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A B S T R A C T

This paper investigates the operational patterns and forensic traceability of Bitcoin mixing services, which pose 
significant challenges to anti-money laundering efforts. We analyze blockchain data using Neo4j to identify 
unique mixing patterns and potential deanonymization techniques. Our research includes a comprehensive 
survey of 20 currently available mixing services, examining their features such as input/output address policies, 
delay options, and security measures. We also analyze three legal cases from the U.S. involving Bitcoin mixers to 
understand investigative techniques used by law enforcement. We conduct two test transactions and use graph 
analysis to identify distinct transaction patterns associated with specific mixers, including peeling chains and 
multi-input transactions. We simulate scenarios where investigators have partial knowledge about transactions, 
demonstrating how this information can be leveraged to trace funds through mixers. Our findings reveal that 
while mixers significantly obfuscate transaction trails, certain patterns and behaviors can still be exploited for 
forensic analysis. We examine current investigative approaches for identifying users and operators of mixing 
services, primarily focusing on methods that associate addresses with entities and utilize off-chain attacks. 
Additionally, we discuss the limitations of our approach and propose potential improvements that can aid in
vestigators in applying effective techniques. This research contributes to the growing field of cryptocurrency 
forensics by providing a comprehensive analysis of mixer operations and investigative techniques. Our insights 
can assist law enforcement agencies in developing more effective strategies to tackle the challenges posed by 
Bitcoin mixers in cybercrime investigations.

1. Introduction

Bitcoin has become an increasingly prominent digital asset and 
payment system since its inception in 2008. As its popularity grows, so 
does the demand for enhanced privacy measures, leading to the emer
gence of Bitcoin mixers. These services offer users increased anonymity 
by obfuscating the trail of transactions on the blockchain. While Bitcoin 
mixers provide legitimate privacy benefits for individuals and busi
nesses, they have also become an issue in the realm of anti-money 
laundering efforts. The rise in cybercrime has made cryptocurrency 
tracing a crucial tool for investigators seeking to track illicit activities 
(Meiklejohn et al., 2013). However, Bitcoin mixers pose a significant 
challenge to these efforts by obscuring money flows and complicating 
the detection of criminal operations. These developments underscore 
the importance of understanding the mechanisms and patterns associ
ated with Bitcoin mixing services. While non-custodial mixing protocols 
use known protocols, custodial mixers usually use their own techniques 
to conceal funds. We focus on custodial mixing services as recent 

high-profile cases (U.S. District Court for the District of Columbia, 2021) 
show their high relevance. Our research draws inspiration from the work 
of Möser et al. (2013), which employed test transactions to analyze 
mixing services. Building upon this approach, our study aims to 

● Examine the features offered by currently operating custodial Bitcoin 
mixing services.

● Conduct test transactions on two selected Bitcoin mixing services to 
gather ground truth data.

● Analyze transaction data to identify patterns that can reveal the ac
tivity or connected addresses of these mixing services.

● Explore and evaluate possible investigative methods used to identify 
users and operators of Bitcoin mixing services.

By combining these objectives, we seek to contribute to the growing 
body of knowledge on cryptocurrency forensics and provide valuable 
insights for both researchers and law enforcement agencies tackling the 
challenges posed by Bitcoin mixers in the evolving landscape of digital 
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financial crime.

2. Related work

2.1. Bitcoin protocol

Bitcoin, introduced in the whitepaper Bitcoin: A Peer-to-Peer Elec
tronic Cash System by the pseudonymous Nakamoto (2008), represents a 
significant development in digital currency. The Bitcoin network, 
launched in 2009 based on Nakamoto’s reference implementation, 
initiated the development of decentralized digital currencies and 
blockchain technology. The Bitcoin system operates on a distributed 
public ledger, known as the blockchain, which records all transactions. 
This ledger is maintained by a peer-to-peer network that ensures the 
distribution and consistency across participating nodes and relays 
transactions and blocks. The blockchain’s structure allows for the 
traceability of all Bitcoin transactions to their origin, contributing to the 
system’s transparency. Bitcoin’s security model relies on public-key 
cryptography. Users can generate a pair of cryptographic keys: a pub
lic key serving as the receiving address, and a private key for transaction 
authorization. To initiate a transfer, the sender digitally signs a hash of 
the previous transaction and the recipient’s public key. Transactions are 
broadcast to the network for validation and inclusion in the blockchain. 
Users interact with the network through digital wallets that manage 
private keys and facilitate transactions.

A key component of the Bitcoin blockchain is its time-stamping 
mechanism, which provides proof of data existence at specific time 
points. This is implemented through a proof-of-work system, requiring 
the computation of a block hash meeting specific criteria. The proof-of- 
work process, known as mining, is performed by network participants 
called miners. Successful miners are rewarded with transaction fees and 
a predetermined number of newly created bitcoins, a mechanism that 
also controls currency supply. The proof-of-work system introduces 
computational complexity that increases with the difficulty of the block 
hash criteria. A variable called a nonce is adjusted incrementally until a 
matching hash is found. This process contributes to the security and 
consensus mechanism of the Bitcoin network. Bitcoin addresses have 
evolved over time to incorporate new features, and there are currently 
three main types of Bitcoin addresses. Legacy addresses begin with the 
number 1 and were the original address format. P2SH addresses start 
with 3 and allow more complex transactions and are often used for 
multi-signature wallets. Bech32 addresses, also known as native SegWit 
addresses, start with bc1 and offer improved efficiency. Each address 
type has different characteristics in terms of transaction size, fees, and 
compatibility with older wallets. The choice of address type can impact 
transaction patterns and may be relevant in forensic analysis of Bitcoin 
transactions.

It is important to note that while Bitcoin transactions do not directly 
reveal the identities of the parties involved, the system is not anonymous 
but rather pseudonymous. Each Bitcoin address acts as a pseudonym for 
its owner. All transactions associated with an address are publicly visible 
on the blockchain, creating a permanent and traceable record. This 
pseudonymity presents both challenges and opportunities for in
vestigators. By analyzing transaction patterns, clustering related ad
dresses, and correlating blockchain data with external information, 
investigators can potentially link addresses to real-world identities 
(Androulaki et al., 2013). For instance, if an address interacts with a 
regulated exchange, the stored identification information can provide a 
starting point for identification. Additionally, techniques such as 
transaction graph analysis and heuristic clustering can reveal connec
tions between addresses and identify patterns of behavior associated 
with specific entities or individuals. However, the effectiveness of these 
investigative methods can be hindered by the use of privacy-enhancing 
techniques such as Bitcoin mixing services, which aim to obfuscate the 
transaction trail (de Balthasar and Hernandez-Castro, 2017).

2.2. Mixing services

In response to growing concerns over transaction traceability and 
deanonymization in Bitcoin, the cryptocurrency community and re
searchers have developed various methods to enhance transaction pri
vacy. These efforts have led to the creation of privacy-focused 
cryptocurrencies like Monero (koe et al., 2020), as well as the devel
opment of Bitcoin mixing services. Mixing services, also known as 
tumblers, aim to obfuscate the trail of transactions by pooling funds 
from multiple sources and redistributing them, making it difficult to 
trace the origin of specific coins. Two main types of Bitcoin mixing 
services are distinguishable: Custodial and non-custodial mixers. 
Custodial mixers are centralized services where users send their bitcoins 
to be mixed with others. The mixer temporarily takes custody of the 
funds, mixes them, and then returns different bitcoins of equivalent 
value to the users. While effective, these services require users to trust 
the mixer with their funds, introducing potential risks of theft or 
compromise. Non-custodial mixers are decentralized protocols that 
allow users to mix their coins without giving up control of their funds. 
The most prominent example of this is the CoinJoin protocol, which 
enables multiple users to combine their transactions into a single 
transaction, making it difficult to determine which inputs correspond to 
which outputs (Maxwell, 2013). Wu et al. (2021) introduced an 
abstraction model by dividing the mixing process into three phases: 
Taking inputs, performing mixing, and sending outputs. The anonymity 
is mainly achieved through mixing mechanisms, which can be further 
categorized into swapping and obfuscating. Swapping mechanisms swap 
inputs and outputs from different participants, while obfuscating 
mechanism are designed to protect relationship anonymity by breaking 
the matching procedure between participant inputs and outputs.

To avoid the detection of mixing transactions, mixers often employ 
peeling chains. A peeling chain consists of a series of transactions that 
distribute outputs, resembling normal user transactions with two out
puts. This technique makes mixing transactions hard to distinguish from 
normal user transactions. A mixing transaction in a peeling chain typi
cally consists of one output designated to the payment to the user and 
another output used for change, which then becomes the input of the 
next transaction in the chain. Some mixers introduce random time de
lays between receiving and sending funds to further obfuscate the 
transaction trail or use variable transaction sizes to make pattern 
recognition more difficult (Wu et al., 2021).

2.3. Bitcoin analysis techniques

Following the invention of Bitcoin, researchers began developing 
methods to trace and deanonymize transactions. According to the defi
nitions provided by Pfitzmann and Köhntopp (2001), privacy in the 
context of an attack is any attempt to obtain additional knowledge about 
sender(s), recipient(s), or amount(s) of at least one transaction. These 
attacks often employ heuristics that may not be optimal but produce 
results in a reasonable timeframe. The effectiveness of these heuristics 
and attacks depends on underlying assumptions, which significantly 
influence the validity of their results. Deuber et al. (2022) critically re
view existing blockchain-related heuristics and introduce a taxonomy 
classifying them based on their underlying assumptions. They categorize 
these assumptions into different types, with user behavior and statistical 
assumptions being particularly relevant for Bitcoin tracing. User 
behavior assumptions are typically based on common patterns observed 
in cryptocurrency usage, often stemming from standard wallet software 
implementations. Statistical assumptions, on the other hand, are based 
on probabilistic models of transaction behavior. Several key heuristics 
have emerged in Bitcoin transaction analysis (Deuber et al., 2022; Reid 
and Harrigan, 2011):

Multi-input heuristic: This heuristic assumes that all inputs in a 
transaction are controlled by the same user or entity, as standard Bitcoin 
wallets do not support different users participating in a single 
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transaction. However, CoinJoin, a decentralized mixing protocol, is 
specifically designed to render this heuristic ineffective. Some re
searchers argue that the low likelihood of multiple inputs in a single 
transaction originating from different users is sufficient to justify 
continued application of this heuristic. It’s crucial to note that a single 
transaction can link two relevant addresses or clusters in an analysis.

Change-address heuristic: Bitcoin requires all inputs to a trans
action to be completely spent, with any excess value sent to a change 
address. In its basic form, this heuristic states that for every transaction 
with two output addresses, if exactly one address was never used before, 
then that address is a change address. It assumes that every transaction 
pays to only one user. Meiklejohn et al. (2013) propose a refined defi
nition to account for cases like gambling sites or mining pools with 
multiple payouts: An output address of a non-coinbase transaction is the 
change address if it is the only address in the outputs appearing for the 
first time, and there is no output address that also appeared in the inputs.

Address reuse heuristic: This heuristic assumes that an address that 
has been used before is more likely to be a payment address rather than a 
change address.This is based on the observation that change addresses 
are typically generated automatically by wallet software, while payment 
addresses are often reused by human users.

Temporal heuristic: This assumes that transactions occurring close 
together in time are more likely to be related. However, mixing services 
often introduce time delays to counteract this assumption.

There are other additional heuristics like the consistent use of the 
same address type which might be caused by the wallet implementation 
or assumption about user behavior like them favoring round numbers. 
While these heuristics rely on reasonable assumptions, mixing services 
are continually evolving to counteract these heuristics. Similarly, 
advanced wallet software may implement strategies to confuse change 
address detection, such as creating multiple change addresses or delib
erately reusing addresses.

2.4. Bitcoin mixer tracing

Several studies have conducted test transactions to analyze Bitcoin 
mixing services, each focusing on different aspects of the mixing process 
and its implications. Wu et al. (2021) conducted test transactions as part 
of their comprehensive study on Bitcoin mixing services. Their approach 
primarily aimed at determining whether mixing services employed 
swapping or obfuscating mechanisms. While their analysis provided 
valuable insights into the operational methods of mixing services, it did 
not delve deeply into specific transaction patterns. Instead, their focus 
extended to estimating the revenue generated by these services and 
identifying associated addresses. This broad approach offered a general 
understanding of the mixing ecosystem. Möser et al. (2013) also per
formed test transactions in their research, with a particular emphasis on 
revealing links between input and output transactions. Their work 
highlighted the importance of tracing funds through the mixing process 
and identified addresses that held significant amounts of bitcoin. This 
approach provided valuable insights into the potential for dean
onymization of mixed transactions and the concentration of funds 
within the mixing ecosystem. Without using test transactions, Gong 
et al. (2023) analyzed peeling chains in the blockchain data and focused 
on common patterns like the peeling amount and peeling percentage 
that are likely attributed to mixing services.

3. Analysis of current bitcoin mixing landscape

3.1. Currently available bitcoin mixing services

To gain a comprehensive understanding of the current Bitcoin mix
ing service landscape, we conducted a search across popular crypto
currency forums. Our primary sources were the Bitcointalk forum and 
Reddit, where we used the keywords B. mixer and Bitcoin tumbler to 
identify relevant discussions and service mentions. For services 

mentioned without specific URLs or Tor addresses, we employed search 
engines to locate their online presence. It is important to note that the 
information presented here is based on forum posts and the websites of 
the mixing services themselves, and may not be entirely accurate or up- 
to-date. We also noted a significant number of fraudulent activities in 
this space, including website clones with similar domain names and 
imitation communication channels (e.g., Telegram) designed to deceive 
users. Distinguishing between legitimate and cloned services is further 
complicated by some genuine mixers operating multiple domains for 
redundancy. Our search yielded 20 active mixing services. To avoid 
inadvertently endorsing any particular service, we have opted not to 
disclose their names in this paper.

We observed that none of the identified services required user 
registration or identity verification. Only one mixer allowed multiple 
input addresses for sending bitcoin to the service. 17 out of 20 services 
permitted output payments to at least two separate addresses. Ten ser
vices offered customizable delay options for output payments, which 
affects the anonymity set of input transactions. Advertised delay ranges 
for the output payments varied from immediate to 168 h, with nine 
services offering delays of 8 h or less, and eight offering delays exceeding 
24 h 19 services maintained a clearnet domain directly accessible via the 
internet, with 13 utilizing Cloudflare’s reverse proxy service to obfus
cate their direct address. All but one service provided an Onion Service 
on the Tor network, enhancing user anonymity and concealing server 
locations. 15 services offered a letter of guarantee or signed warranty, as 
described by Bonneau et al. (2014), allowing users to publicly expose 
non-compliant services.

3.2. Legal cases involving bitcoin mixing services

We reviewed relevant U.S. court cases involving mixing services to 
gather additional information on their operational methods and the 
investigative techniques used to identify operators. Our research un
covered three cases in the United States where law enforcement agencies 
successfully identified operators of Bitcoin mixing services. Notably, in 
all three cases, while law enforcement conducted test transactions, these 
did not directly lead to operator identification. The ChipMixer case (U.S. 
District Court for the Eastern District of Pennsylvania, 2023) provided 
the most detailed technical information about service operations. 
Crucially, in all instances, the identification relied on information 
external to the transactions conducted by the mixing service. ChipMixer, 
a prominent Bitcoin mixer, derived its name from the chips users 
received post-mixing. According to its announcement on the Bitcointalk 
forum, ChipMixer created Bitcoin addresses called chips and funded 
them with bitcoins in denominations ranging from 0.001 to 4.096 BTC 
(ChipMixer, 2017). This approach, utilizing 0.001 BTC multiplied by 
powers of 2, facilitated the merging and splitting of chips. The service 
advertised pre-funded chips to ensure no link between incoming and 
outgoing transactions can be established. Users could further obfuscate 
the origin of their bitcoins by donating, merging, and splitting chips 
manually on the platform. The key breakthrough in this case was the 
FBI’s identification of the IP address of one of ChipMixer’s Tor Onion 
Service servers, leading to the tracing of the server and subsequent 
acquisition of user account details, ultimately revealing the operator’s 
identity. The second Bitcoin mixer, Helix (U.S. District Court for the 
District of Columbia, 2019), advertised its ability to conceal transactions 
from law enforcement by providing customers with new bitcoins un
linked to the darknet and employing new addresses for each transaction. 
Helix partnered with the darknet marketplace AlphaBay to offer Bitcoin 
mixing services to AlphaBay customers. While specific technical details 
of Helix’s operation were not publicly disclosed, evidence suggests that 
the operator’s identification was based on information external to the 
Bitcoin blockchain. In the third case, Bitcoin Fog, announced in 2011, 
required users to register accounts and promised payouts from addresses 
different from those used for deposits. To enhance anonymity, the ser
vice claimed to delete logs after one week and charged variable fees 
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between 1 % and 3 %. The administrator of Bitcoin Fog was identified by 
tracing bitcoins used to pay for the hosting service of bitcoinfog.com. 
Although Bitcoin tracing techniques were employed, the crucial infor
mation stemmed from the service’s infrastructure rather than its mixing 
operations (U.S. District Court for the District of Columbia, 2021). In all 
three cases, law enforcement conducted test transactions, but these did 
not directly lead to the identification of the operators. The successful 
identifications were primarily based on information external to the 
Bitcoin blockchain, highlighting the importance of traditional investi
gative techniques in combating cryptocurrency-based money laundering 
operations. These findings underscore the complexity of investigating 
Bitcoin mixing services and the need for a multifaceted approach that 
combines blockchain analysis with conventional investigative methods.

4. Bitcoin mixer analysis setup

To analyze Bitcoin mixing services effectively, we required a 
comprehensive setup to trace and cluster blockchain transactions. Our 
initial approach considered using BlockSci, an open-source blockchain 
analysis platform (Kalodner et al., 2020). However, BlockSci had not 
been updated since 2020, potentially limiting its ability to process more 
recent blockchain data and transaction types. Given these limitations, 
we opted for a more flexible solution and utilized a tool called btc-csv, 
developed by Sommer (2019). This tool allowed us to extract Bitcoin 
blockchain data and format it for importing it into the Neo4j graph 
database. Neo4j is a graph based database that allows to generate 
queries to analyze complex transaction patterns (Neo4j, Inc., 2024). The 
btc-csv tool processes raw blockchain data and generates CSV files 
containing information about transactions, addresses, and their re
lationships. After cleaning up duplicates and incomplete data, the CSV 
files were then imported into Neo4j using its bulk import feature, which 
significantly accelerates the data ingestion process compared to indi
vidual transaction insertions. However, we encountered a challenge 
with btc-csv: it uses an older library for decoding Bitcoin addresses that 
was last updated in 2020. As a result, the parser was unable to process 
Taproot transactions, which were introduced in the Bitcoin protocol 
more recently. To address this limitation, we modified the btc-csv pro
gram and manually ensured that the peeling chains from the mixers 
include all addresses and transactions.

Overall, we imported more than 2,000,000,000 nodes representing 
addresses, blocks and transactions. Fig. 1 shows the data model of the 
imported data from btc-csv. Blue nodes represent mined blocks, purple 
nodes Bitcoin addresses and orange nodes transactions. Addresses are 

linked through transactions that receive and send bitcoins from con
nected addresses. Blocks contain the transactions and are linked the 
predecessor, however transactions linked to the same block are not 
linked semantically, but are only confirmed in the same block. For easier 
visualization, we only display the ID numbers that Neo4J assigned to the 
nodes automatically. During our analysis, we used the full addresses. For 
conducting the actual analysis on the imported blockchain data, we used 
Neo4j′s integrated web interface with the related Cypher query lan
guage. Our initial step was to find the nodes for input and output pay
ment addresses and then expand the graph into the comprehensive 
transaction graph. For visualization purposes, we trimmed parts of the 
generated Figure to focus on the relevant parts.

5. Methodology

To gain insights into the operational patterns of current Bitcoin 
mixing services and identify potential forensic artifacts, we conducted a 
series of test transactions and subsequent blockchain analyses. We 
selected two representative services from the market survey in subsec
tion 3.1 for detailed investigation based on their features and user 
accessibility. We initiated our test transactions by using a crypto
currency exchange wallet to send approximately 0.004 BTC to the first 
mixer, collecting the output from a single address. Subsequently, we 
reused this output address to send the remaining funds to the second 
mixer, specifying two output addresses for this transaction. For both 
mixers, we utilized the default fee and delay settings provided on their 
respective websites. The delays were 24 h or less. To mitigate potential 
side effects from wallet software, we used separate wallet software for 
input and output addresses throughout all transactions. Following the 
completion of these transactions, we performed a detailed analysis of the 
blockchain data. We developed a Cypher query, the query language in 
Neo4j, to determine the shortest path between input and output ad
dresses, allowing us to identify potential links between them. To account 
for the delay mechanisms employed by mixing services, we conducted 
our primary analysis on the output address 24 h after the initial trans
actions, as the selected services indicated delay ranges below this 
duration. We periodically observed the input address and started ana
lysing it when we noticed significant movement. Moreover, we simu
lated an attack scenario where an adversary possesses partial 
information about a user’s transaction like timing and amount and 
constructed additional Cypher queries to calculate the number of 
candidate addresses by counting transactions occurring between speci
fied block heights within defined value ranges. The Cypher query used 
for transaction value analysis is detailed in Appendix A. This approach 
enabled us to explore how varying transaction amounts could influence 
the likelihood of linking input and output addresses. To enhance our 
analysis further, we utilized two external anti-money laundering ser
vices: CrystalBlockchain (Crystal Blockchain B.V., 2024) and AMLBot 
(Safelement Limited, 2024). CrystalBlockchain was selected for its cur
rent daily allowance of 15 free checks and its presence in literature 
(Makarov and Schoar, 2021). AMLBot served as a secondary service to 
cross-verify results from CrystalBlockchain as they do not provide 
detailed information about their underlying data sources or methodol
ogies. Both services assign risk scores ranging from 0 % to 100 % to 
addresses, aiding in the detection of suspicious activities. Our overall 
analysis focused on identifying distinct patterns that could potentially be 
used to trace mixing transactions and understand the activities of mixing 
service operators. Apart from the presented results, we also checked for 
other patterns like CoinJoin transactions that would be easy to spot as 
the input and output payments are of equal size, but we didn’t find any 
patterns in the immediate vicinity of the input and output addresses 
beyond the presented results.

6. Mixer 1

Mixer 1 only allowed us to select one output address and the mixer Fig. 1. Data schema showing all node and relationship types.
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claimed to not use cryptocurrency exchanges for mixing. We used the 
default fee settings and received a signed letter of guarantee. We 
couldn’t verify the public key linked to a Bitcoin address published on 
their website because the verification was invalid. We analyzed the 
graph by loading the input address IN of the mixer and the output 
address OUT and expanded it as shown in Fig. 2. The input and output 
addresses are visibly not linked as there is no direct connection in the 
mixing period defined as the time between input payment and output 
payment. A transaction with two input addresses B and C sends bitcoins 
to two output addresses E and F. From E the direct payment to the output 
address OUT is made. C is part of a preceding peeling chain starting from 
address A and D is an address with multiple transactions.

6.1. Peeling chain

The peeling chain between addresses A and C in Fig. 2 starts with two 
transactions sending bitcoins to A 1509 and 1534 blocks before the input 
address was paid. The subsequent peeling chain transactions follow no 
obvious timing periods as the minimum time between transactions is 
three blocks and the maximum is 918 with a standard deviation of 339.7 
blocks. An additional multi-input address is linked to this peeling chain 
via the second transaction and the second output address below C. This 
address is not included in the picture to provide a more focused over
view, as this multi-transaction address only receives bitcoins from two 
addresses on the peeling chain but does not send any bitcoins to the 
peeling chain. All five addresses forming the peeling chain appear the 
first time in the blockchain and start with bc1q while only three out of 
the five peeled off addresses start with bc1q, one starts with 1 and the 
other with 3. All appear to belong to the participants in the mix. This 
understanding is derived from the fact that the addresses forming the 
horizontal line feed into a transaction with two input (B and C) and two 
output addresses (E and F), from which ultimately a payment is made to 
the output address M.

6.2. Multi-transactions addresses and multi-address transactions

Address D is part of 40 transactions over multiple blocks and sends 
bitcoins to Address B which, with one intermediate hop, feeds the output 
address OUT. A total of 14 addresses are sending bitcoins to transaction 
G. This includes the address F which received bitcoins from the mixer’s 
peeling chain. The two addresses H and I receive the bitcoins from 
transaction G, while the other addresses are sending bitcoins. This 
pattern suggests that the mixer is pooling bitcoins received from its users 

in the transaction G and mixes them in the address D.

6.3. Input and output linkage analysis

To test whether the anonymization of Mixer 1 was successful, the 
graph is checked for a path between the input and output address. This 
path does not exist. Even two months after the input transaction, the 
input address still held the bitcoins. Therefore, no link can be established 
between the input and output address. It therefore can be concluded that 
the mixer for this test transaction successfully prevents a direct linking 
of the bitcoins sent and received through analysis of the blockchain.

6.4. Transaction value analysis

With our Cypher query, we searched for transactions in the following 
24 h after the input transactions with a value of the input amount minus 
the mixing fees. It returned two transactions of which one was the actual 
transaction to the output address OUT. This shows that the target group 
of transaction is easily traceable for third parties. Running the same 
query applying a range of output values based on the range of possible 
fees applied by the mixer results in a transaction count of 4453. This 
represents the range of potential output values if the exact fee level 
applied is not known. Running the query with a value range between 
0 and the expected amount based on the minimum fee advertised by the 
mixer returns 461,140 transactions. These transactions represent po
tential outputs that combined could form two payouts by the mixer. This 
population would need to be further analyzed for inputs that result in 
exact matches for the payout. Nevertheless, this analysis illustrates how 
much more complicated the linking of transactions or addresses based 
on input and output values becomes when two output addresses or 
separate transactions are used instead of one.

6.5. Taint analysis

Table 1 shows the results of the taint analysis of key addresses. Both 
services correctly identify the cryptocurrency exchange used to buy the 
bitcoins for our test transaction. The taint results are very similar for 
both services and no owner is determined for any address in the trans
action graph. This seems to confirm the statements from Mixer 1 to not 
use cryptocurrency exchanges during the mixing process. The bitcoins 
received by the mixer show a higher taint percentage than the bitcoin 
sent to the mixer but still at a low percentage of 29 and 30 %. Even 
address D, involved in 40 transactions, and transaction G, which pre
sumably pools bitcoin from users, have low taint ratings.

7. Mixer 2

Mixer 2 offers up to two output addresses. The mixer claims to source 
bitcoins for payout from cryptocurrency exchanges. The mixing is 
initiated by submitting an order via its website on the Tor network. We 
used the default fee settings and two output addresses. To test Mixer 2, 
we used the output address from Mixer 1 to send approximately 0.00038 
bitcoin into Mixer 2. We received a letter of guarantee signed with a PGP 
key. The referenced PGP key was not provided on the website or key 
servers and therefore, we could also not validate it. The output was 

Fig. 2. Transaction graph showing relevant activities from Mixer 1 for the 
output address OUT.

Table 1 
Taint results for selected Mixer 1 addresses.

Address AMLBot CrystalBlockchain

Taint Owner Taint Owner

B 40 % not defined 40 % not defined
C 40 % not defined 40 % not defined
IN 10 % correctly identified 10 % correctly identified
D 30 % not defined 29 % not defined
OUT 30 % not defined 29 % not defined
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received 15 and 20 blocks later.
Fig. 3 shows the expanded graph in Neo4j. The input address IN is on 

the right side, below the two output addresses OUT1 and OUT2. Two 
peeling chains starting from the addresses N and H are visible with 8 and 
12 peeling steps. The input and output address are visibly not linked as 
there is no direct connection in the mixing period, defined as the time 
between input payment and output payment.

7.1. Peeling chains

The first peeling chain, starting with address A, consists of eight 
peeling transactions. The Addresses linking the transactions on the 
peeling chain consistently start with the number 3. Six of the eight ad
dresses to which bitcoins are peeled off start with bc1q. The other 2 start 
with the number 1. Aside from a consistent use of the same type of 
address along the peeling chain, this understanding of control is also 
based on the fact that the chain ultimately sends bitcoins back to the first 
output address provided to the mixer. The second peeling chain has 
twelve peeling transactions beginning from address H. Again, the ad
dresses leading to the OUT2 address all start with 3. Eight of the twelve 
addresses to which bitcoins are sent from the peeling chain start with 
bc1, three addresses start with the number 1 and one address starts with 
the number 3. The timing between the transactions in the peeling chains 
seems to follow a more predictable pattern. The minimal delay is 4 
blocks and the maximum delay is 118 blocks, while the average delay for 
the first and second peeling chain is around 58 blocks and the standard 
deviation is 34.7 and 32.8 blocks. While the number of data points is 
relatively low with only 20 transactions overall in the peeling chains, the 
consistent values could hint to default timing values that the mixing 
service uses.

7.2. Multi-transactions addresses

Address A is linked to multiple transactions and sends bitcoins to the 
first peeling chain. It sends bitcoins to and receives bitcoins from overall 
47 transactions. Six multi-transaction addresses B, C, D, E, F and G send 

bitcoins to the second peeling chain in one common transaction. Overall, 
seven addresses are included in this transaction as address B is included 
twice. Also, address D is also an output address of this transaction. 
Table 2 shows these addresses and their respective number of receiving 
and sending transactions. Addresses B and D show a significantly higher 
number of transactions compared to the rest, this could hint to an online 
service with a shared wallet for multiple users like a cryptocurrency 
exchange.

7.3. Input and output linkage analysis

To test whether the anonymization of Mixer 2 was successful, the 
graph is checked for a path between the input and output address. 
During the period of mixing as shown in the rectangle in Fig. 3, there is 
no direct link between IN and OUT1 or OUT2. Therefore, the mixer 
prevents a direct linking of the sent and received bitcoins. Applying our 
Cypher query to calculate the shortest path between the input and 
output addresses reveals a connection between them. While the visual
ization shows that during the mixing period is no direct connection 
between them, the mixer reuses addresses that are already connected 
from previous transactions. This can provide insights into how bitcoins 
received from users are subsequently used. We ran the Cypher query for 
the output addresses OUT1 and OUT2 separately and extracted the 

Fig. 3. Transaction graph showing relevant activities from Mixer 2 for the output addresses OUT1 and OUT2.

Table 2 
Number of transactions linked to selected multi-transaction addresses.

Address Number of transactions

Receiving Sending

A 47 47
B 9712 9649
C 15 14
D 6153 6114
E 25 25
F 26 26
G 27 27

P. Tippe and C. Deckers                                                                                                                                                                                                                       Forensic Science International: Digital Investigation 52 (2025) 301876 

6 



common subgraph shown in Fig. 4.
The transaction in Fig. 4 form a chain of subsequent transactions, 

enabling a clear tracing of the bitcoins. From the input address IN and 94 
other addresses, 7.7 bitcoins are pooled in the transaction P. P sends 5 
bitcoins to address Q and 2.7 bitcoins to address R. R sends, together 
with two other addresses, 9.7 bitcoins to a transactions that sends a part 
consisting of 5 bitcoins to the address Q. Two blocks later two addresses 
send 3.7 and 3.8 to an transaction that sends 4.9 bitcoins to address Q. 
Then all bitcoins are moved to address S and then subsequently to 
address D. Afterwards, the link to the output addresses is based on 
transactions in previous blocks. While it is hard to confirm any hy
pothesis without multiple test transactions over a prolonged time, it 
seems likely that transaction P pools bitcoins sent from its users. Also, 
the mixer seems to use a number of storage addresses like S and D to mix 
the bitcoin and reuses them.

7.4. Transaction value analysis

Again, we searched in the blockchain data in the following 24 h for 
transactions within the expected returned value range. There was no 
transaction with the combined value of the output transactions. There 
are 150 transactions returning the same value that was received to 
output address OUT1 and three transactions with the same value 
received at output address OUT2. Running the same query applying a 
range of output values assuming a single output payment based on the 
range of possible fees applied by the mixer results in a transaction count 
of 1422. Running the query with a value range between 0 and the ex
pected amount based on the minimum fee advertised by the mixer 

returns 391,998 transactions. This again illustrates the benefit for ano
nymity of using two output addresses compared to only one.

7.5. Taint analysis

Table 3 shows the result of the taint analysis. Looking at the ad
dresses A to G in Fig. 3, both services provide similar results that are all 
rated as low risk transactions with a 10 % taint value. The owners of 
these addresses that mix the bitcoins from different sources are attrib
uted to the HTX cryptocurrency exchange, which indicates that partic
ipants use their accounts to pay out proceeds to the customers of the 

Fig. 4. Transaction graph showing relevant activities from Mixer 2 for the input address IN.

Table 3 
Taint results for selected Mixer 2 addresses.

Label AMLBot CrystalBlockchain

Taint Owner Taint Owner

IN blacklisted not defined 26 % not defined
OUT1 23 % correctly identified 25 % correctly identified
OUT2 16 % not defined 16 % not defined
R 73 % not defined 30 % not defined
Q blacklisted not defined 17 % not defined
A 10 % HTX 10 % HTX
B 10 % HTX 10 % HTX
C 10 % HTX 10 % HTX
D 10 % HTX 10 % HTX
E 10 % HTX 10 % HTX
F 10 % HTX 10 % HTX
G 10 % HTX 10 % HTX
S 10 % HTX 10 % HTX
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mixing service. The payout addresses OUT1 and OUT2 receive a lower 
taint rating (between 16 % and 25 %) than the bitcoins originally sent to 
the mixer that received a rating of 29 % and 30 % (see Table 1). How
ever, the bitcoins received in return are more tainted than the Bitcoin 
addresses of the cryptocurrency exchange used to source bitcoins for 
paying back users. This indicates that the services use internal heuristics 
that might recognize the peeling chain pattern between the addresses A 
and OUT2, and H and OUT2. The input related addresses in Fig. 4 on the 
other hand show discrepancy in the risk scoring, the input address IN 
and address Q are even blacklisted in one service. Also, the address R 
receives a high rating of 73 % from one service. It is likely that other 
users of the mix used its services with bitcoins from problematic sources 
and therefore, tainted the input address IN. While the blacklisting carries 
over the address R, the other connected address Q is not blacklisted but 
received a high taint rating. This difference might be due to the different 
number of transactions with various taint levels that paid into the 
addresses.

8. Patterns for the analyzed mixing services

Both mixing services use peeling chains to send the bitcoins to the 
payout address and the transactions leading to the payout addresses all 
use a consistent type of address. We argue that these analyzed peeling 
chains are controlled by the mixing service as it’s unreasonable for 
someone else to make the payment to the output address on behalf of the 
mixer, unless the mixer is able to swap such payments with other par
ticipants in an organized and automated manner. The time and cost to 
find willing participants for the target amount would likely be too high. 
As normal transactions between users exhibit the same one input to two 
output addresses pattern, different wallet implementations might use 
different Bitcoin address types. Therefore, this criteria narrows down the 
number of candidate peeling chains when searching through the 
blockchain. The generated graphs for both mixers in Figs. 2 and 3 also 
vary in complexity, indicating that Mixer 2 uses a more sophisticated 
way of mixing the proceeds. This aligns with the fact that Mixer 2 in
volves addresses related to cryptocurrency exchanges and by default 
uses two output addresses.

8.1. Mixer 1

Fig. 2 shows that the mixing service sourced bitcoins from address J 
that is involved in 40 transactions. The owner of this address could not 
be identified by AMLBot or CrystalBlockchain. As this address is used for 
a prolonged time, it might be connected to an external service that the 
mixing service uses but the low number of connections rather indicates 
that this address is directly operated by the mixing service. Performing 
additional test transactions on Mixer 1 might show whether additional 
links can be traced to this address from other payouts. The output 
pattern shows an interesting anomaly as the transaction merging pay
ments from the addresses F and G does not directly send bitcoin to the 
output address, but uses an intermediary address L that in the same 
block sends the value to the output address. This suggests that these 
transactions are performed by the same user or entity. Manually coor
dinating two transactions to enter one block is rather challenging given 
the time target of about 10 min to mine a block. The first of the two 
transactions must be validated before the second transaction can be 
validated as otherwise the UTXO used in the second transaction would 
not yet exist. Thus, at first sight this extra step looks like it may be a 
characteristic of Mixer 1. The property of offering one output address 
makes this mixing service very susceptible to the transaction value 
analysis in subsection 6.4. The fact that the input address didn’t conduct 
any transaction that we could follow up on, prevents an analysis of input 
patterns.

8.2. Mixer 2

Mixer 2 sources its bitcoins for payout to participants from the 
cryptocurrency exchange HTX. One address attributed to HTX sends 
bitcoins to peeling chain 1 while six addresses are sending bitcoins to 
peeling chain 2 in a single transaction. At first sight, this looks like a 
distinctive characteristic. However, as the sending addresses belong to 
the cryptocurrency exchange HTX and not Mixer 2 it is rather likely that 
this is a pattern of HTX making payouts to its customers rather than 
Mixer 2. 1498 blocks after the payment to Mixer 2 for the test trans
action, the mixer pools bitcoins in the transaction P with 95 input ad
dresses and 2 output addresses Q and R. Over multiple addresses, the 
bitcoins are sent to the cryptocurrency exchange, which should allow 
investigators to determine the identified owner of the associated ac
counts and continue to trace the flow of bitcoins by checking further 
transactions from the accounts. The timing patterns for the peeling 
chains could help to detect peeling chains that are likely connected to 
this mixing service. In combination with known input amounts, the 
transaction value analysis can narrow down the potential number of 
output address.

8.3. Investigative angles

The identified patterns can help to identify other users, especially for 
Mixer 1 as it uses mixing addresses that are not related to a crypto
currency exchange or other known organization. Associated accounts at 
cryptocurrency exchanges that pay into peeling chains for Mixer 2 can 
help to identify the operator but also other users as it seems rather un
likely that the mixing service will have a separate account for each new 
mixing transaction and the address reuse also hints to this. Quickly 
blacklisting addresses associated with mixing services might not identify 
the operator or its users, but could potentially incur significant damage 
to the operation, eventually making it unprofitable. This should be 
implemented in cryptocurrency exchanges and potentially even in 
wallet software to protect users from unknowingly receiving blacklisted 
bitcoins. If a Bitcoin mixer is connected to an illegal marketplace, in
vestigators might be able to determine the time and amount for a limited 
number of transactions by either conducting test transactions and 
tracking where the money appears linking to the seller, or by using 
provided information like reviews or public order status information. In 
this case, our simulated attack scenario could be practically applied by 
investigators. Apart from this, the fact that many mixing services sur
veyed in section 3.1 use clearnet addresses would allow law enforcement 
agencies to send lawful interception requests to wiretap the traffic and 
image the server. The first helps to identify potential users of this mixing 
service and the latter allows to search for further hints to penetrate the 
infrastructure and identify the operator. With a higher risk of being 
detected as the certificate changes, it is possible to force the Certification 
Authority to first release subscriber information and then issue a new 
TLS certificate that allows investigators to set up a Man-in-the-Middle 
proxy that can see the entire decrypted traffic which links input and 
output addresses clearly. This attack is described in a blog post about an 
alleged attack on a XMPP instance (ValdikSS, 2023).

9. Discussion

Our analysis of Bitcoin mixing services reveals several key findings 
that contribute to the understanding of their operational patterns and 
the challenges they pose to forensic investigations. The test transactions 
we conducted demonstrated distinct characteristics of the mixing ser
vices, aligning with previous research by Möser et al. (2013) and Wu 
et al. (2021). We observed the use of peeling chains and multi-input 
transactions, confirming the findings of Gong et al. (2023). However, 
our analysis using Neo4j provided a more granular view of these pat
terns, allowing for better visualization and potential identification of 
mixer-specific behaviors. In contrast to previous studies that primarily 
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focused on determining whether mixers employed swapping, obfus
cating, or general mechanisms, our research concentrated on specific 
transaction patterns and their potential for deanonymization. Our con
tributions demonstrate how concrete patterns for selected mixers can be 
derived to enhance blockchain analysis by narrowing down the search 
space for potentially suspicious transactions. The resulting queries can 
identify and isolate transaction patterns indicative of specific mixer 
activity, highlighting distinctive patterns such as sending bitcoins to 
output addresses over two intermediary addresses within one block. By 
applying these queries, investigators can efficiently flag transactions 
that warrant further scrutiny, thereby reducing the overall complexity 
and volume of data that needs to be analyzed. For tracing individuals, 
transaction value analysis is also a suitable technique to unmix selected 
mixing transactions in certain cases. By focusing on these 
narrowed-down transaction sets, investigators can leverage additional 
information such as off-chain data or traditional investigative tech
niques to significantly enhance the accuracy and effectiveness of their 
analyses. This approach bridges the gap between theoretical models of 
mixer operations and practical forensic techniques. The examination of 
U.S. legal cases involving Bitcoin mixers together with the large 
analyzed transaction graphs revealed that while blockchain analysis 
plays a crucial role, the identification of operators often relies on 
traditional investigative techniques and off-chain information. This 
underscores the importance of combining blockchain analysis with 
conventional law enforcement methods. The cases of ChipMixer, Helix, 
and Bitcoin Fog demonstrate that mixer operators can be identified 
through various means, including tracing infrastructure payments and 
exploiting operational security mistakes. These findings suggest that 
while mixers can effectively obfuscate individual transactions, they may 
still leave traces that can be exploited by law enforcement. Also, as one 
mixer relies on cryptocurrency exchanges, assisting organizations in 
detecting and denying questionable transactions mitigates the impact of 
the underground economy on legitimate businesses.

9.1. Limitations and future research

While our test transactions provided valuable insights, they repre
sent only a small sample of mixer operations. Law enforcement agencies 
would need to conduct more extensive testing to reliably approximate 
how mixing services operate. However, this approach faces several 
challenges as mixers can adapt their techniques rapidly, potentially 
requiring investigators to analyze a significant portion of all incoming 
transactions to cover all potential methods. Our reliance on open-source 
tools limited our ability to handle recent blockchain updates, potentially 
missing nodes in multi-input transactions or multi-transaction ad
dresses. Additionally, the evolving nature of the Bitcoin protocol and 
user behaviors (e.g., new wallet software) can disrupt previously reliable 
identification patterns. Therefore, future research should focus on 
developing more robust and adaptable analysis tools that can keep pace 
with blockchain updates and mixer innovations. Using external sources 
to identify address owners can help to uncover how the mixer operates 

and provide valuable information about the operators.

9.2. Ethical considerations

While the operation of Bitcoin mixing services is questionable as 
these organizations typically operate without licenses or company reg
istrations to protect themselves from law enforcement agencies or other 
actors, their usage is not inherently unethical. Legitimate users may seek 
enhanced privacy for various reasons, including protection from 
authoritarian governments when making donations to NGOs. Our 
research, including the test transactions, was conducted with ethical 
considerations in mind. We used legally acquired bitcoins from a cryp
tocurrency exchange and limited our transactions to minimize impact on 
the mixer ecosystem. To protect user anonymity, we anonymized all 
node identifiers in our graph analysis and refrained from specifying 
exact transaction amounts or block heights.

10. Conclusion

This study analyzes Bitcoin mixing services, their operational pat
terns, and the challenges they pose to forensic investigations. Our 
research includes a survey of 20 currently available mixing services and 
an analysis of three U.S. legal cases for investigative techniques and 
operation details. Using Neo4j for blockchain data analysis and con
ducting test transactions, we identified unique transaction patterns 
associated with two specific mixers, including peeling chains and multi- 
input transactions. Our simulations demonstrated how partial trans
action knowledge could be leveraged to trace funds through mixers, 
highlighting that while these services significantly obfuscate transaction 
trails, certain patterns and behaviors can still be exploited for forensic 
analysis. The examination of legal cases underscores the importance of 
combining blockchain analysis with traditional investigative tech
niques, particularly off-chain attacks and methods for associating ad
dresses with entities. As cryptocurrency adoption and its use in 
cybercrime continue to grow, the need for advanced forensic tools and 
methods becomes increasingly crucial. Our research contributes to the 
field of cryptocurrency forensics by offering insights into mixer opera
tions and potential avenues for improving traceability. We discuss the 
limitations of current approaches and propose potential improvements 
that can aid investigators in applying effective techniques. Future work 
should focus on developing quick techniques to identify addresses 
associated with mixers while considering the ethical implications of 
such advancements. Ultimately, this research aims to assist law 
enforcement agencies in developing more effective strategies to tackle 
the challenges posed by Bitcoin mixers in cybercrime investigations.
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Appendix A. Cypher Query for transaction value analysis

Listing 1: Count the number of transactions between two block heights transferring bitcoins within a defined value range

MATCH (b:Block)<− [:BELONGS_TO]−
​ (t:Transaction)− [r:RECEIVES]
​ − >(a:Address)
WHERE r.value <= <max_value>
AND r.value >= <min_value>
AND b.height >= <start_block>
AND b.height <= <end_block>
RETURN COUNT(r)
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This Cypher query is designed to quantify the number of transactions within a specified block height and value range. It focuses on identifying 
potential output addresses used by a mixer by counting transaction values received. By replacing the last line with ‘RETURN a‘, the query can instead 
return the addresses receiving the specified transaction value.

An analyst could use this query to identify addresses that receive amounts similar to those sent to a mixer address, minus any fees, within a defined 
time range. This population of addresses can then be further analyzed to establish potential links between mixing input and output addresses.
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