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Zoltán Ádám Mann a,c, Zeno Geradts a,b

a University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
b Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague, 2497 GB, the Netherlands
c University of Halle-Wittenberg, Von-Seckendorff-Platz 1, Halle, 06108, Germany

A R T I C L E I N F O

Keywords:
Password recognition
Machine learning
AI-Assisted digital forensics

A B S T R A C T

In digital forensic investigations, the ability to identify passwords in cleartext within digital evidence is often
essential for the acquisition of data from encrypted devices. Passwords may be stored in cleartext, knowingly or
accidentally, in various locations within a device, e.g., in text messages, notes, or system log files. Finding those
passwords is a challenging task, as devices typically contain a substantial amount and a wide variety of textual
data. This paper explores the performance of several different types of machine learning models trained to
distinguish passwords from non-passwords, and ranks them according to their likelihood of being a human-
generated password. Three deep learning models (PassGPT, CodeBERT and DistilBERT) were fine-tuned, and
two traditional machine learning models (a feature-based XGBoost and a TF/IDF-based XGBoost) were trained.
These were compared to the existing state-of-the-art technology, a password recognition model based on
probabilistic context-free grammars. Our research shows that the fine-tuned PassGPT model outperforms the
other models. We show that the combination of multiple different types of training datasets, carefully chosen
based on the context, is needed to achieve good results. In particular, it is important to train not only on dic-
tionary words and leaked credentials, but also on data scraped from chats and websites. Our approach was
evaluated with realistic hardware that could fit inside an investigator’s workstation. The evaluation was con-
ducted on the publicly available RockYou and MyHeritage leaks, but also on a dataset derived from real case-
work, showing that these innovations can indeed be used in a real forensic context.

1. Introduction

Passwords remain one of the main methods for securing sensitive
information. In recent years, devices have been considerably strength-
ened against password recovery attacks with improved software and
hardware. This is especially true for what are often referred to as ‘secure
phones’. These phones have modified software and hardware with high
security standards, making them attractive to large-scale organized
crime groups for secure communication, preventing law enforcement
from intercepting their communication (Europol (2021)). Traditional
password recovery methods, such as brute-force attacks or dictionary
attacks, may no longer be feasible on these devices. This requires
forensic investigators to embrace new techniques.

A digital investigation often spans multiple devices. Some will be
directly accessible for investigation, while others will be secured with an
unknown password. Analyzing the available data from already unlocked
devices can provide useful leads to find password information. Pass-
words may be stored, either knowingly or accidentally, in cleartext in
various locations on a device. For example, in text messages, notes, or
system log files. Finding these passwords may provide critical infor-
mation on the password that can be used to unlock secure phones.

Finding those cleartext passwords is a challenging task. In theory, an
investigator could extract all possible text (strings) from the already
available data and then try all those strings as a potential password on
the secure phone. However, the list of strings from a typical smartphone
is too large to be tried in succession on a secure phone. Secure phones
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have modified software and hardware, protecting themselves with
techniques such as hardware-bound keys and memory-hard encryption
algorithms.

To overcome this difficulty, a ranking algorithm would be needed
that can rank all strings according to the likelihood that they are pass-
words, with the most promising potential passwords at the top of the list.
This would allow investigators to attempt the most likely passwords
first.

The search and ranking of potential passwords is a problem that has
not received the attention it deserves so far. After early work by
Houshmand et al. (2015), the research question lay dormant for years as
published research (see Section 2) focused on related but different
problems. The research field focused on developing more efficient
password recovery models. The only similar research found was done by
Feng et al. (2022). They attempted to discover accidentally disclosed
passwords and API keys in GitHub repositories. This is a task that is
superficially similar to recognizing passwords stored on devices, but
benefits from the uniformity of the application domain (computer code
repositories). However, data from a device lacks uniformity, as it con-
sists of various types of known and unknown file formats.

Our work aims to rank text strings, acquired from cleartext of pre-
viously unlocked devices, according to their likelihood of being a
human-generated password, taking into account the specifics of data
typically found on such devices. To create the ranking, we address the
following subproblem: given a string acquired from a device, determine
the likelihood of it being a human-generated password. We formulate
this as a machine learning problem and apply modern machine learning
methods to solve this problem.

Our two main research questions are the following:

1. What mix of different kinds of training data yields the best results for
this task?

2. What model architecture performs best, in terms of machine learning
performance metrics and computational performance (evaluations
per second)?

In the first question, our results show that expanding the training set
beyond dictionary words and leaked credentials is critical. A wide va-
riety of non-password data should be used to ensure the model is able to
perform well when confronted with the variety of data that are stored on
modern devices. In the second question, we find that modern machine
learning techniques outperform traditional models and, while the
modern techniques are slower, they are definitely useable in forensic
investigations.

In general, our work gives forensic investigators a new approach in
combating the acquisition of secure mobile devices.

2. Related work

2.1. Password research

From the moment passwords were introduced, research on them also
started. Morris and Thompson (1979) were the first to show that
human-generated passwords were often based on dictionary words.
These kinds of weaknesses can be exploited using tools such as Hashcat
(Steube (2009)) and JohnTheRipper (Openwall (1996)). In recent years,
new advanced methods have been developed. Weir et al. (2009)
developed a method that uses Probabilistic Context Free Grammar
(PCFG). They developed a model that trained on existing passwords and
learned managing rules to improve the efficiency of password recovery.
Machine learning techniques were also used for password strength me-
ters. Melicher et al. (2016) developed a lightweight neural network
(written in JavaScript) that determines the strength of the password
locally in the user’s browser. In addition to password strength meters,
Hitaj et al. (2019) advanced the field using machine learning techniques
to improve the efficiency of password recovery using Generative

Adversarial Network (GAN). More recently, Rando et al. (2023) devel-
oped a password recovery technology that uses a Generative Pre-trained
Transformer (GPT) model.

Dell’Amico et al. (2010) performed an analysis on a large-scale
public dataset and researched the characteristics (e.g., length and
composition) of passwords and their resilience against existing attacks.
A more recent analysis (Kanta et al. (2021)) analyzed an even larger
public dataset, which contains 3.9 billion accounts. In addition to
analyzing the characteristics of the passwords, they also classified
fragments according to their semantic meaning.

The above-mentioned attack methods and analysis results can help a
forensic investigator towards more effective password recovery at-
tempts. These methods focus primarily on improving the effectiveness of
password recovery. Another potential weakness that may be exploited is
password reuse. Florencio and Herley (2007) showed that people tend to
reuse passwords. So, finding passwords that a user has used for other
accounts or devices can result in an additional attack strategy. However,
this type of approach has received very little research attention so far.

2.2. Password recognition

Even though there has been a lot of research on the effectiveness of
password recovery and on general analysis of password characteristics,
there is limited research on the topic of password recognition, i.e. how to
decide if a string is a password. There are open-source tools (Gitleaks,
TruffleSecurity, Awslabs, Microsoft) that search for leaked credentials
in, for example, GitHub source code repositories. These tools use rules
for classifying passwords (e.g., does a string contain both special char-
acters and alphabet characters) and take into consideration the location
where the given string was found (for example, searching for the word
‘password’ inside a configuration file). Such tools rely on a predictable
text structure, which is usually not the case in forensically acquired data
from seized devices. On a device, passwords may not only be stored in
configuration files but also in notes, chat messages, or hidden in un-
structured binary data. Thus, existing approaches for finding passwords
in source code repositories are not applicable to the problem of finding
passwords in data acquired from devices in forensic investigations.

Password strength meters might be used to recognize human-
generated passwords. An example of a metric used by password
strength meters is entropy. NIST and Aroms (2012) described that the
entropy of a password would be higher than that of normal text. How-
ever, Kelley et al. (2012) showed that the entropy of passwords is close
to that of normal text. Entropy-based approaches are not very accurate
as they also mark machine-generated strings like hex strings as potential
passwords, as the entropy of such strings can be very high. Therefore,
using entropy is not a good solution for recognizing human-generated
passwords.

Houshmand et al. (2015) uses PCFG for finding passwords on disk
images. However, the framework is limited to disk images and focuses
on strings inside text documents (such as Word documents). Their work
also investigated potential methods for ranking passwords. PCFG assigns
high probability scores to frequently used passwords, such as
‘12345678’ because of their common occurrence in password datasets.
Thus, the approach is good at recognizing weak passwords. This weak-
ness was mitigated by implementing filters. They found that a filter that
removed all lines only containing alphabet characters results in a better
performing algorithm. This relies on the assumption that password
policies would require passwords to have characters from multiple
classes (e.g., both lower-case letters and special characters). However,
mobile devices can have a different password policy. For example,
modern Android devices do not require passwords to contain characters
from multiple classes (Google). This might result in users using weak
passwords, such as passwords that contain only alphabetic characters.
Such passwords might provide critical information about the possible
password for a secure device as they might be based on a weak password
(for example, adding a special character to make it fit the passwords
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policy).
Feng et al. (2022) developed a method to recognize passwords using

a Text Convolution Neural Network (TEXTCNN). Their paper was pub-
lished in 2022; at that time it was already known that transformers
outperformed TEXTCNN based models (Vaswani (2017)). Feng et al.
(2022) focused on finding passwords in GitHub code repositories. As
discussed previously, code repositories are characterized by a
well-structured form of text compared to unstructured text extraction
from mobile devices.

2.3. Our contribution

Most of the existing related work focuses on increasing the efficiency
of password recovery attacks or on researching the characteristics of
passwords. There is very limited research on the recognition of pass-
words. Existing research on password recognition used outdated ma-
chine learning technology. Previous research has also not analyzed the
impact of different training sets on the performance of machine learning
models. And no previous research has analyzed which machine learning
model performs best in ranking strings on the likelihood of being a
human-generated password.

Our work advances the field in three ways. First, we show the impact
of different training sets on the performance of the models. Second, we
compare state-of-the-art machine learning models with each other and
with the current state-of-the-art password recognition approach. Third,
we analyze the suitability and practical applicability of our approach,
showing that with this research, we provide forensic investigators with
new capabilities to combat secure phones.

3. Password recognition

Our aim is to create a (deep learning) model that can determine for a
text string, extracted from a device, the likelihood that the string is a
human-generated password. Fig. 1 shows how such a model could be
used in the context of a forensic investigation, starting with the

extraction of strings from a device, leading to a ranked list of text strings,
ordered according to their likelihood of being a human-generated
password. This paper focuses on the model itself.

To create a high-performance model, the right set of labeled training
data is crucial. We need both positive training samples (passwords) and
negative training samples (non-passwords). In addition, we need to
decide on the type and architecture of the deep learning model.

In this section, we first discuss our efforts in collecting the necessary
training data, both for positive and negative examples. An overview of
all training data can be found in Table 1. We then explain the different
models we trained, both existing and our new deep learning models, to
compare the performance of different techniques.

3.1. Training data – Positives

For the positives, we have one category of data: passwords. We have
used BreachCompilation (2017), a compilation of 1.4 billion leaked
credentials. We removed the usernames and/or e-mail addresses using
demeuk (NFI (2021)). From this compilation, we used the 100 million
most frequently occurring passwords. This number was used to have an
acceptable training set. We believe that the most used passwords are
more likely to be human-generated passwords. When training the PCFG
model, we used the 10 million most common passwords. This number
was selected based on the developer documentation of the PCFG
cracker, more passwords would not result in better performance but
would slow down the generation speed of PCFG.

3.2. Training data – Negatives

Next to examples of passwords, we also need examples of non-
passwords. More specifically, to achieve good classification perfor-
mance, we need training samples that represent the variety of strings
that can occur on a device, but are not passwords. To achieve this
coverage, we collected such negative samples from a large variety of
sources, which are described in the following sections. Besides English

Fig. 1. Overview of the process of how the model created in this work could be used. The process starts with the extraction of text from a device, and ends with a
ranked list of strings sorted according to their likelihood of being a human-generated password. The research described in this paper focuses on the last three blocks:
the model, predictions and output.

Table 1
Overview of all training data used in this research, both positives (passwords) and negatives (non-passwords).

Name Category Language Nr. of unique strings

Passwords Passwords – 100,000,000
DWYL Wordlist English 466,551
Open Taal Wordlist Dutch 413,938
Urban Dictionary Wordlist Mostly English 1,482,214
CulturaX Crawls and Chats English 10,000,005
CulturaX Crawls and Chats Dutch 10,000,052
Whatsapp Corpus Crawls and Chats Dutch 31,434
Telegram Crawls and Chats Dutch and English 3,734,120
Pixel 3a - Custom Dictionary Carves English 2146
Pixel 3a - In-house tooling Carves English 1,530,078
iPhone 12 - Custom Dictionary Carves English 1948
iPhone 12 - In-house tooling Carves English 9,657,983
base64 Encodings – 10,000
hexadecimal Encodings – 10,000
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and language-independent strings, we added training data in Dutch
where applicable, as this is the most common language in our casework.
In Section 4.3, we experiment with the effect of adding or removing
different categories of data to the training set to investigate their effect
on the resulting performance.

3.2.1. Wordlists
The first category is wordlists, which we added to train the model to

adequately recognize ‘normal’ text. We used two language-specific sets:
the ‘DWYL’ English words list and the ‘Opentaal Woordenlijst Neder-
lands’ Dutch word list. Both these lists contain different verb conjuga-
tions. The final list we added is the Urban Dictionary word list. This list
is a lot more varied in language use and spelling than the very clean
English and Dutch lists. We only used entries that do not contain white
space.

3.2.2. Chats and crawls
The second category are text strings from web crawls and chats. The

main difference between this set and the wordlists is that these web-
crawls and chats are full texts, which we have split on whitespace.
Because of this, some of the entries contain punctuation (for example,
periods, commas, or question marks at the end of a word, or opening
brackets at the start) and capitalization which we both specifically
maintain. It is important to train our models on this type of data as it is
expected that otherwise the model would quickly associate words
including punctuation marks with passwords if we do not also train the
model on non-password strings that include such special characters.
These sets also contain a wider variety of conjugations, spelling, and
other variations. We used the English and Dutch sections of the CulturaX
web crawl (Nguyen et al. (2023)), the WhatsApp corpus (Spooren et al.
(2018)), and a proprietary capture of Telegram group chats.

3.2.3. Carves
The model will eventually be used mostly on carved data. Carved

data contains a lot of ‘system language’ (an example of this are HTML
tags) which is very different from the other types of data we train on.
Thus, it is also useful to add such strings to the negative training set. We
carved the full file-system copies of two mobile phones, a Google Pixel
3a and an Apple iPhone 12, both in factory-reset state. The carved data
were made in two different ways: using the ‘Custom Dictionary’ func-
tionality of Cellebrite Physical Analyzer version 7.61 and using in-house
software.

3.2.4. Hex & filtering
The final category in our set of negative training samples consists of

randomly generated base64 and hexadecimal strings. Initially, we did
not include these strings in our training dataset, but in early testing we

noticed that the model associated these types of strings with a high
likelihood of being passwords; therefore, we added them to our training
negatives. We refer to the combination of base64 strings and hex strings
as the hex dataset.

Because this dataset was added later in our research, we had already
implemented some basic filtering in our training process. That means
that passwords were removed from the training set that contained more
than 32 characters and passwords that only consisted of digits (since we
are not interested in PIN codes). Thus, the increase in performance when
adding the hex dataset is not only caused by the dataset itself, but also by
additional filtering.

3.3. Machine learning models

We have established what data we have available. The next step is to
train a variety of different models in order to compare their perfor-
mance. We grouped the models into three different categories. First, we
will look at the work by Houshmand et al. (2015), who used Probabi-
listic Context Free Grammars (PCFG) to identify passwords. Next, we
will look at two ways to turn passwords into numeric vectors in order to
train a traditional machine learning model on these vectors. Finally, we
introduce three deep learning models, based on PassGPT, CodeBERT,
and DistilBERT.

3.3.1. PCFG
As mentioned in section 2, PCFG can also be used for ranking strings

on their likelihood of being human-generated passwords. PCFG is a well-
known model in the password recovery community. One of the main
drawbacks of PCFG for password recognition is that it is unable to deal
with out-of-vocabulary passwords. If a substring of a password candi-
date was not included in the original training data, PCFG will always
give the password candidate a score of 0.

3.3.2. Baseline machine learning
Before deep learning entered the stage, ‘traditional’ machine

learning methodologies were employed, where a list of numbers that
capture the essential aspects of the data (features) are collected into a
feature vector. The assembly of this set of features is a critical part of the
implementation of a traditional machine learning system. As a baseline,
two sets of features were implemented. These methods also act as a fair
replacement for simple rule-based filtering systems (for example, based
on regular expressions).

The Character N-gram TF/IDF model utilizes TF/IDF (Term
Frequency-Inverse Document Frequency, see Leskovec et al. (2020)
chapter 1.3.1) to assess the significance of a character sequence
(n-gram) occurring within a string, compared to other strings.

Term Frequency (TF) measures how often a specific n-gram appears

Table 2
Evaluation of the impact of including different kinds of training sets on performance, measured with the precision@100 metric. A set of 1000 passwords were selected
from the RockYou and a case dataset and combined with 234,524 non-password strings. In each column, the best value is marked in bold.

precision@100

Chats Carves Hex & Filtering feature_xgb (case
data)

feature_xgb
(rockyou)

tfidf_xgb (case
data)

tfidf_xgb
(rockyou)

PassGPT (case
data)

PassGPT
(rockyou)

0.36 0.36 0.77 0.80 0.9 0.96

0.68 0.72 0.67 0.64 0.83 0.83

0.71 0.67 0.61 0.53 0.77 0.78

0.18 0.56 0.1 0.1 0.03 0.07

0.16 0.56 0.01 0.07 0.06 0.13
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within a string, while Inverse Document Frequency (IDF) reduces the
importance of n-grams that are common across many strings. The words
‘term’ and ‘document’ hint at the origin of the method as a ranking
function used in information retrieval, but this method is still frequently
used for turning a text (in our case candidate passwords) into a nu-
merical vector representation.

Another way to assemble a feature vector is to score a number of
predetermined properties of the text input. This is known as feature
engineering. For this model, we used the following features:

1. Length of the string in characters
2. Number of lowercase letter characters
3. Fraction of lowercase letter characters
4. Number of uppercase letter characters
5. Fraction of uppercase letter characters
6. Number of numeric characters
7. Fraction of numeric characters
8. Number of special (non-letter non-numeric) characters
9. The number of character sets used (lowercase, uppercase,

numeric, special)
10. The number of transitions between consecutive character sets

One of the main advantages of this method is that applying this
model is generally a lot faster than other methods, which is a factor in
casework.

The resulting feature vectors are then used to train a classification or
regression model using a machine learning algorithm. The gradient
boosting algorithm XGBoost (Chen and Guestrin (2016)) was selected
for both feature-based models based on the results of preliminary
research. XGBoost outputs a score between 0 and 1, instead of a binary
classification.

In the rest of our work we will refer to the model obtained by using
XGBoost on the Character N-gram TF/IDF features as tfidf_xgb and the
model obtained by using XGBoost on the engineered features as
feature_xgb.

3.3.3. Deep learning
The introduction of the transformer architecture by Vaswani (2017)

and the subsequent release of pretrained models such as BERT by Devlin
et al. (2019) meant a large leap in what was possible in the field of
Natural Language Processing (NLP).

Transformer models operate on sequences of tokens. A token is an
individual, fundamental unit of data. Tokens are generated by running
the input (in our case, text strings representing potential passwords)
through a piece of software called a tokenizer. A token can be one or
multiple letters or even a word or a phrase depending on the tokenizer
used. A tokenizer is generally specific to the transformer model that will
be used to process the tokens.

We chose three different pre-trained models to fine-tune on how well
they ranked strings being a human-generated password. The first model
is PassGPT, by Rando et al. (2023), a 66M-parameter generative model
based on GPT2, which was trained on the RockYou dataset. The ratio-
nale behind choosing this pre-trained model is that it contains infor-
mation on what passwords generally look like. We use the standard
practice of adding a classification head to the model in order to turn it
from a generative model into a classification model. PassGPT uses a
simple single-character-based tokenizer.

The second model is a 135M-parameter multilingual distilBERT
model by Sanh et al. (2019). The ‘distil’ of distilBERT stands for distil-
lation, the process of turning a larger model into a smaller, more effi-
cient model with minimal loss of accuracy performance. DistilBERT is a
general-purpose model trained on natural language. Our hope for this
model is that it will be able to incorporate some semantic information
that will enable it to better generalize from the examples provided in the
training corpus. For example, if London123 and Mercedes2012 are
included in the training set, the model should be able to recognize

Manchester123 and Audi2012 as passwords because the pre-trained
model has learned about cities in the UK and car manufacturers. Dis-
tilBERT uses a trained tokenizer that generally tokenizes words into
multi-character tokens.

Our final model is an 84M parameter CodeBERT model (Feng et al.
(2020)). The model is pre-trained on a large collection of open source
code and associated documentation. Our rationale for choosing this
model is that it will have had a lot more exposure to special characters,
and the context passwords might be found in. CodeBERT uses a token-
izer that was trained on code, causing it to more efficiently tokenize code
strings into multi-character tokens.

4. Evaluation

We evaluated our approach, with its variants described in Section 3,
to answer the following research questions:

RQ1: What mix of training data yields the best results for the task of
finding human-generated passwords in data acquired from a device?
RQ2: What type of machine learning model performs best for the
given task?

For evaluating the performance of different variants of the approach
(for both RQ1 and RQ2), we use standard metrics typically used to
evaluate machine learning models; see below. In addition, for RQ2, we
also assess the computational performance (execution time of the
inference process) of the different models.1

The best metrics to use when evaluating a model are the ones that
reflect the intended use case of the system. In our case, the output of the
model is used to sort the list of strings by their score, with the highest
scores at the top. We therefore use the precision@kmetric, which is very
useful when scoring models on their ability to rank data. The pre-
cision@k metric is calculated by dividing the number of passwords in
the top k results by score, by k. We use k = 100 and k = 1000 to reflect
different situations.

Additionally, we used a commonly used metric in Machine Learning
research, especially when it is not possible to determine an adequate
threshold; this is ROC/AUC. The Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC). This plots the true positive
rate against the false positive rate at various threshold settings and
quantifies the overall ability of the model to discriminate between
classes.

Graphically, we use inverse recall graphs to show the model perfor-
mance. These graphs show the number of passwords found as a function
of the number of strings processed.

4.1. Evaluation datasets

When evaluating models, an 80/20 split is often used, where the
model is trained on 80 % of the dataset and then evaluated on the
remaining 20 % of the dataset. We decided not to do this. Instead, we
collected an evaluation set of password and non-password strings that
closely mirrors the intended real-world usage. This shows that a model
can be trained on publicly available data and then be used in real
forensic investigations. This results in a sharable model, as no confi-
dential data was used in its training.

Furthermore, for training on leaked password lists the 80/20 split
has an important drawback. Passwords from a website like MyHeritage
will include the term ‘heritage’ more often than passwords for the
RockYou website. Thus, running the evaluation on the same training set
might result in better performance than when using different evaluation
and training sets.

1 Computational performance is not assessed for RQ1, since the choice of
training data does not influence the execution time of the inference process.
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We evaluated the trained model on three different datasets. The first
dataset, Case data, was obtained during the course of a criminal inves-
tigation. This dataset was provided by the Dutch Police. This dataset
cannot be shared due to legislation that governs case data. The second
dataset is RockYou (Brannondorsey (2009)), which is widely used in an
academic context. RockYou was leaked in 2009 and, therefore, is not
necessarily representative of modern password usage. The final dataset
is MyHeritage (hashmob (2017)) which was breached in 2017, when
security standards were raised considerably compared to 2009.
MyHeritage contains password hashes, the evaluations can therefore
only be done on the cracked passwords. This is not the case for the Case
data and RockYou as these are cleartext passwordsets.

For all three datasets the positive (password) examples in the eval-
uation set are a random weighted sample of 1000 passwords: The list
contains only unique passwords, but passwords that occur more often in
the dataset have a higher likelihood of being chosen. The negative ex-
amples (i.e., the non-password strings) of the evaluation dataset are
obtained by running the Custom Dictionary feature of Cellebrite Phys-
ical Analyser version 7.61 on seven devices from the following manu-
facturers and models:

• Apple iPhone 6s plus
• Apple iPhone 7
• Apple iPhone 11
• Huawei P smart
• Motorola Moto G9 plus
• Samsung Galaxy J7
• Samsung S20FE

These devices are part of a mock-up case used for investigator
training purposes and contain a significant amount of traces of normal
user activity. The passwords of the device users are known. To avoid
polluting the set of negative examples, these passwords were removed
from the list prior to conducting the evaluation.

The total evaluation set consists of 234,524 non-passwords and 1000
passwords (0.4 %) which we consider to be a good balance between a
realistic scenario (only a fraction of the total set is a password) and
having a large enough set of passwords to reduce noise in the evaluation.

4.2. Evaluation environment

All of the experiments were ran with the following hardware:

• CPU: Intel Xeon E5-1650 v3 3.5 GHz
• GPU: NVIDIA RTX 4500 Ada Generation (24 GB GDDR6)
• Memory: 32GiB

4.3. Evaluation results

4.3.1. RQ1 – Which combination of training data yields the best results?
This research question is evaluated on the feature-based models and

the PassGPT-based model (as a representative of the deep learning
models). The training dataset always contains the positives described in
Section 3.1 and the wordlists as negatives, described in Section 3.2. For
the other three types of negative samples (Chats and crawls, Carves and
Hex, described in Sections 3.2–3.2), we test different combinations of
which datasets are included in the training set and which ones are not.

Looking at the results (see Tables 2 and 3) of this experiment, it is
clear that adding chats and crawls is very important for the model
performance. For all models and both metrics, the performance in-
creases considerably when adding the chats. The effect of adding carved
data is less clear. When only carved data are added, performance
generally goes down. However, in most cases, adding both chat and
carved data leads to higher scores than adding only one of them. When
adding the hex dataset and filtering, the performance dropped for the
feature-based model, but for all of the other models it resulted in the

Table 3
Same as Table 2, but with performance measured by the ROC AUC metric.

ROC AUC

Chats Carves Hex & Filtering feature_xgb (case
data)

feature_xgb
(rockyou)

tfidf_xgb (case
data)

tfidf_xgb
(rockyou)

PassGPT (case
data)

PassGPT
(rockyou)

0.9225 0.8454 0.9191 0.8472 0.9399 0.8627

0.9225 0.9458 0.9122 0.9435 0.9545 0.9782

0.9213 0.9395 0.9087 0.9287 0.9594 0.9776

0.789 0.8362 0.8306 0.8771 0.8108 0.8704

0.8264 0.8596 0.8154 0.7849 0.8599 0.8925

Table 4
Evaluation of the performance of different model architectures. Themodels were
run on data extracted frommobile devices (234,524 items), combined with 1000
passwords from 3 datasets: case data, MyHeritage and RockYou.

Case data

model precision@100 precision@1000 roc_auc

distilBERT 0.89 0.326 0.9187
codeBERT 0.83 0.35 0.9331
passGPT 0.90 0.468 0.9399
feature_xgb 0.36 0.24 0.9225
tfidf_xgb 0.77 0.335 0.9191
PCFG 0.18 0.105 0.7607

MyHeritage

model precision@100 precision@1000 roc_auc

distilBERT 0.81 0.237 0.8926
codeBERT 0.75 0.297 0.9059
passGPT 0.87 0.388 0.9141
feature_xgb 0.32 0.188 0.9087
tfidf_xgb 0.53 0.414 0.914
PCFG 0.17 0.073 0.7245

RockYou

model precision@100 precision@1000 roc_auc

distilBERT 0.91 0.364 0.847
codeBERT 0.89 0.372 0.8553
passGPT 0.96 0.487 0.8627
feature_xgb 0.36 0.263 0.8454
tfidf_xgb 0.79 0.362 0.8472
PCFG 0.31 0.142 0.7506
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highest precision@100 scores. Therefore, we decided to do further ex-
periments for RQ2 on models trained on all data.

4.3.2. RQ2 – Which machine learning model performs best?
For this research question, we compare the performance of the

different machine learning models described in Section 3.3. Each model
is trained using the full training dataset described in Sections 3.1–3.2.
Each model is evaluated on the three evaluation datasets described in
Section 4.1. The results are summarized in Table 4. Figs. 2–4 show
graphically how well the different models succeed in ranking real
passwords.

From Table 4, we can see that the PassGPT-based model performs
best for most metrics and evaluation datasets. For RockYou this is un-
surprising, as PassGPT is trained on RockYou (and various other leaks),
but this is not the case for the other two datasets. The only exception to
the dominance of PassGPT is the MyHeritage dataset combined with the
precision@1000 metric, where the tfidf_xgb model performs best (see
also Fig. 3). This is quite surprising, as this model does not have any
other standout performances. Furthermore, we see that the PCFG and
feature_xgb models perform significantly worse on all metrics than the
other models. For PCFG this is most likely due to its inability to properly
score passwords with out-of-vocabulary sub-strings. The feature_xgb
model is most likely not able to adequately capture the difference be-
tween passwords and non-passwords in limited features it uses.

The execution time of performing inference with the different models
is compared in Table 5. We can see that the feature based model is the
fastest, followed by the distilBERT and codeBERT models. PCFG and the
PassGPT model are the slowest. There are clear differences in speed, but
they are all within the same order of magnitude. When comparing both
precision@100 and execution time, it can be derived that distilBERT and
PassGPT have a similar precision@100 for the case dataset (0.89 vs
0.90). However, PassGPT requires twice the execution time.

When taking the precision@1000 for the case dataset, PassGPT
clearly outperforms distilBERT (0.468 vs. 0.326). This shows that a
forensic investigator can make a trade-off between execution time and
accuracy. This suggests that distilBERT should be chosen when execu-
tion time is most important, or PassGPT when performance is more
important.

5. Conclusion

Digital investigators face challenges in acquiring data from encryp-
ted devices. An underexplored method is that of extracting strings from
unsecured mobile devices and then identifying those strings that are
most likely to be a human-generated password.

Our research shows that machine learning technology can be used to
help rank strings extracted from a mobile device based on their likeli-
hood of being human-generated passwords. Although the fastest deep
learning model (distilBERT) runs 1.5 times slower than simpler machine
learning technology (feature_xgb), it outperformed the same model 2.47
times (for the precision@100 metric, when running on the case dataset).
When performance is more important than computational speed, the

Fig. 2. Inverse recall of models evaluations on the Case dataset.

Fig. 3. Inverse recall of models evaluations on the MyHeritage dataset.

Fig. 4. Inverse recall of models evaluations on the RockYou dataset.

Table 5
Execution time of inference with different models in seconds, normalised with
the fastest running model, and showing the precision@100 when running the
model on the case data evaluation dataset. The models were run on data
extracted from mobile devices (234,524 strings) combined with 1000
passwords.

Model Seconds Normalised precision@100 for case data

distilBERT 21 1.50 0.89
codeBERT 20 1.43 0.83
passGPT 42 3.00 0.90
feature_xgb 14 1.00 0.36
tfidf_xgb 38 2.71 0.77
PCFG 50 3.57 0.18
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investigator should select PassGPT as it outperforms the performance of
distilBERT. Furthermore, we showed that training with more than just
dictionary words and passwords is essential to achieve good perfor-
mance. Most of the investigated models benefited from adding chat,
carved, and base64/hex data to the negative training set.

We limited our research to the part related to the ranking and did not
focus on text extraction. Further investigation could explore how well
different methods can extract strings from various sources. Additionally,
the location where a string is found could also be taken into account
when determining the likelihood of it being a human-generated
password.

With this research, we show that the use of machine learning tech-
nology provides forensic investigators with new methods for combating
encrypted devices.

Ethical consideration

The datasets used in this research have different origins. Some of the
datasets were provided for research by the Dutch Police under Dutch
law. Other datasets were already available publicly under different
terms and conditions.

Some of the datasets we used are hacked datasets, datasets that are
obtained through illicit means. Ienca and Vayena (2021) provide re-
quirements for conducting research for such datasets. The hacked
datasets that are used are: RockYou, MyHeritage, and
BreachCompliation.

Those datasets are of significant importance for this research.
Without them, this research would not be possible. Replacement data
sets are not available. RockYou, despite being an old dataset, remains
the benchmark for comparing different methods used in password re-
covery. BreachCompliation provides insights of password usage at scale,
as it is one of the largest collections of passwords available. MyHeritage
provides a more recent insight in password usages and is not included in
BreachCompliation. No personal identifiable information from the
datasets was used, only the password data.

This research provides forensic investigators with a new method for
getting access to potentially critical information stored in encrypted
data. In the end, this serves our society as a whole. Together with the
minimal threat this research poses to individuals, we argue that our
research has a favorable risk-benefits balance.
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