
DFRWS EU 2025 - Selected Papers from the 12th Annual Digital Forensics Research Conference Europe

Tapping .IPAs: An automated analysis of iPhone applications using apple 
silicon macs

Steven Seiden a,b,*, Andrew M. Webb b, Ibrahim Baggili a,b

a Baggil(i) Truth (BiT) Lab, Center of Computation & Technology Baton Rouge, LA, USA
b Division of Computer Science & Engineering Louisiana State University Baton Rouge, LA, USA

A R T I C L E  I N F O

Keywords:
Digital forensics
Digital investigations
iOS forensics
Apple forensics
Artifact collection
Automated analysis
iOS security
Apple silicon
Application analysis
Virtualization
iPhone

A B S T R A C T

Dynamic analysis of iOS applications poses significant challenges due to the platform’s stringent security mea
sures. Historically, investigations often required jailbreaking, but recent enhancements in iOS security have 
diminished the viability of this approach. Consequently, alternative methodologies are necessary. In this study, 
we explore the feasibility of automated iOS application analysis on the ARM-based M1 Mac platform. To do so, 
we utilized an ARM-based Mac to install several popular iOS applications. Our manual analysis using existing 
macOS tools demonstrated the potential to uncover artifacts such as chat messages and browsing history. To 
streamline this process, we developed a tool, AppTap, which facilitates the entire forensic procedure from 
installation to artifact extraction. AppTap enables analysts to quickly install, test, and retrieve file system arti
facts from these applications and allows for the easy checkpointing of user files generated by iOS apps. These 
checkpoints help analysts correlate artifacts with user actions. We tested AppTap with the top 100 iPhone apps 
and top 100 iPhone games from the U.S. App Store (n=200). Our results showed that 46 % of these applications 
were installed and operated as expected, while 30.5% failed to install, likely due to the older macOS version—a 
necessary condition for this study. We discuss several strategies to enhance application support in the future, 
which could significantly increase the number of supported applications. Applying our methodologies as-is to the 
M1 Mac platform has significantly streamlined the forensic process for iOS applications, saving time for analysts 
and expanding future capabilities.

1. Introduction

Dynamic analysis involves executing software and observing its 
behavior under various conditions. Unlike static analysis, which entails 
examining the code, dynamic analysis enables analysts to uncover 
obfuscated activities and observe the application’s response to inputs in 
real-time. This method is crucial in the digital forensics field, as it allows 
forensic analysts to detect malicious activities and collect evidence from 
benign applications that are utilized maliciously (Shijo and Salim, 2015; 
Subedi et al., 2018).

In this work, we explore the dynamic analysis of applications 
developed for iOS, the operating system used by iPhones and iPads1. 
Since its initial release, iOS has been intentionally designed with strict 
security features to enhance user security. Key among these features is 
sandboxing, which restricts the ability to use tools for inspecting an 

application’s activity (Apple, Inc., n.d. d).
Until recently, analysts required a physical iOS device (either an 

iPhone or iPad) to execute iOS applications, as these could only run on 
official hardware. The platform’s inherent software restrictions made 
performing dynamic analysis of iOS applications challenging. Conse
quently, jailbreaking—an act of exploiting a security vulnerability to 
escalate user privileges—was necessary for conducting in-depth appli
cation analysis (Ali et al., 2019; Lindorfer et al., 2015; AL-Dowihi et al., 
2023). However, for various reasons discussed in Section 2, jailbreaking 
has become less feasible. Thus, alternative means of analysis are needed. 
Currently, one platform, Corellium, allows analysts to emulate iPhone 
hardware and run iOS applications in a controlled, unrestricted envi
ronment. However, the high cost and limited customizability of Cor
ellium has rendered it insufficient for many forensic analysts. In this 
paper, we explore an alternative methodology for analyzing iOS 
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1 The operating system for iPads has recently been renamed to iPadOS. However, for simplicity, we will refer to both operating systems as iOS throughout this 
paper.
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applications by leveraging the recently introduced ARM-based Mac 
platform.

The release of ARM-based Macs enables running iOS applications on 
the macOS platform, offering a new way to simplify the live analysis 
process of these applications. However, the steps needed to run iOS apps 
on ARM-based Macs remain complex, with numerous restrictions 
limiting use. Thus, we developed a new tool, AppTap, to streamline live 
analysis of iOS applications on ARM-based Macs. In our evaluation, we 
successfully ran 46% of the iOS applications we tested from the App 
Store on the ARM-based Mac platform. Our case study demonstrated 
that this methodology enables the effective collection of digital forensic 
artifacts from iOS applications, affirming its viability for forensic in
vestigations. Our research seeks to address the following research 
questions (RQs): 

RQ1 How can an ARM-based Mac be prepared for analyzing iOS 
applications?
RQ2 How can the analysis of iPhone applications using ARM-based 
Macs be streamlined?
RQ3 How effective is this methodology in a digital forensic case 
study? Is the methodology widely applicable in a real-life situation?
RQ4 What are the benefits of analyzing iOS applications on the 
macOS platform?

By answering the aforementioned RQs, our work makes the 
following contributions: 

1. We evaluate the practicality of running iOS applications on ARM- 
based Macs. To the best of our knowledge, we are the first to apply the 
capabilities of the new ARM-based Macs to run iOS applications in a 
forensics context.

2. We synthesize and evaluate a framework for the forensic analysis of 
iOS applications’ user files on ARM-based Macs.

3. We developed a open-sourced tool, AppTap,2 that automates the 
forensic examination and artifact discovery process for iOS 
applications.

The rest of the paper is organized as follows: Section 2 provides a 
brief history, giving context to the increasing difficulties of iPhone 
application analysis and illustrating the benefits of our work. In Section 
3, we review previous work in the area of digital forensics, emphasizing 
its significance and how it has been applied to iPhones. Section 4 dives 
into our new methodology for analyzing iPhone applications, including 
a technical overview, preparation of the platform for analysis, acquisi
tion of iPhone applications, and the analysis itself. Using these initial 
findings, we develop a forensic framework in Section 4.5 to standardize 
the analysis process, which also leads to the creation of AppTap. Section 
5 assesses the effectiveness of our methodology. In Section 6, we apply 
this methodology to a broad spectrum of popular App Store applications, 
with an evaluation of these results presented in Section 7. Based on our 
findings, Section 8 outlines potential future directions, and the paper 
concludes in Section 9.

2. History

Jailbreaking emerged as a method for customizing user iPhone 
experience, including altering system user interface (UI) elements and 
accessing settings not typically available. The development of jailbreak 
tools has declined over time. Most modern jailbreak tools only support 
iOS devices released up until 2017 (The Apple Wiki, 2024 a). These 
supported devices are expected to stop receiving updates from Apple in 
the coming years (The Apple Wiki, 2024 b, 2023 b). This trend is 

visualized in Fig. 1.
We hypothesize that this trend occurs for a few reasons: 

● As the security of iOS has improved, the likelihood of discovering 
exploitable security vulnerabilities has significantly decreased.

● Fewer iPhone users are jailbreaking their personal devices due to 
enhancements in the user experience of iOS devices, resulting in 
reduced profitability from the monetization of jailbreaking tools (via 
advertisements, donations, etc.).

In addition to decreasing availability of jailbreak tools, it is crucial to 
consider the integrity of a forensic investigation when using these tools. 
As noted by The Apple Wiki (2023 a), some jailbreak tools may contain 
malicious code. Employing such a tool in a forensic examination could 
compromise the investigation’s integrity. To support security analysts, 
Apple recently introduced its own security analysis platform, the Apple 
Security Research Device (ASRD). The ASRD allows security researchers 
to request a jailbroken iOS device directly from Apple, thereby elimi
nating the need for third-party jailbreak tools (Apple Security Engi
neering and Architecture (SEAR), 2023). However, access to this 
platform is heavily restricted, and the terms of service impose limita
tions on the types of analysis that can be performed.

3. Related work

In this section, we review prior work related to digital forensics, 
software analysis on physical iOS devices (both jailbroken and non- 
jailbroken), and software analysis on virtual iOS devices.

3.1. Digital forensics overview

Digital forensics plays a key role in preventing and investigating 
cybercrime. As described by Casey (2009), digital forensics allows in
vestigators to analyze crimes involving computer systems by extracting 
digital evidence from said systems. This evidence is referred to by the 
digital forensics community as forensic artifacts. Digital forensics and 
the collection of artifacts has been previously applied to nearly all 
platforms (Manna et al., 2021; Ligh et al., 2014; Hoog, 2011).

Once artifacts are collected, they can be shared and utilized by other 
analysts to showcase examples of data gathered as evidence for an 
investigation (Grajeda et al., 2018). For example, Grajeda et al. (2023)
introduced the Artifact Genome Project, allowing forensics investigators 
from around the world to collaborate and share artifacts they have found 

Fig. 1. Trend in jailbreak tools available per iOS update.

2 AppTap source code is available at https://github.com/StevenSeiden/ 
AppTap.
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during research and investigations. When it comes to performing fo
rensics investigations involving iOS applications, the methodologies can 
be separated into those that employ physical devices, and those that use 
hardware virtualization.

3.2. Physical device analysis

When performing application analysis using physical devices, there 
are two categories: jailed and jailbroken. A jailed device refers to one that 
operates on an unmodified version of Apple’s operating system. 
Conversely, a jailbroken device has undergone modification through a 
software exploit to unlock or alter the operating system via privilege 
escalation (Chang et al., 2015).

Performing application analysis on jailed devices is limited by con
straints imposed by Apple. Previous work with jailed devices utilized 
tools such as Charles Proxy to capture network packets from applications 
(Bhatt et al., 2018). Another popular tool, Frida, facilitates application 
testing through code injection. While Frida is compatible with jailed 
devices, many of its capabilities are only fully accessible on jailbroken 
devices (Ravnås, n.d.). Furthermore, researchers have employed iPhone 
and iPad backups as a method for extracting data in a forensically sound 
manner from jailed devices (Bader and Baggili, 2010; Husain et al., 
2011; Ali et al., 2012; Baggili et al., 2014).

On jailbroken devices, application analysis is well-supported. Jona
than Zdziarski is often credited as the first to utilize physical acquisition 
on an iPhone using the Zdziarski method (Zdziarski, 2008). Currently, 
many analysis tools require a jailbroken device to function properly 
(Beijnum, 2023). However, the declining feasibility of jailbreaking de
vices has necessitated the exploration of alternative analysis methods 
(Ricco, 2023). Furthermore, forensic companies that discover zero-days 
for forensic acquisition on iPhone devices typically do not disclose them 
publicly, as these discoveries provide a competitive edge.

3.3. Third-party virtualization and other tools

Due to the challenges posed by restricted iOS device hardware, an
alysts have begun to shift away from using physical hardware for 
analysis. One of the most significant advancements in iPhone applica
tion analysis is the platform Corellium (Brewster, 2018). Since its launch 
in 2018, Corellium has had a substantial impact on the security analysis 
of iOS applications (Brewster, 2021). Corellium’s platform provides 
analysts with virtualized iOS devices, allowing for malware analysis 
without the need for a physical device (Corellium, n.d.). Because these 
virtualized devices are under Corellium’s control, typical restrictions 
can be easily bypassed as needed. These virtualized devices can test 
third-party applications (such as those from the App Store), but only 
after they have been decrypted, which can be challenging to achieve 
(Corellium, Inc., n.d.). Additionally, customizing the platform is diffi
cult, limiting the range of analysis tools that analysts can use. The high 
licensing costs further impose a burden on analysts.

A few other tools exist to emulate iOS applications, though these 
tools are not designed for digital forensics investigations. For example, 
No Yume (2024) developed TouchHLE, an emulator for running older 
iOS applications on Intel x64 platforms. However, TouchHLE is quite 
limited as it only supports applications written for iOS version 2. The 
popular open-source ARM emulator QEMU has been used to emulate 
older iOS devices, but so far, it has only successfully emulated up to iOS 
version 2.1 (de Vos, 2022). Projects like Nguyen et al.’s TruEMU have 
also started work on emulating iOS, but they are currently very limited 
and lack key features, such as displaying applications’ user interfaces 
(Nguyen et al., 2022).

Other tools have been developed for iOS application analysis but 
have limitations. For example, Cellebrite and Magnet provide forensic 
analysis tools for iOS devices (Bays and Karabiyik, 2019; Chamberlain 
and Azhar, 2019). However, these tools can only extract artifacts after 
the application has been run and data has been collected from a physical 

device, and therefore do not support live analysis. Additionally, MobSF, 
a popular mobile application security suite, is capable of performing 
static analysis of iPhone applications (Bergadano et al., 2020). However, 
since MobSF does not support real-time application analysis, it cannot 
uncover digital forensic artifacts for analysis.

Thus, in this paper, we explore the feasibility of virtualizing iOS 
applications through alternative means using the built-in capabilities of 
ARM-based Macs. In doing so, we developed a new tool, AppTap. App
Tap integrates various existing technologies and applications, enabling 
analysts to easily perform iPhone application analysis through the ARM- 
based Mac platform. Unlike Corellium, our methodology allows the 
application to run locally on bare metal within the macOS environment. 
This approach offers several benefits, including the ability to utilize the 
numerous macOS forensic tools available today and automate the pro
cess. This process is similar to what has been done with Android before, 
but our methodology adapts this for iOS applications (Anglano et al., 
2020).

4. Methodology

In this section, we present the steps required to run iOS applications 
on macOS for forensic analysis. First, we provide a technical overview 
for those unfamiliar with iOS/macOS systems in Section 4.1. Next, we 
prepare the macOS environment for experimentation in Section 4.2. 
Then, we acquire applications for testing in Section 4.3 and analyze 
these applications in Section 4.4. Using the knowledge gained from this 
process, we formulate a forensic framework in Section 4.5. Imple
menting this framework, we build AppTap to automate the analysis 
process in Section 4.6. All tools used throughout this section are pre
sented in Table 1.

4.1. Technical overview

Before installation, iOS applications are distributed through iOS 
Package Archive (IPA) bundles. The bundles take the form of a LZFSE 
(Lempel–Ziv Finite State Entropy) compressed folder, which can be 
decompressed with many standard decompression applications by 
renaming the file from example.ipa to example.zip (Ke, 2017; Apple, Inc., 
n.d. a). Decompressing these files can allow us to manually analyze the 
bundle’s contents. The file structure of these bundles is shown in Fig. 2.

Contained within this bundle are several metadata files and the 
application itself (*.app). This application file is a bundle that contains 
an executable and necessary resources (Apple, 2017). The contents 
within IPA bundles downloaded from Apple come encrypted with Fair
Play (The Apple Wiki, 2010). Therefore, you cannot execute the bundled 
application as you would with a standard macOS application. To install 

Table 1 
A list of tools used for application testing.

Tool Purpose

Apple Configuratora Imaging Hardware Firmware
AppTap Installation & File Analysis
cliclickb Automating User Interaction
DB Browser for SQLitec Reading Application Files
DirEquald Checkpoint Comparison
fs_usage Filesystem Activity Tracking
Hex Fiende Reading Hex-Encoded Files
ProvisionQLf Analyzing .IPA Properties
Sideloadlyg Sideloading .IPA Bundles

a Version 2.17, available at https://apps.apple.com/us/app/apple 
-configurator/id1037126344?mt=12.

b Version 5.1, available at https://github.com/BlueM/cliclick.
c Version 3.12.2, available at https://sqlitebrowser.org/dl/.
d Version 3.12.2, available at https://sqlitebrowser.org/dl/.
e Version 2.17.1, available at http://hexfiend.com/.
f Version 1.6.4, available at https://github.com/ealeksandrov/ProvisionQL.
g Version 0.24, available at https://sideloadly.io/.
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these bundles on an ARM-based macOS device, decryption is required. 
This process typically occurs automatically on devices like iPhones as 
part of application installation.

With the release of macOS 11.3, the built-in ability to decrypt and 
install IPA files has been restricted to authorized applications, such as 
those downloaded from the Mac App Store (MAS). Many iPhone appli
cations are not authorized to be installed via the MAS (as explained in 
Section 4.3), meaning macOS 11.3 and later significantly limit the range 
of applications that can be freely installed. It is currently unknown how 
to break FairPlay’s hardware decryption keys, so we must rely on Ap
ple’s built-in decryption tools (Khoa, 2021). Thus, the system must be 
running macOS 11.2.3 or earlier to successfully perform application 
installation. Once installed, these applications run natively on the 
macOS platform, utilizing iOS dependencies that Apple has ported to 
macOS (Apple, Inc., n.d. c). When running these applications on a Mac, 
macOS emulates many features of a typical iOS device, such as the 
touchscreen. Additionally, macOS relays emulated device specifications 
to these applications, including the version of iOS it is emulating.

Note, iOS applications store user data within a single directory, 
called a group container or a sandbox. On macOS, an application’s 
sandbox is located at ̃ /Library/Group Containers/group.com. 
bundle.name. For our study, we acquire artifacts by analyzing these 
sandbox files.

4.2. Platform setup

The first step is installing a capable version of macOS on a compat
ible ARM-based device. For our purposes, we are using an M1 Apple Mac 
Mini (A2348). To downgrade the device to our desired firmware version, 
macOS 11.2.3, we utilized Apple Configurator and another Mac. Using 
the appropriate firmware bundle, we successfully flashed the Mac Mini. 
Once this was complete, the computer was ready to locally decrypt and 
install IPA files for analysis.

4.3. Application acquisition

There are many ways to acquire iOS applications. The easiest method 

is via the MAS. With the release of ARM-based M1 Macs, Apple made 
iPhone applications available for download through the MAS, as seen in 
Fig. 3. This allows users to easily run these applications on macOS 
(Apple, Inc., 2020). Shortly after this release, developers were provided 
with the option to opt-out of having their applications listed on the MAS, 
and many developers have chosen to do so (Espósito, 2020). Another 
method is to use a jailbroken iOS device to acquire these IPA files, but 
since this research aims to move away from jailbreaking, this method is 
insufficient. Consequently, acquiring iOS applications on macOS has 
become a challenge.

To circumvent these challenges, one option is to use an application 
like the open-source IPATool, which allows users to easily download IPA 
files directly from Apple (Alfhaily, 2023). Alternatively, to avoid using 
third-party tools, one can utilize the official Apple Configurator, 
requesting the tool to install an application on an iOS device, and then 
use the downloaded IPA from the tool’s cached files (Anderson, 2020). 
Of course, these bundles are encrypted and unauthorized by the MAS. 
However, since we downgraded the machine to macOS 11.2.3, these appli
cations will be decrypted and installed by macOS regardless of authorization 
status. Therefore, installing these applications is as simple as opening 
them with the built-in iOS App Installer.

4.4. Application analysis

Once we have installed our applications, we begin analysis. It is 
important to note that while many iOS applications will run successfully 
on the macOS platform, some applications have dependencies that do 
not exist on macOS and thus may fail to install or crash upon launching. 
To automate application analysis, we decided to use the open-source 
application cliclick. This program allows for automating cursor in
teractions with applications. By using cliclick in conjunction with the 
built-in fs_usage (a simple utility that tracks processes’ file system ac
tivity), we can monitor the files being actively read and written by iOS 
applications, as seen in Fig. 4. These files can be collected and stored as 
artifacts automatically for later analysis. In our preliminary study, we 
found that many applications we tested, such as Firefox and Discord, 
stored user files in SQLite format. User data from these databases can be 
extracted and visualized, as seen in Fig. 5. This data can contain valuable 
artifacts for potential use in a forensic investigation.

4.4.1. Virtualization
Running iOS applications within macOS additionally allows for 

environment virtualization. Virtualization of applications on macOS has 
several benefits, the primary being the ease of performing memory 
dumps to conduct memory forensics. Memory forensics is an extremely 
important part of application analysis, as it enables analysts to find non- 
persistent data that only exists in memory (Ligh et al., 2014).

Popular virtualization tools, such as VMware Fusion, can be utilized 
to create ARM-based macOS Virtual Machine (VM)s (Broadcom, 2022). 
Using a VM, a memory dump can be acquired and forensically analyzed. 
Virtualization support for ARM macOS was introduced in macOS 12 
with the addition of the series of VZMac API series (Apple, Inc., n.d. e). 
ARM versions of macOS 11 do not support this and thus cannot be vir
tualized. However, as previously mentioned, only these earlier versions 
of macOS 11 allow for decryption of these unauthorized IPAs. In order to 
virtualize iOS applications not available on the MAS, an IPA must be 
decrypted outside of the VM, then transferred to the VM and sideloaded. 
There are several methods for exporting decrypted applications, such as 
employing a macOS 11 installation or a jailbroken iOS device. However, 
one must always ensure to abide by local laws and regulations sur
rounding decryption and DRM. We will not touch on this process as it 
falls beyond the scope of this work.

Once a decrypted application is copied to the VM, it can be side
loaded. Sideloading is a process that involves signing an IPA with an 
Apple Developer account and installing it. There are several third-party 
applications for sideloading IPAs on macOS; for our purposes, we 

Fig. 2. Typical content structure of IPA

Fig. 3. Searching for an iOS app on the Mac App Store.
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decided to use Sideloadly (Goodwin and Woolley, 2022; Sideloadly, n. 
d.). Once an application has been sideloaded, it can be run normally 
within the VM.

4.5. Forensic framework

To streamline the application analysis process, we developed a 
forensic framework for iOS applications. This framework outlines the 
process of collecting artifacts from iOS applications and associating 
them with user actions. To attribute artifacts to specific user actions, we 
monitor the creation and modification of artifacts, timestamping these 
actions to establish associations. To accomplish this, we break down the 
process step-by-step.

First, we capture and intercept user input to an application (in our 
case, a mouse click). This input is not transmitted to the application but 
is recorded for future reference. Next, we ask the user to specify their 
intended action within the application. Using this information, we 
create a checkpoint of the application’s sandbox, labeling it as the state 
before the user’s intended action. Finally, we forward the user’s original 
input to the application, allowing it to create and modify any new ar
tifacts. This process is repeated several times. By using a series of 
checkpoints, an analyst can determine which user actions result in the 
creation of specific artifacts.

We formalize this framework, representing successful artifact 
collection AC() of artifacts ar. This collection methodology relies on 
several filesystem snapshots fs to be taken, capturing the files used by a 
process at various times. First, the application to be analyzed (target 
application) must be running as a process p. Next, the analyst should 
begin recording the filesystem’s activity f and the user’s actions a with 
the target application, (such as recording a mouse click as cursor loca
tion coordinates).

Once this recording begins, the analyst must undertake an action a 
within the target application via an interaction i. The interaction i 

describes the user input itself, while the action a describes the intended 
consequences of said user input. For example, when clicking on a send 
button, the action a would be sending a message, and the interaction i 
would be clicking at a specific location on the screen (where the send 
button is).

When the user commits an interaction i on an application they are 
analyzing, this interaction should be intercepted and thus disallowed 
from reaching the target application p. Instead, a filesystem snapshot 
fs should be taken, storing all relevant information for this interaction. 
Only once all this information is collected should the target application p 
receive the interaction. In taking the snapshot, the following should 
occur: 

● Ask the user to specify the action a in a string format. For example, 
“clicking on the send button”.

● Take filesystem snapshot fs, copying all application files to a direc
tory that will not be modified further. Label this snapshot as con
taining the filesystem information immediately prior to interaction i 
being sent to target application p. Therefore, this snapshot will be 
associated the state of the filesystem immediately before action a 
takes place.

● Forward interaction i to target application p, causing action a to 
occur as normal.

This process of interacting and snapshotting will repeat n times, until 
the analyst has collected sufficient data. From there, the analyst will 
perform differential forensic analysis to compare the differences be
tween distinct filesystem snapshots fsn − fsn− 1. This reveals the changes 
in the filesystem between each snapshot. In doing so, the examiner can 
attribute artifacts ar extracted from individual snapshots to different 
intended actions a. We share the mathematical formulation of the pro
cedure below: 

Fig. 4. Automated Analysis of the Discord iPhone Application. User Input Is Automated Via cliclick, and Filesystem Activity Is Tracked With fs_usage.

Fig. 5. User messages being read from the discord Application’s saved files with DB browser.
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AC(ar, f , fs, n, p, a, i) = AR(FS(f , a, i, n), n)

∧
∑n

0
FS(f , a, i, n) (1) 

AR(f , n) = FS(n)f − FS(n − 1)f (2) 

FS(f , a, i, n) = F(n),
∧A(n)
∧I(n)

(3) 

where: 

AC() is the successful collection of artifacts
AR() is a collection of artifacts from the filesystem f at time n
FS() is an individual filesystem snapshot
f is the overall filesystem activity
n is the desired snapshot index
p is the process of the target application
a is the action associated with the snapshot
i is the intention associated with the snapshot

4.6. Automation

To expedite the process of acquiring, installing, and testing appli
cations, we constructed a custom application, AppTap. AppTap auto
mates different existing tools, such as ipatool, which enables acquiring 
IPA files from the application store (Alfhaily, 2023). The program was 
written in Swift and features a command-line interface, as shown in 
Fig. 6. An overview of the installation of AppTap is shown in Fig. 7.

Fig. 8 shows an overview of AppTap’s filesystem analysis framework. 
The actual implementation of this framework within the macOS plat
form is illustrated in Fig. 9. All artifacts are pulled from the sandbox 
location mentioned in Section 4.1. These filesystem analysis features 
allow the analyst to take snapshots of the application’s files between 
each interaction. Attribution of artifacts is performed automatically as 
the application is run. This form of differential forensic analysis, 
described by Garfinkel et al. (2012), enables an examiner to correlate 
different actions with the creation of specific artifacts.

When launching AppTap, the program first asks the user to select a 
sandbox location to analyze. Next, the user interacts with the applica
tion. As described above, each time the user interacts (e.g., clicking a 
button), the input is delayed and a snapshot occurs. AppTapp stores 
these snapshots in the directory of its execution.

5. Case study

To evaluate the efficacy of AppTap and our methodology, we con
ducted a case study in which an analyst is seeking artifacts from a 
custom-made iOS application. We created a simple iOS application, 
NewList, in Swift and Swift UI. This application stores a list of strings 

from which the user can add and remove entries. This list is persistent 
and stored within NewList’s sandbox. Using this simple program, we can 
generate filesystem artifacts on command to test whether or not our Fig. 6. Downloading and installing apps using AppTap.

Fig. 7. The streamlined acquisition and installation process provided 
by AppTap.

Fig. 8. An overview of AppTap’s application filesystem activity analysis pro
cess, following our forensic framework.

Fig. 9. AppTap analysis system overview.
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artifact attribution is successful.
The process is as follows: First, we launched NewList. Then, we 

launched the AppTap Interaction Logger. With the running Interaction 
Logger, we initiate creating a new entry in NewList with the title 
“AddingAnArtifact”. The Interaction Logger takes a snapshot, Snapshot 
1. Next it follows through on the request, creating the “AddingAnArti
fact” entry within NewList. Finally, we closed NewList, which creates 
Snapshot 2.

Next, we explored differences between the snapshots. We utilized 
DirEqual, a tool for comparing differences between two directories. As 
seen in Fig. 10, the tool highlighted a difference between the two 
snapshots with file /̃Data/Library/Preferences/x.NewList. 

plist. We opened the two x.NewList.plist files in Hex Fiend and 
compared them. As shown in Fig. 11, Snapshot 1 does not contain the 
string “AddingAnArtifact”, while Artifact 2 does. Thus, we can attribute 
the action taken between Snapshot 1 and Snapshot 2 to the creation of 
this artifact. By examining how AppTap works in a realistic scenario, we 
show how our approach can be used to successfully allow analysts to 
perform a live analysis of applications to determine when artifact cre
ation takes place.

6. Results

We started our evaluation by testing the success of our analysis 
methodology with different applications on the iOS App Store. To do 
this, we examined installing the top free apps and games from the United 
States iOS App Store (Apple separates these into two Top 100 lists, so 
n=200). This list was obtained from (Apple, Inc., 2024 a,b). The raw 
data of this evaluation is detailed in Appendix Appendix A, and the re
sults are shared in Fig. 12. Overall, we successfully ran 92 (46%) ap
plications. In our testing, the largest point of failure was applications 
refusing to install, accounting for 61 (30.5%) of the examined applica
tions. Upon examining the properties of these applications with Provi
sionQL, we found that many required a later version of iOS than the 
version macOS reports to applications during emulation. Our macOS 
11.2.3 installation reported support for up to iOS 14.4, an operating 
system older than that supported by several applications that refused to 
install. For example, the Airbnb and Amazon Prime Video applications 
specify a minimum of iOS 16.0 and iOS 15.0 respectively, surpassing the 
specifications of our macOS installation. We posit that this is the cause of 
applications failing to install. We also found that 42 (16%) applications 
installed but exhibited an exception error when running. The other 15 
(7.5%) applications exhibited numerous other errors, such as freezing, 
missing dependencies or detecting that they were running in an envi
ronment with elevated user privileges (often called jailbreak detection).

In an attempt to address the most prominent issue—applications 
refusing to install—we theorized two methodologies: modifying the 
applications themselves or modifying the operating system. First, we 
explored modifying the applications. However, we found this approach 
to be unfeasible. The applications are encrypted when acquired and are 
only decrypted upon installation. This creates a paradoxical situation 
where modification cannot occur until they are decrypted, but they are 
not decrypted until they are installed.

Next, we explored modifying the operating system to allow appli
cation installation. In the past this has been possible on both iOS and 
macOS. One way to do this is to modify the version number reported by 
the operating system, which is stored at /̃System/Library/ 

CoreServices/SystemVersion.plist on both iOS and macOS. However, 
doing this also proved difficult. macOS comes with many built-in secu
rity protections, such as System Integrity Protection (SIP), which pre
vents the operating system from being modified (Apple, Inc., n.d. b). 
These features can be disabled. However, numerous attempts to modify 
S̃ystemVersion.plist resulted in rendering the system unbootable. 

Therefore, this approach was also unsuccessful. In the future, we would 
like to explore this circumvention further, as we believe that this is a 
promising route to running applications if successfully implemented.

7. Discussion

RQ1: How can you prepare an ARM-based Mac for analyzing iOS 
applications? First, an analyst should acquire the appropriate hardware. 
As described in Section 4.1, the primary requirement for hardware is an 
ARM-based Mac that can run macOS 11.2.3 or earlier, which can be 
determined using a variety of third-party technical specification web
sites. Next, the appropriate version of macOS and relevant analysis ap
plications must be installed. This includes installing AppTap, ipatool, 
and their dependencies. As a result, an appropriate environment for iOS 
application acquisition and analysis will be achieved.

RQ2: How can the analysis of iPhone applications using ARM- 
based Macs be streamlined? There are two main hurdles in iPhone 
application analysis on macOS: App acquisition, and the analysis itself. 
In Section 4.3, we discussed the difficulty in acquiring iPhone applica
tions, and described how ipatool can simplify this process. By hooking 
the existing ipatool application into AppTap, we were able to simplify 
the process of acquiring applications, enabling the analyst to automate Fig. 10. Finding the Changes Between Two AppTap Snapshots using DirEqual.

Fig. 11. Comparing the data within two AppTap snapshots. Snapshot 2 con
tains a new artifact from snapshot 1.

Fig. 12. Evaluation Results Against Popular iOS Apps (Percentages).
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this process. To simplify the analysis process, we built AppTap’s fil
esystem analysis feature around the forensic framework we defined in 
Section 4.5. With this tool, we are able to determine at what time 
different filesystem artifacts are created automatically. By using App
Tap, application acquisition and artifact attribution is facilitated for the 
investigator automatically, streamlining this process.

RQ3: How effective is this methodology in a digital forensic case 
study? Is the methodology widely applicable in a real-life situation? 
Beginning in Section 4.4, we explored what data could be collected from 
iPhone applications using ARM-based Macs. We chose to focus on fil
esystem data, and used a methodology typical for Mac application 
analysis. Having successfully located many user files, such as browsing 
history and chat messages, we decided to focus on filesystem artifact 
attribution. In Section 5, we examined our filesystem analysis method
ology in a controlled case study. By creating a custom made iPhone 
application and testing it through AppTap, we were able to say with full 
confidence that the artifacts were created at the time AppTap specified. 
In doing so, we were able to see that AppTap successfully identifies ar
tifacts created and attributes them to the appropriate user action. In the 
context of a forensics investigation, this can be utilized to tell what ac
tions cause an application to behave maliciously. It can also be utilized 
to discover the context behind how a benign application was used ma
liciously. Testing this methodology against a wide variety of App Store 
applications, we found that 46% of these applications ran successfully 
and could be analyzed. Therefore, our methodology allows an analyst to 
save time and more easily conduct an analysis about half of the time, 
making this platform a worthwhile investment.

RQ4: What benefits does analyzing iOS applications on the macOS 
platform bring? Finally, we evaluate the benefits that using this meth
odology provides when compared to existing methods. Given the success 
in running numerous popular applications, we compare AppTap to other 
tools available on the market (Table 2). We find that our AppTap 
analysis methodology provides several advantages: Unlike tools such as 
Correllium, our open-source methodology provides a modular and cost 
effective way to extract artifacts from iOS applications. Compared to 
jailbreaking a device or acquiring an ASRD, our methodology’s platform 
is more accessible, since no software exploit is required and ARM-based 
Macs are available to purchase by the public. Additionally, we compare 
our tool to Cellebrite and Magnet, which are developed for the collection 
of preexisting forensic evidence, rather than live artifact collection. 
Compared to these other tools, our platform allows for a live analysis, 
enabling an analyst to easily attribute different actions to different 
artifact collection.

8. Future work

In the future, we would like to incorporate additional forensic 
analysis tools within AppTap. For example, we are interested in adding 
the ability to analyze network traffic and I/O activities. Further auto
mating the filesystem checkpoints would also prove useful. For example, 
one area we would like to improve is the means of providing context 
behind each snapshot. Implementing an automatic checkpoint labeling 
system would allow us to eliminate the interruption caused by asking the 
user to specify what action they are taking between each interaction 
with the target application.

Furthermore, future work should increase the amount of applications 
supported by AppTap. Although not easy, we posit that this can be 
performed by spoofing the operating system version reported by macOS. 
However, forcing applications to run in an unsupported environment 
can lead to unexpected results. Therefore, we must proceed carefully, 
considering supporting applications on a case-by-case basis. For 
example, if the implementation of application dependencies has 
changed, spoofing version numbers should be avoided.

Finally, we would like to do an in-depth comparison between arti
facts generated on iOS devices and macOS devices and determine if any 
are generated by background noise. This is to see what potential dis
crepancies may exist, as this is a limitation within our current work.

9. Conclusion

Overall, we found that utilizing the ARM-based Mac platform 
allowed for the successful dynamic analysis of iOS applications. After 
performing an extensive platform setup and exploring the manual 
analysis of iOS applications, we were able to formulate a forensic 
framework for the live analysis of iOS applications. Using this frame
work, we were able to develop AppTap, a tool that not only enables 
analysts to easily acquire and install applications, but perform live 
analysis and filesystem artifact attribution. In our evaluation, we 
showed that nearly half of the tested iPhone applications can be 
analyzed using our methodology. Despite not supporting various ap
plications, this approach can still prove very beneficial, saving analysts 
time and money. Further research is required to expand the amount of 
supported iOS applications. Future work should explore additional 
analysis techniques, strengthening the benefits that AppTap can provide 
to the cybersecurity community.

Appendix A 

Top free iPhone applications and games in the United States App Store

Table A.3 
Using AppTap to install the top 100 free iPhone apps and top 100 free iPhone games from the App Store, then 
running these applications to see how they react in the macOS environment. Our results can be interpreted as 
follows: Runs indicates that the application ran successfully. Refused Install indicates that macOS refused to 
install the application, often due to a mismatched firmware version requirement. Environment Detection indicates 
that the application detected an anomaly in its runtime environment and voluntarily blocked its usage. Hangs, 

Table 2 
Comparing AppTap to alternatives.

AppTap Jailbreaking Correllium ASRD Cellebrite Magnet

Virtualization Full None Full None N/A N/A
Third-Party Tools Full Limited None None None None
Artifact Attribution Full Limited Limited Limited Limited Limited
Availability Easy Hard Easy Hard Hard Hard
Cost Minimal Minimal High Minimal High High
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Symbol Missing, Library Missing, Segmentation Fault, and Execution Error all indicate a generic error preventing 
analysis.

Application Name Version Number Analysis Result

2 Player Games: the Challenge 6.7.2 Exception Error
8 Ball PoolTM 55.2.1 Exception Error
Airbnb 24.11 Refused Install
Alien Invasion: RPG Idle Space 3.0.52 Exception Error
AliExpress Shopping App 8.94.0 Runs
Amazon Prime Video 10.17 Refused Install
Amazon Shopping 23.6.0 Refused Install
American Airlines 2024.10 Refused Install
Among Us! 2024.3.5 Runs
Angry Birds 2 3.20.0 Exception Error
Animal Hunter: Wild Shooting 4.0.2 Exception Error
AXS Tickets 6.6 Runs
BitLife - Life Simulator 3.13.1 Runs
Block Blast! 3.9.1 Runs
Blood Strike - FPS for all 1.003.40 Runs
BMI Calculator – Weight Loss 1.8.9 Refused Install
Brain Test: Tricky Puzzles 2.748.0 Runs
Braindom: Brain Games Test Out 2.1.9 Runs

Brawl Stars 54.243 Execution Error
Bridge Race 3.46 Exception Error
Build A Queen 0.81 Exception Error
Business Empire: RichMan 1.11.20 Runs
Call of Duty®: Mobile 1.0.43 Runs
Candy Crush Saga 1.273.0 Runs
Canva: Design Art & AI Editor 4.102.0 Runs
CapCut - Video Editor 10.7.0.62 Hangs
Capital One Mobile 6.4.0 Refused Install
Capital One Shopping: Save Now 2.49.0 Runs
Cash App 4.39 Refused Install
Charades - Best Party Game! 2.7.13 Refused Install
ChatGPT 1.2024.073 Refused Install
Chess - Play & Learn 4.3.5 Refused Install
Chick-fil-A 2024.4.0 Refused Install
Clash of Clans 16.137.13 Exception Error
Clash Royale 6.256.1 Exception Error
Clean It: Restaurant Cleanup! 1.3.4 Exception Error
Coin Master 3.5.1530 Runs
CookieRun: Witch’s Castle 1.0.201 Exception Error

Costco 24.2.2 Runs
Crossy Road 6.2.0 Exception Error
Cryptogram: Word Brain Puzzle 2.0.4 Exception Error
Dice Dreams 1.74.2 Runs
Discord - Chat Talk & Hangout 201.0 Runs
Disney+ 3.0.2 Refused Install
Domino’s Pizza USA 11.2.0 Refused Install
DoorDash - Dasher 2.315.0 Refused Install
DoorDash - Food Delivery 6.10.0 Refused Install
Doorman Verify Neighbor Game 1.7 Runs
DraftKings Sportsbook & Casino 4.33.1 Refused Install
Duolingo - Language Lessons 7.15.0 Refused Install
EA SPORTS FC 20.1.02 Runs
eBay Marketplace: Buy and Sell 6.151.0 Refused Install
ESPN: Live Sports & Scores 7.2.0 Refused Install
Etsy: Home Style & Gifts 6.65.1 Refused Install
Eventbrite 9.67.0 Refused Install
Evony 4.68.1 Runs
Expedia: Hotels Flights & Car 2024.10 Refused Install
Facebook 455.0.0 Exception Error

Falling Art Ragdoll Simulator 0.11.0 Exception Error
FanDuel Sportsbook & Casino 1.91.0 Runs
Fly Delta 5.42.1 Refused Install
Gardenscapes 7.7.5 Runs
Geometry Dash Lite 2.21.3 Runs
Gmail - Email by Google 6.0.231224 Refused Install
Going Balls 1.1.102 Runs
Google 298 Refused Install
Google Chrome 123.6312.52 Refused Install
Google Drive 4.2411.11802 Refused Install

(continued on next page)
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Table A.3 (continued )

Application Name Version Number Analysis Result

Google Maps 6.107.3.49540 Runs
Google Meet 235.0 Refused Install
Google Photos: Backup & Edit 6.73.0 Refused Install
Google Translate 8.4.0 Refused Install
GossipMaster 11.1 Segmentation Fault
GTA: San Andreas - NETFLIX 1.72.42919648 Refused Install
Hexa Sort 1.7.03 Exception Error
Hulu: Watch TV shows & movies 8.3.2 Runs
I Want Watermelon 1.0 Runs
Idle Racer - Tap Merge & Race 0.9.103 Exception Error

Impulse - Brain Training 1.30.11 Hangs
Indeed Job Search 200.0 Refused Install
Instagram 306.0.0 Refused Install
Intuit Credit Karma 24.12 Runs
Kingdom Guard:Tower Defense TD 1.0.409 Runs
Klondike Adventures: Farm Game 2.119.1 Runs
Last War: Survival 1.0.193 Runs
Lemon8 - Lifestyle Community 5.9.1 Runs
Life360: Find Friends & Family 24.10.0 Refused Install
LinkedIn: Network & Job Finder 2024.0314.0932 Refused Install
Little Caesars Pizza 24.3.0 Runs
Lyft 15.50.3 Refused Install
Magic Tiles 3: Piano Game 11.021.008 Runs
Makeup ASMR: Makeover Story 2.2 Runs
Match Factory! 1.13.81 Runs
Math Puzzle Games - Cross Math 3.3.0 Runs
Max: Stream HBO TV & Movies 3.4.0 Symbol Missing
McDonald’s 8.0.0 Refused Install
Messenger 449.0.0 Runs
Microsoft Authenticator 6.8.6 Refused Install

Microsoft Copilot 420313002.28.0 Refused Install
Mob Control 2.67.3 Exception Error
Modern Community 1.1008.81088 Runs
MONOPOLY GO! 1.19.2 Runs
Monster Never City 1.05.230 Runs
My Perfect Hotel 1.8.5 Runs
NBA 2K24 MyTEAM 204.03.223770223 Exception Error
Netflix 16.22.0 Refused Install
Nike: Shoes Apparel Stories 24.18.0 Refused Install
NYT Games: Word Games & Sudoku 4.70.1 Refused Install
Offline Games - No Wifi Games 1.7.2 Exception Error
Outlets Rush 1.42.0 Runs
Paper.io 2 3.17.0 Runs
Paramount+ 15.0.04 Symbol missing
ParkMobile: Park. Pay. Go. 24.7.0 Refused Install
PayPal - Send Shop Manage 8.58.0 Runs
Peacock TV: Stream TV & Movies 5.3.11 Runs
Pinterest 12.9 Runs
Pixel Heroes: Tales of Emond 1.2.2 Runs
Pizza Hut - Delivery & Takeout 5.33.0 Runs

Pizza Ready! 1.2.0 Runs
PlayStation App 24.2.0 Runs
Pocket FM: Audio Series 2.7.4 Refused Install
Pokemon GO 0.305.1 Refused Install
Project Makeover 2.84.1 Exception Error
PUBG MOBILE 3.1.0 Runs
Reddit 2024.12.0 Exception Error
ReelShort 1.5.05 Runs
Riddle Test: Brain Teaser Game 1.8.4 Exception Error
Ring - Always Home 5.70.0 Refused Install
Roblox 2.616.655 Runs
Royal Match 20500 Runs
Shazam: Find Music & Concerts 17.6.0 Refused Install
SHEIN - Shopping Online 10.6.2 Runs
Shop: All your favorite brands 2.148.0 Runs
ShortTV - Watch Dramas & Shows 1.7.1 Runs
Snake Clash! 1.10.0 Runs
Snake.io - Fun Online Snake 1.19.93 Runs
Snapchat 12.78.0.32 Runs

(continued on next page)
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Table A.3 (continued )

Application Name Version Number Analysis Result

Solar Smash 2.3.4 Exception Error

Solitaire 8.0.0 Runs
Solitaire Cash 7.6.0 Hangs
Solitaire Clash: Win Real Cash 1.1.44 Environment Detection
Solitaire Grand Harvest 2.360.0 Exception Error
Spotify - Music and Podcasts 8.9.19 Refused Install
Starbucks 6.68 Refused Install
Stumble Guys 0.67 Exception Error
Subway Surfers 3.26.0 Runs
Super Slime - Black Hole Game 2.13.0 Hangs
Survivor!.io 2.6.3 Runs
Taco Bell Fast Food & Delivery 8.40.3 Refused Install
Target 2024.11.0 Refused Install
Teacher Simulator 1.8.1 Runs
Telegram Messenger 10.9.2 Runs
Temple Run 1.25.1 Runs
Temu: Shop Like a Billionaire 2.35.0 Runs
Tetreault 2.0.0 Hangs
Tetris 5.13.1 Exception Error
The Roku App Official 10.1.0 Symbol Missing
Threads an Instagram app 313 Runs

Ticketmaster–Buy Sell Tickets 249.0 Refused Install
TikTok 33.8.0 Runs
Tile Family: Match Puzzle Game 1.46.3 Runs
Township 17.1.0 Runs
Traffic Escape! 3.1.0 Runs
Train Miner: Idle Railway Game 1.6.5 Runs
Travel Town - Merge Adventure 2.12.511 Exception Error
Trivia Star: Trivia Games Quiz 1.278 Runs
Tubi: Movies & Live TV 8.5.1 Refused Install
Twisted Tangle 1.43.1 Runs
Twitch: Live Streaming 18.7.2 Runs
Uber - Request a ride 3.606.10000 Refused Install
Uber Eats: Food Delivery 6.208.10000 Refused Install
UNO! 1.12.5498 Runs
Venmo 10.36.0 Runs
VPN - Super Unlimited Proxy 1.9.38 Runs
Vrbo Vacation Rentals 2024.11 Refused Install
Walmart: Shopping & Savings 24.10 Refused Install
War of Evolution 70075 Runs
Water Sort Puzzle 16.0.0 Runs

Water Sort Puzzle: Get Color 5.2.3 Exception Error
Waze Navigation & Live Traffic 4.102.0 Refused Install
We Are Warriors! 1.23.0 Exception Error
Weapon Master: Gun Shooter Run 2.7.2 Runs
Wendy’s 10.4.0 Runs
WhatsApp Messenger 23.25.85 Environment Detection
Whiteout Survival 1.15.1 Runs
Wood Nuts & Bolts Puzzle 3.7 Exception Error
Word Search Explorer: Fun Game 1.58.0 Runs
Wordle! 1.54.0 Runs
Words of Wonders: Crossword 4.5.22 Exception Error
Words With Friends 2 Word Game 21.60 Runs
Wordscapes 2.16.0 Runs
X 10.33 Refused Install
Yelp: Food Delivery & Reviews 24.12.0 Refused Install
YouTube Music 6.44.2 Library Missing
YouTube: Watch Listen Stream 19.10.5 Symbol Missing
Yuka - Food & Cosmetic scanner 4.34 Runs
Zelle 8.6.1 Segmentation Fault
Zen Word - Relax Puzzle Game 1.33.0 Runs

Zillow Real Estate & Rentals 16.74.1 Refused Install
Zoom - One Platform to Connect 5.17.11 Runs
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