 macOS (10.6 -> 14.3, all available)
○ 1594 Windows (Vista -> Windows 11)

2. Retrieve debug symbols

Volatility 3 Profiles Analysis

1. Collect kernel executables (2298)
○ 509 Linux (2.6.32 -> 6.5, Debian)
○ 195 macOS (10.6 -> 14.3, all available)
○ 1594 Windows (Vista -> Windows 11)

2. Retrieve debug symbols

3. Create Volatility 3 JSON profiles

Volatility 3 Profiles Analysis

1. Collect kernel executables (2298)
○ 509 Linux (2.6.32 -> 6.5, Debian)
○ 195 macOS (10.6 -> 14.3, all available)
○ 1594 Windows (Vista -> Windows 11)

2. Retrieve debug symbols

3. Create Volatility 3 JSON profiles

4. Diff “adjacent” versions

Volatility 3 Profiles Analysis

1. Collect kernel executables (2298)
○ 509 Linux (2.6.32 -> 6.5, Debian)
○ 195 macOS (10.6 -> 14.3, all available)
○ 1594 Windows (Vista -> Windows 11)

2. Retrieve debug symbols

3. Create Volatility 3 JSON profiles

4. Diff “adjacent” versions

5. Collect and analyze
○ Add/removed struct/unions
○ Add/removed fields
○ Change in embedded structs
○ Change in field offset
○ Change in global variables location

Stats on Changes in Forensics Relevant Data Structures

We track the evolution of the most
used forensics data structures

● 29 Linux → 1452 changes

● 36 macOS → 333 changes

● 44 Windows → 279 changes

Stats on Changes in Forensics Relevant Data Structures

We track the evolution of the most
used forensics data structures

● 29 Linux → 1452 changes

● 36 macOS → 333 changes

● 44 Windows → 279 changes

We track three different class of fields:
data fields, pointers and embedded structs.

● Linux → 93% of new fields are add in the
middle of a struct ⇒ avalanche effect!

Stats on Changes in Forensics Relevant Data Structures

We track the evolution of the most
used forensics data structures

● 29 Linux → 1452 changes

● 36 macOS → 333 changes

● 44 Windows → 279 changes

We track three different class of fields:
data fields, pointers and embedded structs.

● Linux → 93% of new fields are add in the
middle of a struct ⇒ avalanche effect!

● macOS → High ratio of data fields that
change location

Stats on Changes in Forensics Relevant Data Structures

We track the evolution of the most
used forensics data structures

● 29 Linux → 1452 changes

● 36 macOS → 333 changes

● 44 Windows → 279 changes

We track three different class of fields:
data fields, pointers and embedded structs.

● Linux → 93% of new fields are add in the
middle of a struct ⇒ avalanche effect!

● macOS → High ratio of data fields that
change location

● Windows → High ratio of changes in types
of embedded structures and their offsets

Detailed Analysis of Structs Changes

Detailed Analysis of Structs Changes

Detailed Analysis of Structs Changes

Detailed Analysis of Structs Changes

Affected Volatility Plugins

● Plugins that list processes using linked-list walk
⇒ pslist, pstree, psaux, ps_env, threads

Affected Volatility Plugins

● Plugins that list processes using linked-list walk
⇒ pslist, pstree, psaux, ps_env, threads

● Plugins that analyze processes are indirectly affected
⇒ dump_map, elf, procdump, librarylist, dump

Affected Volatility Plugins

● Plugins that list processes using linked-list walk
⇒ pslist, pstree, psaux, ps_env, threads

● Plugins that analyze processes are indirectly affected
⇒ dump_map, elf, procdump, librarylist, dump

● Other affected plugins:
○ macOS ⇒ lsof, listraw
○ Windows ⇒ all Registry plugins

Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to
start a forensics analysis:

Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to
start a forensics analysis:

● To determine the KASLR offset

Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to
start a forensics analysis:

● To determine the KASLR offset
● To identify the processes linked list

Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to
start a forensics analysis:

● To determine the KASLR offset
● To identify the processes linked list
● To identify the kernel modules linked list

Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to
start a forensics analysis:

● To determine the KASLR offset
● To identify the processes linked list
● To identify the kernel modules linked list

In Windows:

● change in 44% of adjacent kernel versions
(vs 14% on Linux and 21% on macOS)

Kernel Global Variables Offsets Variability

Three Kernel Global Variables are essential to
start a forensics analysis:

● To determine the KASLR offset
● To identify the processes linked list
● To identify the kernel modules linked list

In Windows:

● change in 44% of adjacent kernel versions
(vs 14% on Linux and 21% on macOS)

● 76% of the offset shift is less than the
page size (4KB)

Select The most Compatible Profile

Suppose that we don’t have the correct profile,
how can we select the most compatible one?

Select The most Compatible Profile

We can reach an high compatibility between kernel data structures if we use
structure definitions taken by the previous

Linux ⇒ minor release

macOS ⇒ major release (or first minor near the major one)

Windows ⇒ patch release

Suppose that we don’t have the correct profile,
how can we select the most compatible one?

Select The most Compatible Profile

We can reach an high compatibility between kernel data structures if we use
structure definitions taken by the previous

Linux ⇒ minor release

macOS ⇒ major release (or first minor near the major one)

Windows ⇒ patch release

Global variables can require to be brute forced…

Suppose that we don’t have the correct profile,
how can we select the most compatible one?

Select The most Compatible Profile

We can reach an high compatibility between kernel data structures if we use
structure definitions taken by the previous

Linux ⇒ minor release

macOS ⇒ major release (or first minor near the major one)

Windows ⇒ patch release

Global variables can require to be brute forced…

Suppose that we don’t have the correct profile,
how can we select the most compatible one?

⇒ Is it possible to automate the creation of a profile from a
near one?

 RESEARCH IN PROGRESS

Linux Kernel Compilation Option Dependency

● The KConfig options influence:
○ the kernel behaviour
○ the layout of data structures

Linux Kernel Compilation Option Dependency

● The KConfig options influence:
○ the kernel behaviour
○ the layout of data structures

How the KConfig options influence the
forensics data structures layout?

Which KConfig options have the major
impact?

Linux Kernel Compilation Option (KConfig) Dependency

● Volatility 3 profiles approach not
applicable …

⇒ ..compare directly the source code!

Linux Kernel Compilation Option (KConfig) Dependency

● Volatility 3 profiles approach not
applicable …

⇒ ..compare directly the source code!

● We parse and compare source code of
adjacent kernel versions
○ We exclude Hardware drivers
○ Focus on x64 and ARM64

Linux Kernel Compilation Option (KConfig) Dependency

● Volatility 3 profiles approach not
applicable …

⇒ ..compare directly the source code!

● We parse and compare source code of
adjacent kernel versions
○ We exclude Hardware drivers
○ Focus on x64 and ARM64

● 77 different minor versions
○ from 2.6.32 up to 6.7
○ covering 96.6% of C structs

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

● CONFIG_LOCKDEP_CROSSRELEASE in 4.14 in
lockdep_map struct

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

● CONFIG_LOCKDEP_CROSSRELEASE in 4.14 in
lockdep_map struct

● Introduce runtime deadlock detection
⇒ enabled by all major distributions

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

● CONFIG_LOCKDEP_CROSSRELEASE in 4.14 in
lockdep_map struct

● Introduce runtime deadlock detection
⇒ enabled by all major distributions

● lockdep_map embedded in 1451 structs,
⇒ 12 forensics structures
 e.g. task_struct, module, and inode

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

● CONFIG_LOCKDEP_CROSSRELEASE in 4.14 in
lockdep_map struct

● Introduce runtime deadlock detection
⇒ enabled by all major distributions

● lockdep_map embedded in 1451 structs,
⇒ 12 forensics structures
 e.g. task_struct, module, and inode

● … avalanche effect!

Structs KConfig Dependency: General Stats
Percentage of structs affected by KCONFIGs

 ⇒ ~10% in continue decrease

… however can be local spikes!

● CONFIG_LOCKDEP_CROSSRELEASE in 4.14 in
lockdep_map struct

● Introduce runtime deadlock detection
⇒ enabled by all major distributions

● lockdep_map embedded in 1451 structs,
⇒ 12 forensics structures
 e.g. task_struct, module, and inode

● … avalanche effect!

● CONFIG_LOCKDEP_CROSSRELEASE removed in 4.15 due
to huge performance penalty

Most Relevant KConfigs for Forensics Structures

Which type of KConfig affect more
forensics data structures?

Most Relevant KConfigs for Forensics Structures

Which type of KConfig affect more
forensics data structures?

● “Kernel Hacking” ⇒ support to debug
and performance tools. Rarely used in
embedded devices.

Most Relevant KConfigs for Forensics Structures

Which type of KConfig affect more
forensics data structures?

● “Kernel Hacking” ⇒ support to debug
and performance tools. Rarely used in
embedded devices.

● Other important groups:
⇒ CGroups, Security, FS, MM

Most Relevant KConfigs for Forensics Structures

Which type of KConfig affect more
forensics data structures?

● “Kernel Hacking” ⇒ support to debug
and performance tools. Rarely used in
embedded devices.

● Other important groups:
⇒ CGroups, Security, FS, MM

Most Relevant KConfigs for Forensics Structures

Which type of KConfig affect more
forensics data structures?

● “Kernel Hacking” ⇒ support to debug
and performance tools. Rarely used in
embedded devices.

● Other important groups:
⇒ CGroups, Security, FS, MM

● CONFIG_SECURITY ⇒ most influencing one
○ Support for AppArmor and SELinux

● CONFIG_MEMCG
○ Support for Memory CGroup

● CONFIG_IPV6
○ Support for IPv6

In this study we have:

● Shown how the structure are influenced by the different
development cycle of the OS.

Conclusions

In this study we have:

● Shown how the structure are influenced by the different
development cycle of the OS.

● Shown which Volatility plugins are affected more by the changing
in the structure offsets.

Conclusions

In this study we have:

● Shown how the structure are influenced by the different
development cycle of the OS.

● Shown which Volatility plugins are affected more by the changing
in the structure offsets.

● Introduced minimal guidelines to help analysts to use the most
compatible profile when the correct one is not available.

Conclusions

In this study we have:

● Shown how the structure are influenced by the different
development cycle of the OS.

● Shown which Volatility plugins are affected more by the changing
in the structure offsets.

● Introduced minimal guidelines to help analysts to use the most
compatible profile when the correct one is not available.

● Shown the avalanche effect of KConfigs on Linux kernel structs.

Conclusions

In this study we have:

● Shown how the structure are influenced by the different
development cycle of the OS.

● Shown which Volatility plugins are affected more by the changing
in the structure offsets.

● Introduced minimal guidelines to help analysts to use the most
compatible profile when the correct one is not available.

● Shown the avalanche effect of KConfigs on Linux kernel structs.

● Identified most influence KConfigs on forensics structs.

Conclusions

In this study we have:

● Shown how the structure are influenced by the different
development cycle of the OS.

● Shown which Volatility plugins are affected more by the changing
in the structure offsets.

● Introduced minimal guidelines to help analysts to use the most
compatible profile when the correct one is not available.

● Shown the avalanche effect of KConfigs on Linux kernel structs.

● Identified most influence KConfigs on forensics structs.

… and we release Volatility 3 profile dataset and code to the community!
 https://s3.eurecom.fr/datasets/

Conclusions

https://s3.eurecom.fr/datasets/

Questions?

Appendix: Forensics Structures

Linux: address_space, anon_vma, cred, dentry, file, file_system_type, inet_sock, inode,
kmem_cache, mm_struct, module, module_kobject, neighbour, neigh_table, nf_hook_ops, path,
proto, resource, rtable, seq_operations, sk_buff, sock, sock_common, super_block,
task_struct, timespec, tty_struct, vm_area_struct, vfsmount

macOS: cpu_data, dyld_all_image_infos, fileglob, fileproc, fs_event_watcher, inpcb, ifnet,
kauth_scope, kmod_info, kmod_info_t, mac_policy_list, mac_policy_list_element,
memory_object_control, mount, pmap, proc, protosw, queue_entry, session, sockaddr, socket,
socket_filter, sysctl_oid, task, thread, ubc_info, _vm_map, vm_map_header, vm_map_links,
vm_map_entry, vm_map_object, vm_object, vm_page, vnode, vnodeopv_desc, zone

Windows: _CM_KEY_NODE, _CMHIVE, _CONTROL_AREA, _DEVICE_OBJECT, _DISPATCHER_HEADER,
_DRIVER_OBJECT, _EPROCESS, _ETHREAD, _FILE_OBJECT, _HHIVE, _HANDLE_TABLE,
_HANDLE_TABLE_ENTRY, _HEAP_ENTRY, _KMUTANT, _KPCR, _KPRCB, _KPROCESS,
_LDR_DATA_TABLE_ENTRY, _LUID_AND_ATTRIBUTES, _MM_AVL_TABLE, _MMADDRESS_NODE, _MMPFN,
_MM_SESSION_SPACE, _MMVAD, _MMVAD_FLAGS, _OBJECT_HEADER, _OBJECT_SYMBOLIC_LINK,
_OBJECT_TYPE, _PEB, _PEB_LDR_DATA, _POOL_HEADER, _POOL_TRACKER_BIG_PAGES,
_POOL_TRACKER_TABLE, _RTL_USER_PROCESS_PARAMETERS, _SUBSECTION, _SECTION_OBJECT_POINTERS,
_SEP_TOKEN_PRIVILEGES, _SHARED_CACHE_MAP, _SID_AND_ATTRIBUTES, _SID,
_SID_IDENTIFIER_AUTHORITY, _TEB, _TOKEN, _VACB

The Development Cycle Influence the Struct Definitions

Blue dots: total number of C structs/unions

Green crosses: percentage of structs changed
between two consecutive kernel versions

Linux: after 4.x random and changes,
rolling release model

macOS: new types at major releases

Windows: “commercial code names” are major
releases

Structs KConfig Dependency: Forensics Structs

How the KConfig options affect forensics
structures?

In blue: Total number of KConfig options

● ⇒ Linearly increase across the entire
kernel history

In red: KConfig percentage affecting
forensics structs

● ⇒ Decreasing before 4.x and increase
after it.

● 85 (4.0) —> 150 (6.7) different options

