
DFRWS EU 2025 - Selected Papers from the 12th Annual Digital Forensics Research Conference Europe

Forensic analysis of Telegram Messenger on iOS smartphones

Lukas Jaeckel *, Michael Spranger, Dirk Labudde
University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany

A R T I C L E I N F O

Keywords:
Mobile forensics
Telegram
Telegram messenger
Instant messaging
iOS
Smartphones
SQLite database

A B S T R A C T

As mobile messengers have dominated and penetrated our daily communication and activities, the odds of them
being involved in criminal activities have increased. Since each messenger usually uses its own proprietary data
schema (including encoding, encryption and frequent updates) to store communication data, with a pressing
demand, investigative authorities require a solution to transfer the data in a processable structure to analyse it
efficiently, especially in a forensic context. Therefore, this work identifies and examines locally stored data of the
Telegram Messenger with high forensic value on iOS devices. In particular, this work deals with extracting
contact and communication data to link and analyse it. For this purpose, artificially generated test data, as well
as the open source code of the Telegram Messenger under iOS, are analysed. The main focus of this work lies on
the primary database in which a large part of data is coded and, therefore, needs to be transferred into an
interpretable form. In summary, this work enables a manual or automated analysis of Messenger data for
investigative authorities and IT companies with forensic reference. The proposed method can also be adapted in
research to analyse further instant messaging services.

1. Introduction

With more than 900 million active users per month, Telegram is one
of the most popular messenger services worldwide (We Are Social et al.,
2024). Due to its security features, such as secret chat with end-to-end
encryption, the service is also popular among criminals (Moreb,
2022a). As a result, the messenger is used to plan, control and commit
offences ranging from cybercrime to terrorism (Anglano et al., 2017).
Therefore, analysing locally stored messenger data can help to clarify
criminally relevant issues if a device has been confiscated and seized by
a corresponding intelligence service. The analysis provides information
on who communicated with whom at what time and on what topic. From
this information, for example, it is possible to derive clues as to the
motive for the crime, the form of the perpetration or crimes planned for
the future. However, before a more in-depth data analysis can be carried
out, law enforcement authorities face the challenge of preparing the
secured data accordingly (Moreb, 2022b). That is because the locally
stored messenger data is in an encoded form. Consequently, the data has
to be decoded and converted into an analyseable format. In many cases,
law enforcement agencies overcome this challenge by using special
programs in which a parser is integrated for each messenger. However,
the data preparation process within these programs is not transparent
and understandable.

Consequently, there is a need for detailed research and documenta
tion of Telegram regarding storage and coding on iOS devices. This work
aims to explore as much forensically relevant data as possible from the
Telegram messenger on iOS so that it can be decoded and converted into
a form that can be analysed. In this way, the work enables a deep
analysis of the communications conducted in Telegram. In order to
derive further insights, additional contact and communication networks
can thus be created and linked. The comprehensive analysis of Telegram
Messenger on iOS devices can be carried out manually or automatically
using any programming language.

In the following, section 2 provides an overview of similar literature.
Then, the unique features of Telegram are explained in section 3, such as
the different types of contacts and chats. Subsequently, section 4 shows
the methodological approach. The data structures of Telegram on iOS
devices are described in section 5. The analysis results obtained are
discussed in section 6. Finally, section 7 summarises the work and dis
cusses its applicability in practice.

2. Related work

A systematic review by Sihombing et al. (2018) emphasised the
forensic value of IM (Instant Messaging) data. It showed that from 2014
to 2017, only one scientific paper was published in the IM field for iOS

* Corresponding author.
E-mail address: jaeckel1@hs-mittweida.de (L. Jaeckel).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301866

Forensic Science International: Digital Investigation 52 (2025) 301866

Available online 24 March 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jaeckel1@hs-mittweida.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301866
https://doi.org/10.1016/j.fsidi.2025.301866
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301866&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

devices. The article dealt with the messenger service Kik (Kenneth and
Ovens, 2016). Six years earlier, Husain and Sridhar (Husain et al., 2010)
covered three other IM services (AIM, Yahoo! Messenger, Google Talk)
on the iOS operating system, all of which have since been discontinued.
On the other hand, IM services on Android devices have often been
investigated. For example, Mahajan et al. (2013) dealt with the forensic
analysis of the messengers Viber and WhatsApp. They generated
messenger data on five different Android devices and analysed them
manually. As a result, their work showed where and which forensic
artefacts of the applications can be found. Anglano (2014) extended the
analysis of WhatsApp, where the author used virtualised devices to
generate the data. In his work, he examined other forensically relevant
files and documented how the locally stored data of the WhatsApp
messenger can be linked and interpreted.

Telegram Messenger version 3.4.2 on Android devices has already
been examined by Satrya et al. (2016). For this purpose, the authors
carried out 17 different test scenarios using three smartphones, which
were subsequently analysed using online and offline forensics methods.
In particular, the paper showed where and in which format forensically
relevant data of the Telegram Messenger are created and stored. How
ever, the authors did not describe how the data could be interpreted and
correlated. For example, the evaluation of the Binary Large Objects
(BLOBs) within the central database cache4.db was missing, although
these objects contain valuable information in coded form. Anglano et al.
(2017) further analysed Telegram Messenger versions 3.15 to 3.18 on
Android devices regarding offline forensics. For this, they used three
virtualised Android devices and a real smartphone in their experiments
to validate the results obtained. In addition to examining the resulting
data, the authors analysed the public source code of the Android version
of Telegram Messenger to interpret data from the central database bet
ter. In addition, they used parts of the code written in Java to deserialise
BLOBs. In doing so, they did not have to go into the exact coding of such
objects.

In conclusion, the authors made clear that the methods used could
also be extended to Telegram versions of other platforms, such as iOS
and Windows Phone. However, they recognised that the difficulty with
iOS devices is that no virtualisation platform exists. Therefore, physical
devices were used to generate Messenger data in this work.

Furthermore, Gregorio et al. (2017) researched the Telegram
Messenger for Windows Phone. For this purpose, the authors combined
public knowledge, analysing the messenger’s generated data and the
freely accessible source code of Telegram for Windows Phone. They used
two physical smartphones with Telegram versions 1.12.1 and 1.27 to
generate the data. In summary, the paper demonstrated where and how
locally stored Telegram Messenger information can be obtained. In
addition, Gregorio et al. (2018) examined the desktop version of Tele
gram Messenger on MacOS. In particular, the authors described methods
for finding relevant data and deriving their meanings concerning users’
communication.

Bhatt et al. (2018) analysed the data from the network traffic of 20
different iOS applications. Among them was the iOS version of Telegram
Messenger, whose data is, in principle, transmitted in encrypted form.
Nevertheless, the authors succeeded in recording location data,
third-party domains, device details of the communication participants,
and encrypted text from the messenger’s network traffic using online
forensics methods. However, Telegram Messenger was not investigated
in the area of offline forensics.

Salamh et al. (2021) examined a large number of apps on Android
and iOS from a forensic perspective. Telegram on iOS was also included.
The authors generated data to locate and document using Autopsy and
Magnet AXIOM. That made it possible to determine where Telegram
stores its database, media and other files on iOS. However, this did not
involve a deep analysis of the data, especially the central database. In
their literature review, the authors noted a lack of research regarding
Telegram Messenger on iOS devices. This work thus closes a gap in the
existing literature in iOS forensics.

Furthermore, Moreb (2022a) dealt with Telegram Messenger on iOS
devices. For the data acquisition, the authors used Belkasoft and
FINALMobile. Then, they analysed the data using FINALMobile, Magnet
AXIOM, and Elcomsoft Phone Viewer. All the generated data could be
retrieved. However, the generated files by Telegram were not analysed
in detail. In contrast, an analysis of the Telegram Messenger indepen
dent of tools is carried out in the context of this work.

3. Communication structures in telegram

Telegram is a free instant messaging service that allows users to send
and receive unlimited text messages and media files. A user can
communicate with another person registered with Telegram if their
contact information is stored in the mobile device’s phone book or their
public user name is known. A particular form of a user is a program
mable bot, which performs specific tasks automatically. A bot can usu
ally see a user’s public name and profile picture and exchange messages.
The usual communication between two users occurs via Cloud Chats,
which use client-server/server-client encryption (Telegram, 2024b).
Such chats are encrypted on the end devices and in the Telegram cloud.
In addition to the standard chat function, Telegram offers voice and
video calls and secret chats. Secret chats in Telegram are the only type of
communication that uses end-to-end encryption. Therefore, this
communication is only stored locally on the sender’s and recipient’s end
devices. Secret chats are also deleted from a device when the user logs
out of Telegram. As a result, their existence is always tied to the current
session. In addition, such chats offer a self-destruct mode, whereby each
message is deleted after a specified time once the recipient has read it.

Up to 200,000 members can communicate in a group, whereby the
creator and administrators have special rights (Telegram, 2024b). The
chat messages are stored on the group members’ end devices and in the
Telegram cloud. Members who see each other within a group can also
start a regular or secret chat in pairs. A group is either public or private,
depending on the setting of the creator. Public groups have a unique
group name and, like public users, can be found via the search function
in Telegram. Alternatively, a user can join a public group via an invi
tation link. Private groups, on the other hand, do not have a public group
name and cannot be found via the search function. Joining can be done
via an invitation link.

Furthermore, members can add new users depending on their
authorisation, irrespective of the group’s visibility. In principle, it is also
possible to invite bots, who can only see messages intended for them by
default. However, a bot can be configured to read all messages of a
group.

Unlike groups, the number of channel members is unlimited
(Telegram, 2024b). However, only the creator of the channel and the
administrators have writing access, while all other members have only
read access to the messages. Chat messages are saved on the end devices
of the channel members as well as in the Telegram cloud and, if neces
sary, automatically forwarded to a defined group. Furthermore, users
without special rights cannot view the member list of a channel. Thus,
the creator and the administrators are anonymous to ordinary members.
By default, the name of the sender of a message is not displayed. Anal
ogous to groups, channels can be either public or private and are iden
tified by a unique channel name. The invitation links for channels work
in the same way as links for groups. However, regular members in pri
vate channels cannot invite other users.

4. Methodology

This work followed the workflow described by Anglano et al. (2017)
for analysing Telegram on Android devices. However, physical iOS de
vices were used in this work. To recognise and subsequently analyse
forensically relevant data of Telegram Messenger, the official open
source code of Telegram under iOS was examined in particular. The code
is freely available and constantly updated at https://github.com/Tel

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

2

https://github.com/TelegramMessenger/Telegram-iOS

egramMessenger/Telegram-iOS (Telegram, 2024a). The main aim of the
source code analysis was to draw conclusions about the structure of the
primary database and, thus, to identify relevant tables. Subsequently,
these tables were examined and documented concerning their structure
to extract information with forensic value from them in the future. Of
particular interest was whether each table had specific signatures and a
fixed or dynamic structure. To understand the coding of specific classes,
first, the corresponding source code file was searched and then the
functions init() and encode() were considered.

In addition, test data was generated according to specific re
quirements. Thus, the code itself could be better understood, and the
insights gained from it could be validated. The test data was generated
using Telegram Messenger version 11.1.1 on an iPhone SE, iPhone 7 and
a Samsung Galaxy S9. The generation process implemented the
following steps:

Preparation and installation. First, SIM cards were obtained for each
device, and the contact details of the devices were entered into each
other’s phone books. Then, Telegram Messenger had to be installed on
each device.

Creating user profiles. A new Telegram account was created on each
device. After that, the profiles of the accounts were each given a profile
picture, a user name, and a bio.

Creating groups, channels and secret chats. Groups and channels were
created in which the users had different roles (creator, administrator,
member). In addition, such chats differed regarding their visibility
(private, public). Some groups and channels also had a profile picture
and info. Some channels are also linked to a discussion group.
Furthermore, secret chats were created for two users at a time. Some of
these chats had the self-destruct mode enabled.

Communication in chats of different types. In ordinary chats (cloud
chats), groups, channels and secret chats, users now exchanged mes
sages, whereby the communication was as far as possible, not one-sided.
Some messages were longer than 255 characters and had emojis and
special characters. They also included surveys and media. The latter
included pictures, audio files, videos, documents, stickers, locations and
contacts. In some cases, users replied directly to messages or forwarded
them. In addition to messages, users made, declined or cancelled voice
and video calls.

After the test data generation according to the requirements was
completed, UFED Touch (Cellebrite DI Ltd, 2024) was used for the full
file system extraction. The folder in which the Telegram Messenger
application data was stored was backed up from each device. That
included the folder telegram-data, which contained the local central
database for the test account created. The exported database was copied
to a separate folder in each case, as no files such as db_sqlite-wal were to
be changed during further analysis. That was followed by investigating

the extracted primary databases to validate the findings gained from the
code analysis. The primary databases were examined using the DB
Browser for SQLite (Clift, 2024) for a general overview. Thus, each
database could be opened, and the content of the individual tables could
be analysed. The HxD Hex Editor (Hörz, 2024) was used for a deeper
analysis of the respective table content. It facilitated the finding of off
sets and signatures on a binary level. It also automatically converted
bytes into specific number formats when necessary.

5. Telegram data structures on iOS devices

In October 2018, Telegram X replaced the C-based iOS variant of
Telegram Messenger with the release of version 5.0 while retaining the
original name Telegram Messenger (Telegram, 2018). Telegram X for iOS
is an optimised variant of the old C-based messenger rewritten in Swift.
An optimised Telegram X variant also exists for Android but is currently
being developed and offered in parallel to the conventional variant.

Due to the fundamental change with version 5.0 on iOS, the structure
of the databases has completely changed compared to old Telegram
versions. Furthermore, the directories have been restructured. Most
Telegram files are stored in the directory telegram-data, which is why it
has a high forensic relevance. It is located under the path
\private\var\mobile\Containers\Shared\AppGroup\x, where x stands
for an app-specific ID that is not constant. General information is kept in
the subdirectory accounts-metadata. Each user account used to log on to
the device has a separate directory in telegram-data containing impor
tant user-specific data. Within it is a directory postbox, which contains a
media directory media and a database directory db. The latter contains
the central database db_sqlite (Fig. 1), which stores messages and con
tacts of the user account. For this reason, this work focuses on the pri
mary database analysis.

In addition, the db_sqlite-wal file in the database directory may
contain important information that has been deleted from or is not yet
stored in the central database. This file is created by Write-Ahead Log
ging (WAL), an optional mode of an SQLite database (SQLite Docu
mentation, 2024). Database transactions are not written directly to the
central database but are stored temporarily in a WAL file. As a result, the
two files can each have a different status, which can be of significant
forensic relevance.

6. Forensic analysis of the telegram main database

The local main database of a specific account mainly contains several
tables whose names are each composed of the prefix t and an identifi
cation number from the range of natural numbers. Each table with the
prefix t has, in principle, two columns. The content of the first column

Fig. 1. Telegram directory structure. On the left is the directory hierarchy starting with the directory telegram-data, with the currently open database directory
highlighted in grey. The right-hand side shows the contents of this directory. db_sqlite is the local central database of the Telegram account.

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

3

https://github.com/TelegramMessenger/Telegram-iOS

key is either of the type Integer or Binary Large Object (BLOB). The
second column is called value and always contains a BLOB, which is a
long sequence of bytes [(Fehily, 2020), p. 60]. As a result, most data is
encoded in a serialised binary format. They must, therefore, be decoded
before the actual examination can be carried out. None of the analysed
data was encrypted.

Furthermore, a separate.swift file exists for each table in the Tele
gram source project under submodules/Postbox/Sources/. After ana
lysing the corresponding source files, the most relevant information
about contacts and chats was found in the PeerTable t2. This informa
tion complements entries from the CachedPeerDataTable t18. In addi
tion, the MessageHistoryTable t7 contains forensically valuable
information about messages, calls and media files. Using the init()
function of the Postbox class in the Postbox.swift file under submodules/
Postbox/Sources/, the respective identification number of the tables
could be inferred.

6.1. Coding of objects

To evaluate the respective table contents, it is necessary in many
cases to know how individual objects and their attributes are coded in a
BLOB. Hierarchical structures are formed at the top level, of which there
are usually one or more RootObjects. A RootObject is coded as follows:

An object encoded this way usually contains several class-specific
attributes that follow one another in a well-defined order. Each attri
bute is encoded according to this scheme:

Here, the key indicates the kind of class-specific attribute. Further
more, the coding of the attribute value depends directly on the data type
of the corresponding attribute. The coding can be derived from the class
PostboxEncoder in the source file Coding.swift under submodules/
Postbox/Sources/and is summarised in Table 11. The class name of an
object is always stored as a hash value. In detail, this is a 32-bit value
generated from the class name using the MurmurHash3 with the seed
value − 137723950. Since the hash values are unique for each class, they
each represent a 4-byte signature for an object of a specific class. The
exact hash algorithm can be found in the MurMurHash32.m file of the
Telegram source code at submodules/MurMurHash32/Sources/.

6.2. Extraction of the peer ID of the local user account

In order to extract information about the local user account, the
matching peer ID must first be determined. This number, which is
unique in Telegram, is stored in the MetadataTable t0, which is defined
in the Telegram source file MetadataTable.swift under submodules/

Postbox/Sources/. The corresponding table contains up to six line en
tries. The peer ID is in the State entry, where the key is 2 and the value
contains a RootObject of the class AuthorizedAccountState if the local
user account is authorised. The structure of such an object can be
derived from the file SyncCore_AuthorizedAccountState.swift available
at submodules/TelegramCore/Sources/SyncCore/. In order to deter
mine the peer ID, it is usually sufficient to search for the byte sequence 0
× 06 70 65 65 72 49 64 01, which includes the key length (0 × 06), the
key of the attribute (0 × 70 65 65 72 49 64) and its data type (0 × 01).
That is followed by the eight-byte peer ID of the local user account in
little-endian format. To illustrate, Fig. 2 shows an example State entry
from the value column of the MetadataTable. In this case, the peer ID of
the local user is decimal 36513321142 or 0 × 08 80 5D 10 B6 in
hexadecimal (little-endian format).

6.3. Extraction of contact and chat data

The PeerTable, referred to as t2 in the main database, stores
important information about users, groups, channels and secret chats.
The table’s structure can be derived from the PeerTable.swift file of the
Telegram source code at submodules/Postbox/Sources/. For each peer
instance, there is exactly one entry in the table. The key column contains
the peer ID of the respective instance. In the column value of the
PeerTable, the object belonging to a peer instance is stored as Roo
tObject in little-endian format. As already discussed, the encoding as a
BLOB depends on the exact class of the object and the respective
attributes.

The CachedPeerDataTable t18 of the main database contains addi
tional information about individual peer instances and is defined in the
CachedPeerDataTable.swift file under submodules/Postbox/Sources/.
However, an entry does not have to exist for each instance. Analogous to
the PeerTable, the key column of t18 contains the peer ID of the cor
responding peer instance. In the column value, a RootObject encoded as
a BLOB is stored in little-endian format. Table 1 summarises the possible
RootObject classes.

6.3.1. Extraction of users and bots
The RootObject in value entries of table t2 is for ordinary users and

bots from the class TelegramUser, which is defined in the SyncCor
e_TelegramUser.swift file under submodules/TelegramCore/Sources/
SyncCore/. The 32-bit MurmurHash3 value for the corresponding class
name is 2657658155. Converted as a hexadecimal number in little-
endian format, this results in the specific signature 0 × 2B A5 68 9E.
For example, Fig. 3 from the generated test data shows a column entry
containing information about a Telegram user. An overview of the at
tributes of the class TelegramUser is given in Table 2.

The most relevant information that can be extracted from such a class
is the first name (key: 0 × 66 6E), last name (key: 0 × 6C 6E), user name
(key: 0 × 75 6E) and phone number (key: 0 × 70) of a user. However, not
every object of the class TelegramUser contains the mentioned attributes
because they depend on the voluntary specification of the user. The user
name and phone number can uniquely identify a Telegram account.

Fig. 2. Shown is the content of a State entry of the column value, which comes
from the table t0 of the local main database of a Telegram account. Here, the
entry is encoded as a BLOB. The uniform signature (solid line) is followed by a
unique peer ID of the local user (dashed line).

Table 1
Possible RootObject classes of the value entries in table t18 with associated
MurmurHash3 and the corresponding source file of Telegram iOS from the open
source project at submodules/TelegramCore/Sources/SyncCore/.

Class (source file) Hash value

CachedUserData 0 × 91 9D 1F 76
(SyncCore_CachedUserData.swift)
CachedGroupData 0 × 21 E8 2D A9
(SyncCore_CachedGroupData.swift)
CachedChannelData 0 × 55 15 C2 16
(SyncCore_CachedChannelData.swift)
CachedSecretChatData 0 × 4B D0 6F 4E
(SyncCore_TelegramSecretChat.swift)

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

4

Usually, a profile picture of a user is stored in low as well as in full
resolution as an object of the class TelegramMediaImageRepresentation
in the photo-ObjectArray with the key 0 × 70 68. The specific signature
derived from the MurmurHash3 is 0 × 7E 87 C9 69 for objects of the
corresponding class. The definition of Tele
gramMediaImageRepresentation is in the source file SyncCore_Tele
gramMediaImage.swift at submodules/TelegramCore/Sources/
SyncCore/.

Whether a user is a bot can be determined by evaluating the object
with the key 0 × 62 69. If the key value is followed by the NULL value 0
× 0B, it is an ordinary user. Otherwise, an object of the structure
BotUserInfo with the specific signature 0 × 55 7F AA 56 follows. The
source file SyncCore_TelegramUser.swift defines the structure.

Further information can also be extracted for the local account, as a
corresponding user entry exists in the PeerTable. The entry has the peer
ID, the determination of which has already been discussed. Finally, the
findings about users and bots derived from the Telegram source code
were validated using the test data. The decoded attributes of the entry
shown in Fig. 3 are summarised in Table 3.

Table t18 stores additional information about users and bots, where
the RootObject of the value column is of the class CachedUserData.
Below this is the about attribute with the key 0 × 61, which refers to the
value info given by the user in the form of a string. Additional

information about bots can be found in the 0 × 62 69 attribute marked
by the key botInfo. Provided it is a bot, the value of the attribute is an
object of the class BotInfo. Otherwise, its value is NIL/NULL. The BotInfo
object stores a description (key: 0 × 64) and an object array of Bot
Commands (key: 0 × 63) containing a text (key: 0 × 74) and a
description (key: 0 × 64). In chats with users and bots, exactly one
message can be pinned to keep it in view. The ID of such a message is
stored as the attribute’s value with the key 0 × 70 6D 2E 69. If no
message is pinned, the value is NIL/NULL. Furthermore, the attribute is
Blocked identified by the key 0 × 62 shows whether a user/bot is
blocked by the local user (0 × 01) or not (0 × 00).

6.3.2. Extraction of groups
Telegram groups are encoded in the column value in the table t2 as

objects of the class TelegramGroup, which is defined in the SyncCor
e_TelegramGroup.swift file under submodules/TelegramCore/Sources/
SyncCore/. The hexadecimal MurmurHash3 value in little-endian
format is 0 × 51 7D A1 66. The specific group attributes and their
keys are summarised in Table 4.

In addition to the title of the group (key: 0 × 74), the class Tele
gramGroup has a ObjectArray (key: 0 × 70 68) in which profile pictures
can be located. In addition, the attribute with the key 0 × 70 63 contains
the current number of group members. The creation date is stored as
Unix time (key: 0 × 64). The Int32 value assigned to the key 0 × 6D can
be used to determine the current status of the device owner within the
respective group. He can be a current member (0 × 00), have left the
group (0 × 01) or have been removed from it (0 × 02). The group role of
the local user can be determined by the object with the key 0 × 72 76. In
order to do this, the object’s attribute with the key 0 × 5F 76 must be

Fig. 3. The content of an entry in the value column from the t2 table of the
local main database of a Telegram account is opened in a hex editor because it
is coded as a BLOB.

Table 2
Attributes of the class TelegramUser.

Attribute Key Data type

id 0 × 69 Int64
accessHash 0 × 61 68 Int64
accessHashType 0 × 61 68 74 Int32
firstName 0 × 66 6E String
lastName 0 × 6C 6E String
username 0 × 75 6E String
phone 0x70 String
photo 0 × 70 68 ObjectArray
botInfo 0 × 62 69 Object
restrictionInfo 0 × 72 69 Object
flags 0 × 66 6C Int32
emojiStatus 0 × 65 6D 6A 73 Object
usernames 0 × 75 6E 73 ObjectArray
storiesHidden 0 × 73 74 68 boolean
nameColor 0 × 6E 63 6C 72 Int32
backgroundEmojiId 0 × 62 67 65 6D Int64
profileColor 0 × 70 63 6C 72 Int32
profileBackground- 0 × 70 67 65 6D Int64
EmojiId ​ ​
subscriberCount 0 × 73 73 63 Int32

Table 3
Decoded attributes of the TelegramUser object from Fig. 3.

Offset Attribute Decoded value

0 × 0B to 0 × 15 id 37738031735
0 × 16 to 0 × 21 accessHash − 4964961602463078007
0 × 22 to 0 × 2A accessHash-Type 0 → personal
0 × 2B to 0 × 36 firstName John
0 × 37 to 0 × 48 username john_d2024
0 × 49 to 0 × 5C phone 4915237648 …
0x5D to 0 × 14E photo Array including two

objects of the class
TelegramMedia-
ImageRepresentation

0 × 14F to 0 × 152 botInfo NIL/NULL
→ User is not a bot.

0 × 153 to 0 × 156 restriction-Info NIL/NULL
0 × 157 to 0 × 15E flags 128 → mutualContact
0 × 15F to 0 × 164 emojiStatus NIL/NULL
0 × 165 to 0 × 16D usernames Empty Array
0 × 16E to 0 × 173 stories-Hidden false
0 × 174 to 0 × 190 Further attributes in each case: NIL/NULL

Table 4
Attributes of the class TelegramGroup.

Attribute Key Data type

id 0 × 69 Int64
title 0 × 74 String
photo 0 × 70 68 ObjectArray
participantCount 0 × 70 63 Int32
role 0 × 72 76 Object
membership 0 × 6D Int32
flags 0 × 66 Int32
defaultBannedRights 0 × 64 62 72 Object
migrationReference 0 × 6D 72 2E 69 Int64
(id) ​ ​
migrationReference 0 × 6D 72 2E 61 Int64
(accessHash) ​ ​
creationDate 0 × 64 Int32
version 0 × 76 Int32

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

5

evaluated. This object is from the enumeration TelegramGroupRole,
which can also be derived from the file SyncCore_TelegramGroup.swift.
The corresponding Int32 value indicates whether the user is the creator
(0 × 00), administrator (0 × 01) or a normal member (0 × 02) of the
group. Furthermore, a group can be represented in an additional entry
by a class object TelegramChannel. In this case, it is called a migrated
group. That occurs in public groups and discussion groups. If such an
object exists, its peer ID is stored in an attribute with the key 0 × 6D 72
2E 69 in the TelegramGroup object.

More information about a group can be found in table t18. The key
column contains the peer ID of the group, whereas the additional in
formation in the value column is stored as a BLOB in little-endian
format. The corresponding RootObject is of class CachedGroupData.
Analogous to the class CachedUserData, objects of the class Cached
GroupData have the about attribute (key: 0 × 61 62) as well as the ID of
a pinned message (key: 0 × 70 6D 2E 69). Furthermore, the key 0 × 62 is
followed by an attribute containing an array of class objects Cached
PeerBotInfo. Such an object represents a bot within the group and has its
peer ID (key: 0 × 70) and an object of the class BotInfo (key: 0 × 69). The
evaluation of BotInfo objects has already been discussed in sub
subsection 6.3.1. In addition, the attribute with the key 0 × 69 6E 76 42
79 stores the peer ID of the user who invited the local user to the group.
The attribute identified by the key 0 × 70 is of particular relevance, as it
stores information about the group members. The attribute’s value is an
object of the class CachedGroupParticipants, whose MurmurHash3
value is 0 × 5F B5 3B 79 in little-endian format. The source code defines
the class under the path submodules/TelegramCore/Sources/SyncCore/
in the file SyncCore_CachedGroupParticipants.swift. It has an array of
objects of the enumeration GroupParticipant (key: 0 × 70) and a four-
byte version number (key: 0 × 76) as attributes. Each group member
is represented by an object of the enumeration GroupParticipant, which
is also defined in SyncCore_CachedGroupParticipants.swift. The Mur
murHash3 value 0 × DE E4 05 56 is formed from the enumeration name
in little-endian format. Group members can thus be quickly found by
searching for the special hash value in a value entry of t18. Table 5 gives
a chronological overview of all attributes of the enumeration
GroupParticipant.

6.3.3. Extraction of channels and migrated groups
Channels and migrated groups are coded as objects of the class Tel

egramChannel in the table t2 of the local main database. A group is
migrated if its visibility is set to public or used as a channel discussion
group. In these cases, table t2 usually has an additional entry for the
group, where the peer ID in the key column is different from the ID from
the regular group entry (see subsubsection 6.3.2). The signature of an
class object TelegramChannel is 0 × DA 11 6B 63. Table 6 shows the
attributes of the corresponding class, which is defined in the file Syn
cCore_TelegramChannel.swift under the path submodules/Tele
gramCore/Sources/SyncCore/.

Just like TelegramGroup objects, TelegramChannel objects have a
title (key: 0 × 74), a creation date in Unix time (key: 0 × 64) as well as an
ObjectArray for profile pictures (key: 0 × 70 68), the evaluation of
which can be done analogously. The attribute marked by the key 0 × 70
73 also indicates the current status of the local user in the channel or
group. He can be a current member (0 × 00), have left the channel or

group (0 × 01) or have been removed by another user with adminis
trative rights (0 × 02). Whether an object of the class TelegramChannel
represents a channel or a group can be recognised by the attribute with
the key 0 × 69 2E 74. The value 0 × 00 indicates a channel (broadcast),
whereas 0 × 01 stands for a migrated group. If there is no username
attribute (key: 0 × 75 6E), it is a private group or a private channel.
Otherwise, the visibility is set to public. By evaluating the info flag,
which is marked by the key 0 × 69 2E 66, further information can be
obtained. From a forensic point of view, it is particularly relevant
whether the first bit of the info flag is set for channels. In this case, the
sender’s name is given for each channel message. Otherwise, they are
anonymous. Another flag, marked with the key 0 × 66 6C, provides
further information about the user to whom the local account is
assigned. In particular, if set, the second bit of the flag shows that the
user is the creator of the channel or group.

Additional information about a channel or a migrated group can be
stored in table t18. The key column contains the corresponding peer ID,
whereas a RootObject of the class CachedChannelData is encoded in the
value column in little-endian format. Analogous to CachedGroupData,
the class has an about attribute (key: 0 × 61), the ID of a pinned message
(key: 0 × 70 6D 2E 69), the attribute botInfos (key: 0 × 62) and the
invitedBy attribute (key: 0 × 69 6E 76 42 79). Furthermore, a Cached
ChannelData object stores general statistical information about all
members. This includes the number of all members (key: 0 × 70 2E 6D),
administrators (key: 0 × 70 2E 61), banned (key: 0 × 70 2E 62) and
removed (key: 0 × 70 2E 6B) users. However, the object does not contain

Table 5
Attributes of the enumeration GroupParticipant. Members and admins have
attributes marked with an asterisk (*).

Attribute Key Data type

variant 0 × 76 Int32 (0 → Member;
1 → Creator; 2 → Admin)

id 0 × 69 Int64 (Peer ID)
invitedBy* 0 × 62 Int64 (Peer ID)
invitedAt* 0 × 74 Int32 (Unix timestamp)

Table 6
Attributes of the class TelegramChannel.

Attribute Key Data type

id 0 × 69 Int64
accessHash 0 × 61 68 Int64
accessHashType 0 × 61 68 74 Int32
title 0 × 74 String
username 0 × 75 6E String
photo 0 × 70 68 ObjectArray
creationDate 0 × 64 Int32
version 0 × 76 Int32
participationStatus 0 × 70 73 Int32
info (type) 0 × 69 2E 74 Int32
info (flag) 0 × 69 2E 66 Int32
flags 0 × 66 6C Int32
restrictionInfo 0 × 72 69 Object
adminRights 0 × 61 72 Object
bannedRights 0 × 62 72 Object
defaultBannedRights 0 × 64 62 72 Object
usernames 0 × 75 6E 73 ObjectArray
storiesHidden 0 × 73 74 68 boolean
nameColor 0 × 6E 63 6C 72 Int32
backgroundEmojiId 0 × 62 67 65 6D Int64
profileColor 0 × 70 63 6C 72 Int32
profileBackground- 0 × 70 67 65 6D Int64
EmojiId ​ ​
emojiStatus 0 × 65 6D 6A 73 Object
approximateBoost- 0 × 61 62 6C Int32
Level ​ ​
subscriptionUntil- 0 × 73 75 64 Int32
Date ​ ​

Table 7
Attributes of the class TelegramSecretChat.

Attribute Key Data type

id 0 × 69 Int64
regularPeerId 0 × 72 Int64
accessHash 0 × 68 Int64
creationDate 0 × 64 Int32
role 0 × 6F Int32
embeddedState 0 × 73 Int32
messageAutoremoveTimeout 0 × 61 74 Int32

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

6

specific information about individual members. Provided it is a repre
sentation of a migrated group, the peer ID of the original group and thus
the key value of the ordinary group entry from table t2 can be extracted
from the ChannelMigrationReference object, which is stored as the value
of the attribute with key 0x6D 72. The peer ID of the group corresponds
to the Int64 value of the attribute of the structure ChannelMi
grationReference identified by the key 0 × 70. If a channel has a dis
cussion group, the attribute’s value with the key 0 × 64 67 69 is the peer
ID of the migrated group.

6.3.4. Extraction of secret chats
SyncCore_TelegramSecretChat.swift defines the TelegramSecretChat

class. The 32-bit hexadecimal value 0 × 5A 6E C9 21 is formed as the
signature from the MurmurHash3 of the class name. An overview of the
specific class attributes is given in Table 7.

Since the peer ID of the other chat participant is stored in each entry
of such a chat (key: 0 × 72), each secret chat can be directly assigned to
the respective users. The value of the attribute with the key 0 × 6F
additionally indicates whether the local user is the creator (0 × 00) or
participant (0 × 01) of the secret chat. Furthermore, the embeddedState
attribute (key:0 × 73) shows the current status of the chat, which can be
finished (0 × 00), under construction (0 × 01) or active (0 × 02). In
addition, the attribute with the key 0 × 64 stores the creation date as
Unix time. The time after which a message is automatically deleted after
the recipient has read it can be changed at any time by any chat
participant. The currently set time is stored in seconds as the attribute’s
value with the key 0 × 61 74. An assigned NIL/NULL value indicates that
the self-destruct mode is disabled for the corresponding secret chat.

In table t18, entries for Secret Chats are less informative than for the
other peer instances. For Secret Chats, the key column in t18 contains
the corresponding peer ID, while the value entry stores a BLOB-encoded
RootObject of the class CachedSecretChatData in little-endian format.
An object of this class has only one attribute identified by the key 0 × 70
73 73 named peerStatusSettings whose value is either NIL/NULL or a
PeerStatusSettings object. That is defined in SyncCore_PeerStatusSet
tings.swift. No forensically relevant information was identified in these
objects.

6.4. Extraction of communication data

Messages and calls, as well as related metadata, are stored in the
MessageHistoryTable, which can be found in the db_sqlite under the
table name t7. The table structure can be derived from the file Messa
geHistoryTable.swift under submodules/Postbox/Sources/.

The entries within the key column are each encoded as a Binary
Large Object in big-endian format. However, this binary object contains
no RootObjects or attributes but four consecutive integer values whose
offsets and meaning are listed in Table 8. The structure can be derived
from the key() function of the source file already mentioned.

Based on the peer ID at offset 0 × 00 to 0 × 07, it is possible to
specifically identify from which individual chat (cloud chat), secret chat,
channel or group a message originates by searching for the matching
peer entry in table t2 and evaluating it accordingly according to sub
section 6.3. However, this information does not indicate whether the
local user is the sender or receiver of the message. Fig. 4 shows such a
key entry in table t7 from the generated test data. The message matching

the entry is from a chat with the peer ID 37738031735 and namespace
0 and is timestamped 04.10.2024 10:20:49 and the chat internal mes
sage ID 6. By decoding the peer ID and the timestamp of each entry, the
message chronology for each chat can be reconstructed. The respective
message content and other valuable information are coded in the cor
responding value entries.

Table 9 summarises all attribute values and their data types as they
occur chronologically in the value entry from table t7. The respective
condition for an optional attribute value is also listed in the table.

The value entry from table t7 corresponding to the key entry from
Fig. 4 is shown in Fig. 5. The figure shows that such a value entry

Table 8
Decoding a Binary Large Object in the key column of table t7 containing mes
sages and associated metadata.

Offset Value Meaning

0 × 00 to 0 × 07 Int64 Peer ID of the other instance
0 × 08 to 0 × 0B Int32 namespace of the other instance
0 × 0C to 0 × 0F Int32 Unix timestamp of the message
0 × 10 to 0 × 13 Int32 Unique message ID within a chat

Fig. 4. The key entry is situated in the table t7 of the main database. Here,
message information is encoded as a BLOB in big-endian format. The entry
starts with the peer ID of the instance (A) with which the message was
exchanged. It is followed by namespace (B), timestamp (C) and message ID (D).

Table 9
The possible attributes of each value entry in table t7, describing a Telegram
message, are listed chronologically with their data types.

Attribute Data type Condition

type Int8 –
stableId UInt32 –
stableVersion UInt32 –
dataFlags Int8 –
​ ​ dataFlags:
globallyUniqueId Int64 1st bit set
globalTags UInt32 2nd bit set
groupingKey Int64 3rd bit set
groupInfo.stableId UInt32 4th bit set
localTags UInt32 5th bit set
threadId Int64 6th bit set
flags UInt32 –
tags UInt32 –
forwardInfoFlags Int8 –

forward-
InfoFlags:

forwardAuthorId Int64 1st bit set
forwardDate Int32 1st bit set
sourceId Int64 2nd bit set
sourceMessageIdPeerId Int64 3rd bit set
sourceMessageId- Int32 3rd bit set
Namespace ​ ​
sourceMessageIdId Int32 3rd bit set
authorSignature.length Int32 4th bit set
authorSignature String 4th bit set
psaType.length Int32 5th bit set
psaType String 5th bit set
forwardInfo.flags Int32 6th bit set
hasAuthor Int8 –
authorId Int64 hasAuthor = 1
data.length Int32 –
data String –
attributeCount Int32 –
attributesBuffer ObjectArray –
embeddedMediaCount Int32 –
embeddedMediaBuffer ObjectArray –
referencedMediaCount Int32 –
Per referenced media file: ​ ​

mediaId.namespace Int32 –
mediaId.id Int64 –

customTagCount Int32 –
Per custom tag: ​ ​

customTagLength Int32 –
customTag Object –

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

7

contains a BLOB encoded in little-endian format. Unlike many other
table entries in the local main database db_sqlite, the BLOB starts
directly with attribute values instead of a RootObjects without speci
fying keys or data types. The structure of a value entry in table t7 can be
reconstructed from the justInsertMessage() function within the open
source file MessageHistoryTable.swift, where the occurrence of specific
optional attributes depends on the value of a previous flag (dataFlags or
forwardInfoFlags).

Optionally, a message may have a unique identification number
stored as a globallyUniqueId value. In this case, the first bit of the
dataFlags is set.

The message has not been sent if the first bit of the flags attribute is
set. If sending a message fails, a second bit is set. A set third bit of the
flags value indicates an incoming message. The message is in the
Sending process if the fifth bit is set. A set seventh bit of the flags value
indicates a scheduled message. If a corresponding bit is not set, the
negated statement applies.

For forwarded messages, the peer ID of the original sender (for
wardAuthorId) and the original timestamp may optionally appear in the
entry if the first bit of the forward-InfoFlag is set. The value of the
optional attribute source-MessageIdPeerId contains the peer ID of the
chat from which the message originated. The ID of a message within the
originating chat is optionally stored as sourceMessageIdId. Messages
can, in principle, be forwarded from any type of chat, with the exception
of Secret Chats. For a message forwarded from a channel, the for
wardAuthorId and sourceMessageIdPeerId correspond to the peer ID of
the channel.

If a message was signed with the original sender’s name, the entry
optionally has this signature as authorSignature. If the value of the
attribute hasAuthor is one, it is followed by the peer ID of the sender
(authorId). The textual content of a message is contained in the data
value.

Further meta information is optionally stored in message attributes,
which are located in an attributesBuffer. Each type of message attribute
has exactly one class with an individual MurmurHash3 value, which can
be derived from the class name. Such classes always inherit from Mes
sageAttribute and are located in the open source project of Telegram
iOS, each in a separate.swift file under submodules/TelegramCore/
Sources/SyncCore/. However, we will not go into more detail due to the
scope, complexity and usually low forensic added value of these classes.

Information about media files sent in messages is either in a Objec
tArray called embeddedMediaBuffer or listed as referenced media. If
media files are referenced in the value entry, their namespace and id are
listed consecutively at the end of the entry. The embeddedMediaBuffer
can contain one or more encoded objects for a media file. Here, an object
that inherits from the structure Media represents a media file. The
respective class of the object depends on the type and origin of the media
file. Media exchanged in Telegram can be found in the media folder of
the local user account. In addition, the class TelegramMediaAction
represents system messages or actions within a chat. The class has the
signature 0 × 81 07 78 BC (little-endian format), which results from the
application of the MurmurHash3 algorithm. Objects of this class also
inherit from the structure Media and are stored in the embedded-

MediaBuffer if applicable. Actions include, for example, creating a
group and adding or removing members. Furthermore, an object of the
class TelegramMediaAction, whose _raw-value is 14, characterises a
voice or video call in the embeddedMediaBuffer of the value entry.

Table 10 gives an overview of the decoded message entry already
shown in Fig. 5. That is an outgoing text message sent from a cloud chat
by the local user with peer ID 1116960140.

7. Conclusion

When analysing Telegram Messenger on iOS, it became apparent that
there are fundamental differences to the Messenger version on Android
described by Anglano et al. (2017) in terms of structures. The most likely
reason is that the iOS version of the messenger was switched to Telegram
X in October 2018. BLOBs must first be decoded in both messenger
versions before a thorough analysis. Anglano et al. (2017) used parts of
Telegram’s open-source code for this without going into coding the data
within BLOBs. This work goes one step further for the iOS version of the
messenger and analyses the BLOBs of the most relevant tables in detail.
That enables a forensic evaluation independent of the Telegram code
written in Swift. The insights gained were successfully validated using
the generated test data. However, further tests should ideally be carried
out using actual mass data to identify any unrecognised exceptional
cases in the database structure. The findings from this work refer to
version 11.1.1 of Telegram Messenger, although a large part can be
transferred to versions from version 5.0 onwards. However, certain
deviations are possible in different versions concerning the database and
table structures, as the development team of Telegram often updates the
messenger, adjusting the coding within the central local database if
necessary. Therefore, it is urgently necessary to regularly check the
publicly accessible source code of the messenger for changes.

In future work, further tables of the db_sqlite database could be
examined and documented regarding their forensic relevance. The re
covery options for deleted data should also be investigated. In addition,

Fig. 5. The content of an entry of the column value opened in a hex editor is
shown, which originates from the table t7 of the local central database of a
Telegram account. This column encodes information about an exchanged
message as a BLOB in the little-endian format.

Table 10
Decoded message entry from Fig. 5.

Offset Attribute Value

0 × 00 type 0
0 × 01 to 0 × 04 stableId 208
0 × 05 to 0 × 08 stableVersion 2
0 × 09 dataFlags 1
0 × 0A to 0 × 11 globally- − 2167583876353291

UniqueId 003
0 × 12 to 0 × 15 flags 0 × 0 → outgoing
0 × 16 to 0 × 19 tags 0
0 × 1A forwardInfo- 0 → Message was

Flags not forwarded.
0 × 1B hasAuthor 1
0 × 1C to 0 × 23 authorId 36513321142
0 × 24 to 0 × 27 data.length 19 (characters)
0 × 28 to 0 × 40 data Let’s meet in the city!
0 × 41 to 0 × 44 attributeCount 1
0 × 45 to 0 × 9F attributes-Buffer Contains a Out-

goingMessageInfo-
Attribute object:

0 × 54 to 0x5E uniqueId − 2167583876353291
003

0 × 5F to 0 × 65 flags 1
0 × 66 to 0 × 6E acknowledged 1 =→ true
0 × 6F to 0 × 7B correlationId 5826316420226641

726
0 × 7C to 0 × 9F bubbleUpEmoji- Empty array

OrStickersets
0 × A0 to 0 × A3 embeddedMedia- 0 → No embedded

Count media
0 × A4 to 0 × A7 referenced- 0 → No referenced

MediaCount media
0 × A8 to 0 × AB custom- 0 → No custom tags

TagCount

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

8

the analysis of further files would complete the forensic documentation
of Telegram Messenger on iOS devices. For example, the evaluation of

log files could allow conclusions to be drawn about deleted data.

Appendix A

Table A.11
Data type specific coding of the attribute values

Data type (key) Coding of the attribute value

Int32 (0 × 00) 4 byte value
Int64 (0 × 01) 8 byte value
Boolean (0 × 02) 1 byte value

= 0 × 00 (false) or 0 × 01 (true)
Double (0 × 03) 8 byte value
String (0 × 04) 4 byte lenght n +

n byte value
Object (0 × 05) 4 byte hash of the object

class name + 4 byte lenght
n + n byte coded attributes

Int32Array (0 × 06) 4 byte size n +
n ⋅ 4 byte value

Int64Array (0 × 07) 4 byte size n +
n ⋅ 8 byte value

ObjectArray (0 × 08) 4 byte size n + n ⋅ (hash
of the object class name +
4 byte lenght i + i byte
coded attributes)

ObjectDictionary (0 × 09) 4 byte size n + n ⋅ (4 byte
hash of the key class name +
4 byte key lenght i + i byte
key content + 4 byte hash of
the value class name +
4 byte value lenght j +
j byte value content)

Byte (0 × 0A) 4 byte lenght n +
n byte value

NIL/NULL (0 × 0B) –
StringArray (0 × 0C) 4 byte size n + n ⋅ (lenght i

+ i byte value)
ByteArray (0 × 0D) 4 byte size n + n ⋅ (lenght i

+ i byte value)

References

Anglano, C., 2014. Forensic analysis of WhatsApp messenger on android smartphones.
Digit. Invest. 11, 201–213. https://doi.org/10.1016/j.diin.2014.04.003.

Anglano, C., Canonico, M., Guazzone, M., 2017. Forensic analysis of telegram messenger
on android smartphones. Digit. Invest. 23, 31–49. https://doi.org/10.1016/j.
diin.2017.09.002. http://www.sciencedirect.com/science/article/pii/S1742287617
301767.

Bhatt, A.J., Gupta, C., Mittal, S., 2018. Network forensics analysis of iOS social
networking and messaging apps. In: 2018 Eleventh International Conference on
Contemporary Computing (IC3), pp. 1–6.

Cellebrite DI Ltd, 2024. Cellebrite UFED. URL: https://cellebrite.com/en/ufed/.
Clift, J., 2024. DB Browser for SQLite Wiki. URL: https://github.com/sqlitebrowser/sqlit

ebrowser/wiki.
Fehily, C., 2020. SQL Database Programming, 5 ed. Questing Vole Press.
Gregorio, J., Alarcos, B., Gardel, A., 2018. Forensic analysis of telegram messenger

desktop on MacOS. Int. J. Res. Eng. Sci. 6, 39–48.
Gregorio, J., Gardel, A., Alarcos, B., 2017. Forensic analysis of telegram messenger for

Windows phone. Digit. Invest. 22, 88–106. https://doi.org/10.1016/j.
diin.2017.07.004.

Husain, M.I., Sridhar, R., 2010. iForensics: forensic analysis of instant messaging on
smart phones. In: Goel, S. (Ed.), Digital Forensics and Cyber Crime. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 9–18.

Hörz, M., 2024. HxD - Freeware Hex Editor and Disk. URL: https://mh-nexus.de/en/hxd/
.

Kenneth, M., Ovens, G.M., 2016. Forensic analysis of Kik messenger on iOS devices.
Digit. Invest. 17, 40–52. https://doi.org/10.1016/j.diin.2016.04.001.

Mahajan, A., Dahiya, M., Sanghvi, H., 2013. Forensic analysis of instant messenger
applications on android devices. Int. J. Comput. Appl. 68. https://doi.org/10.5120/
11602-6965.

Moreb, M., 2022a. Forensic analysis of telegram messenger on iOS and android
smartphones case study. In: Practical Forensic Analysis of Artifacts on iOS and
Android Devices: Investigating Complex Mobile Devices. Apress, Berkeley, CA,
pp. 151–193. https://doi.org/10.1007/978-1-4842-8026-3_5.

Moreb, M., 2022b. Introduction to mobile forensic analysis. In: Practical Forensic
Analysis of Artifacts on iOS and Android Devices: Investigating Complex Mobile
Devices. Apress, Berkeley, CA, pp. 1–36. https://doi.org/10.1007/978-1-4842-8026-
3_1.

Salamh, F.E., Mirza, M.M., Hutchinson, S., Yoon, Y.H., Karabiyik, U., 2021. What’s on
the horizon? An in-depth forensic analysis of android and iOS applications. IEEE
Access 9, 99421–99454. https://doi.org/10.1109/ACCESS.2021.3095562. https:
//ieeexplore.ieee.org/document/9477591/.

Satrya, G.B., Daely, P.T., Nugroho, M.A., 2016. Digital forensic analysis of telegram
messenger on android devices. In: 2016 International Conference on Information
Communication Technology and Systems (ICTS), pp. 1–7.

Sihombing, H., Fajar, A., Utama, D., 2018. Instant messaging as information goldmines to
digital forensic. Syst. Rev. https://doi.org/10.1109/ICIMTech.2018.8528089.

SQLite Documentation, 2024. WAL-Mode File Format. URL: https://www.sqlite.org/
walformat.html.

Telegram, 2018. Telegram X: Progress through Competition. URL: https://telegram.org/
blog/telegram-x.

Telegram, 2024a. Telegram Applications: Source Code. URL: https://telegram.
org/apps#source-code.

Telegram, 2024b. Telegram FAQ. URL: https://telegram.org/faq.
We Are Social, DataReportal, Meltwater, 2024. Most Popular Global Mobile Messenger

Apps as of April 2024, Based on Number of Monthly Active Users (In Millions). htt
ps://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-
apps/.

L. Jaeckel et al. Forensic Science International: Digital Investigation 52 (2025) 301866

9

https://doi.org/10.1016/j.diin.2014.04.003
https://doi.org/10.1016/j.diin.2017.09.002
https://doi.org/10.1016/j.diin.2017.09.002
http://www.sciencedirect.com/science/article/pii/S1742287617301767
http://www.sciencedirect.com/science/article/pii/S1742287617301767
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref3
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref3
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref3
https://cellebrite.com/en/ufed/
https://github.com/sqlitebrowser/sqlitebrowser/wiki
https://github.com/sqlitebrowser/sqlitebrowser/wiki
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref6
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref7
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref7
https://doi.org/10.1016/j.diin.2017.07.004
https://doi.org/10.1016/j.diin.2017.07.004
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref9
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref9
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref9
https://mh-nexus.de/en/hxd/
https://doi.org/10.1016/j.diin.2016.04.001
https://doi.org/10.5120/11602-6965
https://doi.org/10.5120/11602-6965
https://doi.org/10.1007/978-1-4842-8026-3_5
https://doi.org/10.1007/978-1-4842-8026-3_1
https://doi.org/10.1007/978-1-4842-8026-3_1
https://doi.org/10.1109/ACCESS.2021.3095562
https://ieeexplore.ieee.org/document/9477591/
https://ieeexplore.ieee.org/document/9477591/
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref16
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref16
http://refhub.elsevier.com/S2666-2817(25)00005-8/sref16
https://doi.org/10.1109/ICIMTech.2018.8528089
https://www.sqlite.org/walformat.html
https://www.sqlite.org/walformat.html
https://telegram.org/blog/telegram-x
https://telegram.org/blog/telegram-x
https://telegram.org/apps#source-code
https://telegram.org/apps#source-code
https://telegram.org/faq
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

	Forensic analysis of Telegram Messenger on iOS smartphones
	1 Introduction
	2 Related work
	3 Communication structures in telegram
	4 Methodology
	5 Telegram data structures on iOS devices
	6 Forensic analysis of the telegram main database
	6.1 Coding of objects
	6.2 Extraction of the peer ID of the local user account
	6.3 Extraction of contact and chat data
	6.3.1 Extraction of users and bots
	6.3.2 Extraction of groups
	6.3.3 Extraction of channels and migrated groups
	6.3.4 Extraction of secret chats

	6.4 Extraction of communication data

	7 Conclusion
	Appendix A 7 Conclusion
	References

