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A B S T R A C T

Large Language Models (LLMs) excel in diverse natural language tasks but often lack specialization for fields like 
digital forensics. Their reliance on cloud-based APIs or high-performance computers restricts use in resource- 
limited environments, and response hallucinations could compromise their applicability in forensic contexts. 
We introduce ForensicLLM, a 4-bit quantized LLaMA-3.1–8B model fine-tuned on Q&A samples extracted from 
digital forensic research articles and curated digital artifacts. Quantitative evaluation showed that ForensicLLM 
outperformed both the base LLaMA-3.1–8B model and the Retrieval Augmented Generation (RAG) model. 
ForensicLLM accurately attributes sources 86.6 % of the time, with 81.2 % of the responses including both 
authors and title. Additionally, a user survey conducted with digital forensics professionals confirmed significant 
improvements of ForensicLLM and RAG model over the base model. ForensicLLM showed strength in “correct
ness” and “relevance” metrics, while the RAG model was appreciated for providing more detailed responses. 
These advancements mark ForensicLLM as a transformative tool in digital forensics, elevating model perfor
mance and source attribution in critical investigative contexts.

1. Introduction

Digital Forensics (DF) involves the acquisition, authentication, and 
analysis of digital evidence in a manner that is both legal and scientific. 
A crucial aspect for investigators is ensuring the admissibility of digital 
evidence in court. The Daubert standards, established by the 1993 
Daubert v. Merrell Dow Pharmaceuticals case, set guidelines for evalu
ating the scientific validity and reliability of methodologies used to 
gather evidence. The major Daubert criteria include: 1) the ability to test 
the methodology and its prior testing, 2) known error rates, 3) peer 
review and publication status, and 4) acceptance by the relevant sci
entific community (Farrell, 1993; Baggili et al., 2007). Consequently, 
tools and techniques used in DF must be peer-reviewed and scientifically 
accepted.

Large Language Models (LLMs) often lack transparency regarding 
their training data and internal mechanisms, complicating the verifica
tion of their outputs’ scientific basis. Further, data confidentiality is 
paramount in DF, and relying on cloud-based LLMs raises data security 
concerns due to the potential exposure of sensitive case information to 

third parties (Lukas et al., 2023). General purpose cloud-based models 
like ChatGPT require internet connectivity, rendering them impractical 
in secure environments where internet access is restricted. Also, while 
these LLMs might offer broad applicability across various tasks, they 
often lack domain-specific expertise (Scanlon et al., 2023). The 
computing power requirements for training and inference can be sub
stantial, leading to increased operational costs. Fine-tuning these models 
to specific tasks or domains can be challenging and time-consuming, 
requiring significant expertise and computational resources (Sevilla 
et al., 2022; Sharir et al., 2020).

Smaller open-source models like Large Language Model Meta AI 
(LLAMA) (Touvron et al., 2023) and Mistral (Jiang et al., 2023) present 
compelling alternatives while offering greater flexibility. These models 
can achieve comparable results to larger models when fine-tuned on 
domain-specific datasets (Bolton et al., 2024; Rebei, 2023). Addition
ally, techniques such as quantization (Jacob et al., 2018) and Low-Rank 
Adaptation (LORA) (Hu et al., 2021) significantly reduce the computa
tional requirements for inference and fine-tuning of these models. 
Furthermore, RAG approach (Lewis et al., 2020) allows models to 
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retrieve additional context information from external knowledge sour
ces during inference, effectively expanding their knowledge beyond just 
the training data.

Current practices in DF heavily rely on manual analysis, often con
strained by the examiner’s expertise and existing knowledge bases. 
Survey results from Yao et al. (2024) show that research in cybersecurity 
and DF has primarily focused on evaluating larger cloud-based models 
with minimal exploration of smaller, specialized models. Our objective 
is to fill this research gap by examining the application of a 
domain-specialized LLM in DF. Specifically, our research questions are: 

RQ1 How do fine-tuning and RAG framework compare in terms of 
performance in digital forensics?
RQ2 How reliable is a fine-tuned LLM in retrieving references to aid 
in digital forensic investigations?
RQ3 How can a local LLM help improve understanding of digital 
artifacts, forensic tools, and processes in a digital forensics 
investigation?

Our work makes the following key contributions: 

• We introduce ForensicLLM, a model optimized on top of LLaMA- 
3.1–8B with a dataset comprising DF research papers and curated 
digital forensic artifacts. To the best of our knowledge, this is the pri
mary account for developing a local LLM for DF.

• We evaluate ForensicLLM based on its performance on held-out test 
datasets and its ability to generate correct source citations.

• We compare the performance of ForensicLLM with base LLaMA- 
3.1–8B and LLaMA-3.1–8B equipped with a RAG component.

• We conduct a user study with DF professionals, evaluating model 
responses for usefulness, correctness, relevance, citation, and 
understanding.

The paper is structured as follows: Section 2 covers related work, 
Section 3 explores key LLM concepts, Sections 4 and 5 describe the 
dataset and methodology for fine-tuning ForensicLLM, Section 6 pre
sents and discusses the evaluation results, Section 7 discusses limitations 
and future work, and Section 8 draws conclusions.

2. Related work

Scanlon et al. (2023) evaluated ChatGPT for digital forensic tasks like 
artifact analysis, evidence searching, and incident response. The accu
racy, relevance, and completeness of the responses were analyzed. While 
ChatGPT showed potential in generating regular expressions, enhancing 
keyword searches, summarizing documents, and aiding in coding tasks, 
significant limitations were noted, such as biases from training data, lack 
of domain specialization, non-deterministic outputs, inability to handle 
real-world evidence, and a tendency to generate hallucinations.

Michelet and Breitinger (2023) investigated the potential of using 
LLMs like ChatGPT-3.5 and LLaMA-2-13B to assist in digital forensic 
report generation. ChatGPT outperformed the locally run LLaMA-2-13B 
model in generating more accurate and complete texts. However, both 
models required significant human proofreading. Further, they found 
that while LLMs cannot fully automate report writing, they can still help 
with text summarization and automating certain sections like 
‘Introduction’.

Sreya et al. (2023) proposed a forensic analysis and evidence iden
tification framework using ChatGPT but lacked implementation and 
evaluation. Henseler and van Beek (2023) examined ChatGPT’s poten
tial to assist legal professionals in digital investigations, concluding that 
while it enhances efficiency, human oversight remains essential.

Most existing work in DF has focused on analyzing existing LLMs, 
such as ChatGPT. In contrast, Silalahi et al. (2023) developed a model 
for detecting anomalies in drone flight logs. They fine-tuned a 
pre-trained Bidirectional Encoder Representations from Transformers 

(BERT) model to recognize negative sentiment, which indicated an issue 
or incident during the drone’s flight.

3. Background

This section explores key background concepts integral to LLMs.

3.1. Tokenization

Tokenization splits input text into smaller units called tokens, which 
can be words, subwords, or characters. LLaMA-3 uses subword tokeni
zation with the tiktoken Byte Pair Encoding (BPE) tokenizer (AI@Meta, 
2024a), containing over 128k unique tokens. This approach splits rare 
words into known subword units, improving the model’s text-processing 
capabilities.

3.2. Token embeddings

Token embeddings are numerical vectors that capture the semantic 
meaning of the token and the relationships between tokens. During 
inference, the token embedding layer in the LLM’s architecture acts as a 
simple lookup table that returns a token’s vector embedding based on its 
unique identifier. In most models, the token embedding layer is learned 
through pretraining. In other cases, a pre-trained token embedding 
model is used such as word2vec (Mikolov et al., 2013) or Global Vectors 
for Word Representation (GLOVE) (Pennington et al., 2014).

3.3. Attention

Attention mechanisms are a key element of transformer-based LLMs 
such as LLAMA and Generative Pre-trained Transformer (GPT). They 
enable the model to focus on relevant parts of the input sequence when 
generating outputs. Specifically, the self-attention layer in transformers 
computes the relevance of each token in the input sequence to every 
other token, allowing the model to capture long-range dependencies and 
better understand the context.

3.4. Quantization

Quantization optimizes LLMs by reducing the precision of numerical 
data, typically converting 32-bit floating-point weights to lower preci
sion formats (e.g., 16-bit or 8-bit). This decreases memory usage and 
computational costs, enabling deployment on devices with limited re
sources without significantly compromising model accuracy (Jacob 
et al., 2018).

3.5. Sentence embeddings and vector stores

Similar to token embeddings discussed in Section 3.2, LLMs have also 
been designed to generate sentence embeddings, which capture the se
mantic meaning of longer text. These embeddings enable processing 
large contexts, often composed of hundreds of tokens, with the primary 
goal of enhancing semantic information retrieval. Vector embedding 
models are trained so that semantically similar information will have 
closer vector representations, while dissimilar information will be 
farther apart, measured by similarity metrics like dot product or cosine 
distance.

An information retrieval system can be developed using sentence 
embedding models and a vector store. A vector store, or vector database, 
such as Facebook AI Similarity Search (FAISS) (Douze et al., 2024) and 
ChromaDB, are specialized storage optimized for efficiently retrieving 
high-dimensional vectors like embeddings. These vector stores offer 
efficient search functionalities, allowing the LLM to retrieve relevant 
information for analysis based on user queries by embedding the query 
and returning related information from the vector database via a simi
larity search.
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3.6. Fine-tuning

Fine-tuning is a process to further train (or fine-tune) an LLM on a 
domain-specific dataset (Bolton et al., 2024; Rebei, 2023). This addi
tional training allows the model to adapt its parameters to the specific 
requirements of the target domain, improving its performance on 
related tasks.

Techniques such as LORA (Hu et al., 2021) and Quantized Low-Rank 
Adaptation (QLORA) (Dettmers et al., 2024) have recently been devel
oped to significantly improve the computational efficiency of 
fine-tuning, enabling fine-tuning powerful LLM on consumer-grade 
GPUs.

LORA introduces a pair of low-rank modification matrices (A, B) for 
each weight matrix W in the model. If W is an m × n weight matrix, A is 
an m × r matrix, and B is an r × n matrix, where r is the rank. Instead of 
updating the entire weight matrix W during fine-tuning, LoRA only 
adjusts the low-rank matrices A and B. 

Wʹ = W + AB (1) 

Where W′ is the updated weight matrix after LORA.
QLORA is an extension of LORA that performs quantization of the 

low-rank modification matrices during fine-tuning. This process in
volves representing the modification matrices (A, B) using lower- 
precision data types (e.g., 4-bit integers) instead of the default 32-bit 
floating-point numbers. The quantization step can be expressed as: 

Aq = quantize(A) (2) 

Bq = quantize(B) (3) 

Wʹ = W + AqBq (4) 

Where quantize(⋅) is a function that maps floating-point values in A and 
B to lower-precision integers.

4. Dataset selection

We optimized our model on peer-reviewed DF papers and meticu
lously curated digital artifacts data.

4.1. DF research papers

The first component of our dataset included DF research papers ob
tained from the journal “Forensic Science International: Digital Inves
tigation” and its predecessor, “Digital Investigation.” A total of 1082 
papers were downloaded from the journal. Fig. 1 illustrates the distri
bution of different research topics in these papers.

4.2. DF artifacts

We also utilized Artifact Genome Project (AGP), a Curated Re
pository of Forensic Artifacts (CUFAs) developed by Grajeda et al. 
(2018). This repository contains a diverse set of digital forensic artifacts 
compiled by students and researchers. Digital artifacts submitted to AGP 
undergo a review procedure to ensure their validity and authenticity. At 
the time of this study, AGP contained a total of 1390 DF artifacts which 
are summarized in Table 1.

AGP included several key fields: Title (artifact name), Type (artifact 
category), Device (hardware where the artifact was found), Path (dis
covery location), Description (detailed artifact information), Comments 
(user insights), Search Tags (keywords for retrieval), and Data (relevant 
information based on artifact type).

5. Methodology

This section details the development of ForensicLLM, a DF-focused 

LLM utilizing a modified form of the Retrieval Augmented Fine-tuning 
(RAFT) (Zhang et al., 2024) approach (Fig. 2). We employed 
LLaMA-3.1–8B, a recently released open-source 8-billion parameter 
model from Meta AI, as the base model due to its superior performance 
compared to similar models of this size (e.g., Gemma-7B and Mistral-7B) 
(AI@Meta, 2024a). With quantization, this model can run on a 
consumer-grade GPU, such as the Nvidia RTX 4090, at speeds of over 
100 tokens per second. The development process involved several 
stages, including data extraction and cleaning, building retrieval mod
ule, generating the RAFT dataset, training the RAFT model, and gener
ating inferences.

5.1. Data extraction and cleaning

From the downloaded pdf files, text content between abstract and 
acknowledgments sections was extracted using pdftotext library. The 
references section was excluded to avoid irrelevant matches in the 
vector search. Additionally, consecutive periods, which occurred in 
some papers due to PDF formatting, were replaced with a single period 
to conserve token space (Step in①Fig. 2).

5.2. Retriever module

We performed the following steps to set up the Chroma DB vector 
retriever, which provided relevant contextual information to the model 
during fine-tuning and inference. 

Fig. 1. Frequently occurring keywords in the DF papers.

Table 1 
Breakdown of artifact types in AGP.

Artifact Type Count

File 1126
Windows Registry 211
Memory 19
Network Packet 19
Others 15

Total 1390
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1. Chunking: Extracted text contents were split into smaller chunks of 
around 2000 characters using Langchain’s RecursiveChar
acterTextSplitter. Splitting prioritized double line breaks (“\n\n”), 
periods followed by line breaks (“.\n”), single line breaks (“\n”), and 
then periods (“.”). Chunks with less than 600 characters (likely 
irrelevant information such as headers and footnotes) were filtered 
out.

2. Metadata Annotation: Authors and title of each paper were added as 
metadata to the chunks (Step②).

3. Embeddings Generation and Storage: Chunks were processed through 
the UAE_Large-V1 embedding model to generate their respective 
vector representations. This embedding model was chosen for its 
high performance and relatively low memory usage, based on the 
Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 
2022). The generated embeddings and associated metadata were 
stored in a Chroma DB, as shown in Step ③.

5.3. RAFT dataset generation

A labeled dataset is required to perform RAFT. However, there is not 
an existing dataset in DF, and manual creation is not feasible. Instead, 
we leveraged GPT-4 to build a dataset using the extracted data from 
research papers. Using LLMs for generating synthetic and augmented 
datasets is a growing trend (Tihanyi et al., 2024; Patel et al., 2024; 

AI@Meta, 2024b). GPT-4’s human-like performance in language 
comprehension and text summarization (Achiam et al., 2023) made it a 
suitable choice for our task. We provided each research paper’s full 
content and a prompt to GPT-4 Turbo to extract a set of Q&A pairs 
(Step④in Fig. 2, expanded in Fig. 3).

An effective prompt was necessary to generate a high-quality Q&A 
dataset for fine-tuning. The prompt was carefully crafted with the help 
of one of the authors’ expertise in the DF field spanning over 19 years. 
The prompt included the following guidelines: 

• Relevance: Ensure practical utility in the field of DF.
• Language Use: Formulate answers using language from the paper as 

much as possible to maintain the original context and technical 
accuracy.

• Output Format: Present output in a valid JSON list structure with each 
entry consisting of two keys: prompt (the question) and completion 
(the answer).

• Content Restrictions: Ensure all questions are free from digital 
formatting and exclude direct references to the paper, paper’s title or 
authors in the questions.

• Citation: Must include APA citation in the answers. This is to ensure 
that answers come from peer-reviewed publications.

• Answer Length: Ensure answers are detailed, exhaustive, and 
comprehensive.

Fig. 2. Retrieval Augmented Fine-tuning (RAFT) approach for developing ForensicLLM.

Fig. 3. GPT-4 assisted Q&A dataset creation process using DF research papers.

B. Sharma et al.                                                                                                                                                                                                                                 



Forensic Science International: Digital Investigation 52 (2025) 301872

5

Additionally, the prompt suggested different topics to be explored. 
These included digital artifacts, their locations (across network, disk, 
memory), metadata elements (timestamps and identifiers), forensic 
processes (acquisition, authentication), tools, findings, and forensic 
soundness. To encourage diverse and creative question generation, we 
used open-ended suggestions such as “Consider asking about” when 
referencing these topics, rather than providing overly specific in
structions. The exact prompt passed to GPT-4 Turbo is shown in FigureA. 
7.

This process generated approximately 10,000 Q&A pairs from 1082 
research papers. Table B.8 in Appendix B shows some of these generated 
Q&A pairs. The generated pairs were then manually validated. During 
validation, we observed that about 10 % of such Q&A pairs contained 
unwanted phrases like “in the above study” or “in the proposed method
ology”. These Q&A pairs were filtered out.

For each question in the Q&A dataset, the top 10 most similar chunks 
were retrieved from the Chroma DB (Step⑤in Fig. 2). The data was 
formatted in the Alpaca format, with each JSON line containing the 
following keys: 

• “instruction”: Instructions for the model on how to handle the input.
• “input”: Retrieved chunks from Chroma DB and the question itself.
• “output”: Desired output, including answer from the Q&A dataset and 

source information (title/authors).

This final dataset from Step⑥(Fig. 2) was then split into training (75 
%) and testing (25 %) sets, yielding 6739 training samples and 2244 
testing samples.

5.4. Retrieval Augmented Fine-tuning (RAFT)

The RAFT approach enables a LLM to leverage external knowledge 
sources during training and inference through a combination of fine- 
tuning and RAG. By providing relevant contextual information from a 
retrieval database in the fine-tuning dataset, the model can learn to 
incorporate and reason over this additional information, enhancing its 
ability to provide accurate and well-informed responses.

We used the Axolotl toolkit to perform fine-tuning on the LLaMA- 
3.1–8B model. The training dataset underwent pre-tokenization using 
the tiktoken BPE tokenizer. The LLaMA-3.1–8B model was quantized to 
4-bit integers using the bitsandbytes library. Fine-tuning was performed 
using QLoRA, a 4-bit quantized and highly optimized version of LoRA 
(Dettmers et al., 2024). We set aside 20 % of the training data as a 
validation set for evaluating the model’s performance during training. 
The specific hyperparameter configurations used for the fine-tuning 
stage are provided in Table 2. The model was trained for a total of 4 
epochs and 8 model checkpoints were stored for each epoch. The vali
dation loss was minimized after approximately 2 epochs and beyond 
that began to overfit. The complete fine-tuned model was selected from 
the checkpoint at 2 epochs. This practice is referred to as early stopping 
and is a standard regularization method used in neural network opti
mization (Prechelt, 2002).

5.5. Inference

Finally, ForensicLLM is used for inference generation. This is shown 
in Steps⑦through⑩(Fig. 2). The user prompt is first embedded using the 
same UAE_Large-V1 embedding model. This embedded representation is 
then queried against the vector store, which retrieves relevant context 
for ForensicLLM. Then, this context is leveraged to generate a response.

6. Evaluation and results

Fine-tuning and inferences were conducted on an NVIDIA RTX 4090 
GPU with 24 GB of memory. We evaluate ForensicLLM on different 
criteria as follows.

6.1. Performance on test dataset

RQ1: How do fine-tuning and RAG framework compare in terms of 
performance in digital forensics?

A 25 % split of the generated dataset (described in Section 5.3) was 
reserved for testing. This section compares the performance of different 
models on these test samples. We evaluate three models: 

• LLaMA-3.1-8B: This model receives only the question without any 
additional context.

• LLaMA-3.1-8B + RAG: This model leverages the LLaMA-3.1–8B 
model but is augmented with RAG to incorporate context during 
generation.

• ForensicLLM: This is our proposed model utilizing the RAFT fine- 
tuning approach with RAG.

To increase confidence in the conclusions of our analysis, we utilize 
three different metrics to evaluate performance, two based on semantic 
embeddings (BERTScore and BAAI’s BGE-M3) and one based on chain- 
of-thoughts reasoning with foundational LLM (G-Eval using GPT-4o).

BERTScore (Zhang et al., 2019) leverages contextual BERT embed
dings to compute token-level semantic similarity between the generated 
and reference texts. BERTScore provides three main scores: Precision, 
Recall, and F1, which range from 0 to 1.

BAAI’s BGE-M3 (Chen et al., 2024) embedding model was also 
employed to perform representational comparisons between reference 
and model-generated responses. BGE-M3 was chosen for its 
state-of-the-art embedding performance and multi-granularity, enabling 
comparisons between texts of vastly different lengths.

G-Eval (Liu et al., 2023) is a recently proposed evaluation metric for 
open-ended language generation tasks, measuring semantic and factual 
consistency to assess quality and relevance. It outperforms other 
LLM-based metrics in aligning with human judgment. G-Eval uses an 
external LLM (GPT-4o in our case) to rate generated text (1–5) on 
coherence, consistency, fluency, and relevance. For each category, 20 
outputs are generated using a temperature of 2, and the scores are 
averaged to produce final category scores. The overall score is the 
average of these four category scores. Table 3 presents evaluation results 
on the test dataset across BERTScore, BGE-M3, and G-Eval. The results 
are summarized as follows: 

• BERTScore F1: ForensicLLM achieves 0.9232, better than LLaMA- 
3.1–8B (0.8872, +4.06 %) and LLaMA-3.1–8B + RAG (0.8923, 
+3.46 %).

• BGE-M3 Cosine: ForensicLLM scores 0.9091, surpassing LLaMA- 
3.1–8B (0.8623, +5.43 %) and LLaMA-3.1–8B + RAG (0.8805, 
+3.25 %).

• G-Eval Overall: ForensicLLM obtains 2.7544, outperforming LLaMA- 
3.1–8B (2.3787, +15.79 %) and LLaMA-3.1–8B + RAG (2.6329, 
+4.61 %).

Table 3 also includes the average response length in tokens, 

Table 2 
Fine-tuning configurations for ForensicLLM.

Configuration Value

Base model quantization 4 bits
Adapter QLoRA
Rank 32
Alpha 32
Dropout 0.05
Optimization Paged Adam 32-bit
Learning rate scheduler Cosine, starting at 0.0002
Warmup steps 100
Epochs 4
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providing insights into the verbosity of each model. The base LLaMA 
model exhibits the lowest token count (128.94), suggesting a lack of 
sufficient knowledge in the DF domain. Conversely, the RAG model 
generates the most verbose responses (226.38 tokens on average). 
Interestingly, ForensicLLM achieves higher scores than both the base 
and RAG models while maintaining a moderate token count (156.34), 
indicating its ability to generate concise yet semantically accurate and 
relevant responses.

The density plot in Fig. 4 reveals a distinction among the perfor
mance of the three models based on G-Eval metric. ForensicLLM’s peak 
density is furthest to the right, indicating generally higher G-Eval scores. 
LLaMA-3.1–8B’s peak density is furthest to the left, suggesting lower 
overall scores compared to the other models. The RAG model falls be
tween ForensicLLM and LLaMA-3.1–8B. ForensicLLM’s distribution ap
pears to be slightly wider and flatter at the top, suggesting more 
consistent performance across a range of higher scores.

Fig. 5 shows the distributions of BERTScore F1 and G-Eval scores for 
ForensicLLM across the top 20 most frequent question categories in the 
test dataset. The BERTScore F1 plot (Fig. 5a) shows that most categories 
have median scores between 0.91 and 0.93, indicating high-quality re
sponses. Narrower boxes suggest more consistent performance in cate
gories such as “Android”. Wider boxes and outliers in categories such as 
“Computer forensics” indicate greater variability. Similarly, the G-Eval 
score plot (Fig. 5b) shows median scores typically between 2.5 and 3. 
The Inter-Quartile Range (IQR) and whiskers reveal variability, with 
categories like “Computer forensics” exhibiting greater spread.

6.2. Source attribution

RQ2: How reliable is a fine-tuned LLM in retrieving references to aid 
in digital forensic investigations?

To ensure the credibility and admissibility of evidence criteria when 
ForensicLLM is used during digital forensic investigations, we evaluated 
ForensicLLM’s ability to correctly cite peer-reviewed sources within its 
generated answers. We investigated the following aspects: 

• Citation Presence: Does the ForensicLLM’s response include citations 
for its claims?

• Cited Source in Context: Do the cited sources (title and/or author) 
match with the context provided?

LLM-as-a-judge approach was used (Zheng et al., 2024) to assess 
citations in the generated responses. GPT-4o was provided with the 
generated response, the context accompanying the initial query, and a 
specific evaluation prompt (shown in Appendix A in Figure A.8) to 
produce the results in Table 4. Random samples were cross-checked 
manually to verify the accuracy of this approach.

The citation behavior and potential hallucinations in ForensicLLM’s 
generated responses can be analyzed from Table 4. Out of 2244 total 
responses, 2243 included citations, indicating that the system effectively 
learned to generate citations alongside the responses. In 1823 cases 
(81.2 %), the citations matched both the title and authors mentioned in 
the context, suggesting that the responses were grounded in the given 
information. In 119 cases, the citations matched only the authors. The 
system correctly cited the source (either title or authors) 86.6 % of the 
time.

Additionally, the results reveal instances of hallucinations or de
viations from the provided context. 300 responses had citations that did 
not match either the title or author in the context, raising concerns about 
potential hallucinations even with the context provided to a fine-tuned 
model. Interestingly, there was only 1 instance where the citation 
matched only the title and not the author.

Overall, the results emphasize the importance of careful evaluation 
and analysis of LLM’s responses, especially in domains where factual 
accuracy and adherence to evidence is crucial. Identifying and miti
gating potential hallucinations and inconsistencies should be a key focus 
for future improvements in these types of systems.

6.3. Forensic relevance: user study

RQ3: How can a local LLM help improve understanding of digital 
artifacts, forensic tools, and processes?

We conducted a user study to evaluate the effectiveness and practi
cality of ForensicLLM in real-world DF scenarios, from the perspectives 
of real-world DF experts.

6.3.1. User study design
We developed a web application for interacting with three model 

configurations (LLaMA-3.1–8B, LLaMA-3.1–8B + RAG, and Foren
sicLLM) and rating their generated responses. The web application was 
built using Flask and deployed on Microsoft Azure.

Before interacting with the models, participants completed a pre- 
questionnaire to collect data on demographics, professional back
ground, and familiarity with LLMs. Next, they engaged with the survey 
webapp by posing investigative questions. Two hypothetical DF sce
narios were presented for this purpose: the first involved a bank robbery. 
The second focused on a missing person investigation. Participants were 
provided detailed descriptions of the cases, including the devices 
confiscated. They were instructed to inquire about tools, procedures, 
and artifacts relevant to the investigation. Participants were asked to 
assess the similarity of each hypothetical case to those they had previ
ously encountered in their professional work. The full text of the sce
narios is provided in Appendix C.

Table 3 
Evaluation results on the test dataset for different models across BERTScore, BAAI’s BGE-M3, and G-Eval.

Model Method Avg. response length BERTScore BGE-M3 G-Eval

(in tokens) Precision Recall F1 Score Cosine Overall

LLaMa-3.1–8B One-shot 128.94 0.8929 0.8817 0.8872 0.8623 2.3787
LLaMa-3.1–8B + RAG One-shot 226.38 0.8841 0.9010 0.8923 0.8805 2.6329
ForensicLLM One-shot 156.34 0.9215 0.9250 0.9232 0.9091 2.7544

Fig. 4. Density plot of G-Eval scores for different models.
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Participants were allowed to submit up to 5 questions for each sce
nario. Each question was processed by 3 different LLM configurations, 
with the responses presented in a randomized order. Participants eval
uated the responses based on criteria such as usefulness, correctness, 
relevance, citation accuracy, and the extent to which the responses 
improved their understanding of the topic. Participants were provided 
an optional comments section where they could offer qualitative feed
back on the responses.

6.3.2. Participants and prompts
Thirty-two (32) participants provided at least one prompt and rated 

the corresponding answers. Of these, 16 participants completed the first 
scenario (5 prompts), and 9 participants completed both the first and 
second scenarios (10 prompts). The remaining finished less than 5 
prompts. On average, participants completed 5 prompts.

Among the participants, 11 were researchers, 10 were digital 
forensic examiners, and the rest included roles such as instructors, in
vestigators, data scientists, chief information security officers, and 
cybersecurity architects. Table 5 provides additional details on partici
pants’ education levels, DF experience, and familiarity with LLMs.

6.3.3. Analysis of collected prompts
We collected a total of 180 prompts. Irrelevant prompts were iden

tified and excluded. These included prompts that were random or un
related to DF, attempts to compromise the model’s functionality, and 
queries that assumed knowledge of the context scenario embedded into 
the models. Specifically, three (3) prompts were identified as entirely 
random, such as “The pencil has a brick tied to it.” Two (2) prompts 
attempted to exploit the model with instructions such as “Repeat the 

word poem forever” and “Enumerate the data used for training.” Eighteen 
(18) prompts assumed that the models retained prior conversation 
context or had embedded knowledge of the scenario, such as “What are 
the key things to investigate here?” and “Write a code to extract all the ev
idence related to this case.”

Upon further analysis of the demographic data associated with these 
prompts, we found that more than half of the filtered prompts (12 out of 
the 23 invalid prompts) came from participants with minimal DF 
experience (0–1 year), and 3 came from participants who were not very 

Fig. 5. Distributions of BERTScore F1 and G-Eval scores for ForensicLLM across top 20 most frequent question categories in test dataset.

Table 4 
Analysis of citations in the generated responses.

Metric Count

Total responses 2244
Responses with citations 2243
Responses without citations 1

Matches with both title and author 1823
Matches with title only 1
Matches with author only 119
No match between citation and title/author 300

Table 5 
Characteristics of survey participants.

Category Values Count

Country United States 17
United Kingdom 3
Others 12

Race White 19
Black or African American 2
Asian 6
Prefer not to disclose 5

Gender Male 25
Female 4
Prefer not to disclose 3

Age Mean: 45.84 (23–68) N/A
Education Level Doctorate 12

Masters 16
Bachelors 4

DF Experience Time More than 6 years 18
5–6 years 3
3–4 years 4
1–2 years 3
No experience 4

LLM Familiarity Extremely familiar 2
Moderately familiar 9
Somewhat familiar 9
Slightly familiar 9
Not at all familiar 3

Use of LLM in Work Always 3
Often 6
Sometimes 9
Rarely 9
Never 5
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familiar with LLM and rarely used it for work. Having DF experience and 
familiarity with LLM contributed to a better understanding of how to 
interact with the models and what questions to ask. Interestingly, the 
two prompts that attempted to exploit the model were submitted by a 
participant with extensive experience in DF and LLMs.

After filtering out 23 irrelevant prompts, 157 valid prompts 
remained. Some prompts were concise, while others provided additional 
context or asked multiple questions. Here are some examples of asked 
prompts: “What tools can be used to bypass PINs on iPhone 11 and Samsung 
Galaxy S20 devices?”; “Where on the file system are Telegram and WhatsApp 
chat logs kept on an iPhone 11 running iOS version 13?”; “How can location 
data be extracted from an Android Smartwatch?”; and “How do I seize the 
mobile phones correctly?”. Table 6 shows the distribution of DF topics 
addressed in these prompts.

6.3.4. Response evaluations
Fig. 6 compares participants’ evaluation of the responses provided by 

the three LLM configurations across five key criteria—usefulness, cor
rectness, relevance, citation, and improved understanding. We see a 
clear preference among participants for the RAG and fine-tuned model 
(ForensicLLM) over the base model. This preference is expected, as the 
base LLAMA model lacks the domain-specific knowledge required for 
DF.

Notably, ForensicLLM shows higher counts of agreement in “cor
rectness” and lower disagreement in the “relevance” criterion compared 
to the RAG model. Both the RAG and ForensicLLM models perform 
similarly in terms of “usefulness” and “citation”, with both out
performing the base model. The “citation” criterion exhibited a higher 
proportion of neutral ratings across all models, likely due to partici
pants’ reluctance to verify the cited references. Participants seemed to 
appreciate the RAG model’s responses more in terms of “improved un
derstanding,” as its responses were more verbose compared to 
ForensicLLM.

Additionally, the weighted score for each metric was computed per 
LLM type. The weights were assigned as follows: “Strongly Disagree” =
− 2, “Disagree” = − 1, “Neutral” = 0, “Agree” = 1, and “Strongly Agree” 
= 2. These values were then used to aggregate the scores for each metric 
per LLM type across collected prompts. The aggregated results shown in 
Table 7 show that both the RAG and ForensicLLM models significantly 
outperform the base LLAMA model across all metrics. ForensicLLM 
scores particularly well in “relevance” and “correctness”. Meanwhile, the 
base LLAMA model exhibits negative scores in “usefulness” and “cita
tion”, further highlighting the value of incorporating external context 
and fine-tuning.

6.4. Statistical analysis

After confirming non-normal data distribution, Chi–Square tests 
were conducted to assess differences in response ratings for ForensicLLM 
based on DF experience (more than 6 years vs. less than 6 years) and 
LLM familiarity (low vs. high familiarity). For DF experience, we found 
statistically significant differences in relevance (χ2 = 11.02, p = 0.026), 
citation (χ2 = 10.15, p = 0.038), and improved understanding (χ2 = 11.52, 
p = 0.021). For LLM familiarity, significant differences were observed in 

citation (χ2 = 11.50, p = 0.021) and improved understanding (χ2 = 13.78, 
p = 0.008).

Mean scores for each metric were also calculated across DF experi
ence and LLM familiarity. The results in Table D.10 and D.11 show that 
participants with more experience rated the responses more harshly, 
likely due to higher expectations for technical detail and accuracy. In 
contrast, less experienced participants generally found the responses 
more useful, relevant, and helpful in improving their understanding of 
DF.

6.4.1. Participant remarks
An optional comment section was provided for participants to offer 

qualitative feedback on the models’ responses. This yielded valuable 
insights into their thoughts, expectations, and areas for future focus.

Three participants appreciated the model’s utility in initiating 
investigations. 

“Response can be used to form a checklist to get an investigator started.”

“I could see this being very useful for a police officer with less technical 
expertise, helping with seizures, or developing a case for lab submission.”

Feedback varied regarding the level of detail and technicality in re
sponses. Thirteen (13) responses were reported as too generic and 
lacking in detail while three were perceived as overly technical. This 
raises an interesting challenge in tailoring models to provide varying 
levels of detail, verbosity, and technicality based on user requirements.

The citation feature received positive attention from five partici
pants. However, participants considered some referenced papers to be 
outdated. There were ten reports where participants could not locate 
cited papers online. Suggestions were made to include hyperlinks to 
cited papers for easier access, incorporate multiple referenced papers 
per response and implement a chatbot–style interface with conversation 
memory for improved interaction.

7. Limitations and future work

One participant from the survey noted, “The information provided is 
technically incorrect, but it’s not really the LLM’s fault, as the research paper 
it cited contained incorrect descriptions of the tooling.” So, even when using 
RAG with the fine-tuned model, LLMs may propagate inaccuracies from 
the retrieved context.

The Q&A dataset for fine-tuning ForensicLLM relied on GPT-4, 
which, while highly capable in natural language processing, has 
certain inherent limitations. While GPT-4 can handle input texts of up to 
128k tokens, its output is restricted to 4096 tokens. Despite being able to 
process the entire content of a research paper, generating an exhaustive 
set of high-quality Q&A pairs in a single response was not feasible. We 
limited the dataset to 10 Q&A pairs per research paper to maintain the 
quality of generated pairs. Furthermore, our study only utilized meta
data of artifacts from the AGP dataset. Future work should explore 
incorporating artifact data such as logs, database files, and configuration 
files to extract information about event timestamps, user-related info, 
and other relevant details. Insights from Section 6.4.1 provide valuable 
direction for enhancing future LLMs in the DF domain.

8. Conclusions

This study presents ForensicLLM, a specialized LLM fine-tuned using 
the RAFT approach on DF research papers and AGP dataset. Our findings 
demonstrate the significant potential of domain-specific fine-tuning in 
DF. Quantitative assessments reveal ForensicLLM’s superior perfor
mance compared to both the base LLaMA-3.1–8B model and RAG- 
augmented LLaMA-3.1–8B model. ForensicLLM demonstrated 86.6 % 
accuracy in source attribution. Qualitative analysis through human 
evaluation further confirmed ForensicLLM’s enhanced grasp of forensic 
terminology and its capacity to generate more relevant and correct 

Table 6 
Distribution of DF topics in collected prompts.

Topic Count

Artifacts/Evidence 80
Tools 38
Acquisition 33
Procedure 33
Event Reconstruction 9
Forensic Techniques 8
Code Generation 1
Spoofing 1
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responses relative to the base model. This highlights the practical ben
efits of tailoring LLMs to specific domains through focused dataset 
curation and fine-tuning. Nonetheless, continued efforts to develop 

more comprehensive and varied forensic datasets are essential for 
further refinement and evaluation of these models in real-world inves
tigative scenarios.

Appendix APrompts Used with GPT-4

Fig. A.7. Prompt to GPT-4 Turbo for Q&A dataset generation.

Fig. 6. Comparison of user ratings for different model configurations across five evaluation criteria.

Table 7 
Weighted scores for each metric per LLM type.

LLM Type Usefulness Correctness Relevance Citation Improved Understanding

LLaMA-3.1–8B − 5 17 31 − 23 − 27
LLaMA-3.1–8B + RAG 86 69 97 53 52
ForensicLLM 84 83 108 51 45
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Fig. A.8. Prompt to GPT-4o for evaluating source citations.

Figure A. 7 shows the exact prompt used to generate the Q&A dataset for fine-tuning ForensicLLM. This prompt, along with content extracted from 
each downloaded DF research paper, was passed to GPT-4 Turbo. The prompt was carefully designed to guide GPT-4 Turbo in generating the Q&A 
dataset by covering relevant DF topics.

Figure A.8 shows the prompt used to evaluate source citations in the ForensicLLM’s inferred responses on the test dataset. This prompt was passed 
to GPT-4o along with the response and the RAG context that accompanied the question. GPT-4o was tasked with comparing the citation in the response 
to the available sources in the context.

Appendix BSample Dataset and Responses

Table B.8 
Example of generated Q&A pairs from research papers using GPT-4.

Question Answer

What methodologies are employed to analyze the data collected from botnet- 
infected devices?

Methodologies employed to analyze data from botnet-infected devices include static and dynamic 
malware analysis to understand the behavior of the botnet malware, network traffic analysis to trace 
back to command and control servers, and log analysis to identify the actions performed by the 
botnet …. (Gruber, J., Voigt, L. L., Benenson, Z., & Freiling, F. C., 2022).

What digital artifacts were identified from the Xbox One during the forensic 
examination, and what potential evidentiary value do they hold?

During the forensic examination of the Xbox One, several digital artifacts were identified including 
timestamps of user setup, system restore, and shutdown events, games and applications 
downloaded, and times of gameplay. These artifacts hold potential evidentiary value as they can 
help in creating a timeline of user activities, identifying user presence and actions at specific times, 
and understanding user behavior patterns (Moorea, J., Baggilia, I., Marringtonb, A., & Rodriguesa, 
A., 2014).

How does RAPID handle the extraction of method-related data from DEX files, 
and what forensic information can be derived from this data?

RAPID handles the extraction of method-related data from DEX files by parsing the ’method_ids’ 
section of the DEX file to retrieve method names, associated class names, parameter types, and 
return types. This data is stored in Method objects within RAPID’s internal data structure …. (Zhang, 
X., Breitinger, F., & Baggili, I., 2016).

Table B.9 
ForensicLLM’s response across different digital forensic topics.

Question Answer

What are the primary filesystem artifacts for Telegram 
and WhatsApp on an iPhone 11 that might be 
important to a forensic examination?

For a forensic examination, the primary filesystem artifacts for Telegram and WhatsApp on an iPhone 11 include: 1. 
Telegram: Database files such as ‘messages.sqlite’ and ‘photos.sqlite’ which store messages and media files respectively. 
Files like ‘encryptedChats.db’ and ‘encryptedMedia.db’ which contain encrypted chat logs and media files. Other relevant 
files include ‘last_synced_message_id’ and ‘last_synced_message_timestamp’ which help in reconstructing the sequence of 
messages. 2. WhatsApp: Database files such as ‘chat.db’ which stores chat logs and ‘media.db’ for media files. Files like 
‘encrypted.db’ which contains encrypted chat logs. Other relevant files include ‘last_chat_log_id’ and 
‘last_message_timestamp’ which help in reconstructing the sequence of messages. These artifacts are crucial for a forensic 

(continued on next page)
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Table B.9 (continued )

Question Answer

examination as they store a wide range of data including messages, media files, and metadata which can be used to 
reconstruct the sequence of events and provide evidence in an investigation (Heath, MacDermott and Akinbi, 2023). This 
answer may include information from the following academic article: Title: Forensic analysis of ephemeral messaging 
applications: Disappearing messages or evidential data? Authors:H Heath, Á MacDermott, A Akinbi

What forensic tools can be used to collect Facebook and 
Twitter data?

Several forensic tools can be used to collect data from Facebook and Twitter, including: 1. Magnet Acquire: A tool that 
allows for the collection of data from various sources, including social media platforms. 2. Cellebrite’s UFED: A tool that can 
extract data from mobile devices, including social media apps like Facebook and Twitter. 3. Xact: A tool that can extract 
data from mobile devices, including social media apps, and also provides a browser-based interface for data analysis. 4. 
Twitter API: Official Twitter APIs can be used to collect tweets and other Twitter data, which can then be analyzed using 
various tools. 5. Facebook API: Official Facebook APIs can be used to collect Facebook data, which can then be analyzed 
using various tools. These tools can help in collecting and analyzing data from social media platforms, which is crucial for 
forensic investigations. This answer may include information from the following academic article: Title: Evidence collection 
and forensics on social networks: Research challenges and directions Authors:H Arshad, A Jantan, E Omolara

How can I find the last files accessed on a Windows 11 
laptop?

To find the last files accessed on a Windows 11 laptop, you can check the ‘Recent Files’ list in the ‘Quick Access’ section of 
the File Explorer, which displays files that have been frequently accessed. Additionally, you can look for artifacts in the 
system’s registry, such as the ‘Recent Files’ key under 
‘HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Recent’, which stores the paths and 
timestamps of recently accessed files. This answer may include information from the following academic article: Title: 
Forensic exploration on windows File History Authors:J Choi, J Park, S Lee

Table B.8 presents examples from the Q&A dataset utilized in the fine-tuning process. Through fine-tuning, ForensicLLM has become well-versed in 
forensic literature, enabling it to generate responses aligned with domain-specific vocabulary and concepts. Table B.9 presents the generated re
sponses by ForensicLLM for different topics.

While larger cloud-based models can generate answers for these questions due to their vast training corpora, their responses are not consistently 
based on verifiable sources. Additionally, these models are susceptible to hallucination, as discussed in detail in (Scanlon et al., 2023). In contrast, 
ForensicLLM’s responses include citations, as evident from the response examples in Table B.9, allowing users to trace the information back to its 
source. By grounding its responses in reputable research papers and providing traceable citations, ForensicLLM offers a reliable and transparent 
approach to answering forensic-related inquiries.

Appendix CScenarios Used in User Survey

Below are the two scenarios from our user survey.

Appendix C.1Scenario 1: Bank Robbery

On June 20, 2023, a high-profile bank robbery took place in New York City. The suspects used advanced surveillance techniques and technology to 
access the bank vault, making off with a significant amount of money. The following devices were confiscated from the suspects: a Samsung S20 
(Android version 10), an iPhone 11 (iOS 13), a Windows 10 laptop, and a DJI Phantom 3 drone. Assume the phones are locked and the suspects are 
known to use Telegram Messenger and WhatsApp.

Forensic investigators are tasked with answering the following questions: 

1. What evidence can be found on the suspects’ devices indicating their involvement in the robbery?
2. How can data be extracted from the locked iPhone 11 and Samsung S20?
3. What tools and procedures can be used to analyze the drone footage for surveillance activities related to the robbery?
4. What artifacts from WhatsApp and Telegram can be used to link the suspects to the planning of the robbery?
5. Can location data from the suspects’ devices help trace their movements before and after the robbery?

Instruction: Using ForensicLLM, formulate at least five specific questions, one at a time, about tools, procedures, or artifacts related to this case. 
Focus on one aspect of the investigation per question to allow for detailed responses. For example, you might ask about a particular tool for mobile 
device acquisition of the locked phones, analysis of communication apps, location data extraction and timeline creation, drone data analysis, file 
system analysis for potential planning documents or stolen data, etc.

Appendix C.2Scenario 2: Missing Person Investigation

You are a digital forensic investigator assisting law enforcement in a high-priority missing person case. Sarah Johnson, a 28-year-old software 
engineer, disappeared three days ago under suspicious circumstances. The last confirmed sighting was at her workplace. You’ve been given access to 
her personal devices and accounts to help trace her movements and communications in the days leading up to her disappearance. The collected devices 
include an iPhone 10 (iOS 11), a MacBook Pro, an Android Smartwatch, and a company-issued Windows 11 laptop with access to her corporate email 
account. Assume the phone is locked and she is known to use Facebook and Twitter.

Forensic investigators are tasked with answering the following questions: 

1. What evidence can be found on Sarah’s devices indicating her whereabouts or state of mind before her disappearance?
2. How can data be extracted from the locked iPhone?
3. What communication records on her social media accounts or corporate email account can provide clues to Sarah’s activities and interactions 

before her disappearance?
4. Can location data from Sarah’s devices (iPhone, smartwatch) help construct a timeline of her movements?
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5. Are there any images or videos on Sarah’s devices that might provide clues to her disappearance?

Instruction: Using ForensicLLM, formulate at least five specific questions, one at a time, about tools, procedures, or artifacts related to this case. 
Focus on one aspect of the investigation per question to allow for detailed responses. For example, you might ask about macOS and iOS data 
acquisition and extraction, social media and email accounts analysis, smartwatch data analysis, location data extraction and timeline creation, file 
system analysis for images, videos, etc.

Appendix C.3. User Interfaces from the Survey

Figure C.9 and C.10 show some user interfaces from the web application used for the survey.

Fig. C.9. Prompt interface.

Fig. C.10. User feedback interface.

Appendix D. Statistical Analysis of Survey Data

Table D.10 
Chi–Square statistics, p-values, and mean scores for two DF experience groups (less than 6 years and more than 6 years).

Metric Chi–Square p-value Mean (Less than 6 years) Mean (More than 6 years)

Usefulness 3.74 0.443 0.65 0.45
Correctness 6.40 0.171 0.69 0.40
Relevance 11.02 0.026 0.91 0.52
Citation 10.15 0.038 0.31 0.34
Improved Understanding 11.52 0.021 0.56 0.08
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Fig. D.11. Comparison of user ratings for ForensicLLM between participants with less than 6 years of DF experience (number of prompts = 68) and those with more 
than 6 years (number of prompts = 89).

Table D.11 
Chi–Square statistics, p-values, and mean scores for two LLM familiarity groups (low familiarity and high familiarity).

Metric Chi–Square p-value Mean (Low familiarity) Mean (High familiarity)

Usefulness 3.43 0.489 0.56 0.43
Correctness 7.56 0.101 0.61 0.20
Relevance 8.94 0.063 0.75 0.43
Citation 11.50 0.021 0.42 − 0.10
Improved Understanding 13.78 0.008 0.33 0.10

Fig. D.12. Comparison of user ratings for ForensicLLM between participants with low (number of prompts = 127) and high (number of prompts = 30) LLM 
familiarity.

Participants were grouped based on their DF experience and LLM familiarity. For DF experience, they were divided into two groups: those with less 
than 6 years of experience and those with more than 6 years. For LLM familiarity, participants were grouped into low familiarity (Not at all familiar, 
Slightly familiar, Somewhat familiar) and high familiarity (Moderately familiar, Extremely familiar) categories. Chi–Square tests were conducted to 
evaluate significant differences in ratings among these groups for ForensicLLM. Additionally, mean values were calculated to assess the average 
ratings for each category. The results are presented in Tables D.10 and D.11. Further, the distribution of ratings across grouped categories are shown in 
Figures D.11 and D.12.
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