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A B S T R A C T

This paper addresses the performance of a PRNU-based (photo response non-uniformity) scheme to identify the 
capturing device of a video. A common concern is PRNU in each frame being misaligned due to the video sta
bilization process compensating for unintended camera movements. We first derive the expectation of a simi
larity measure between two PRNUs: a reference and a test. The statistical analysis of the similarity measure helps 
us to understand the effect of homogeneous or heterogeneous misalignment of PRNU on the performance of 
identification for video capturing devices. We notice that dividing a test PRNU into several blocks and then 
matching each block with a part of the reference PRNU can decrease the negative effect of video stabilization. 
Hence a block-based matching algorithm for identifying video capturing devices is designed to improve the 
identification efficiency, especially when only a limited number of test video frames is available. Extensive 
experimental results prove that the proposed block-based matching algorithm can outperform the prior arts 
under the same test conditions.

1. Introduction

1.1. Motivation and problem formulation

Capturing device identification (CDI) has been serving as a valuable 
tool for addressing cybersecurity concerns, such as multi-factor 
authentication (Ba et al., 2018; Liu et al., 2023) and copyright protec
tion (Qian et al., 2023). Video has been becoming a prevalent format of 
information sharing and entertainment on social media platforms, 
which makes video CDI of vital importance to researchers and policy
makers. A promising technique for video CDI is to extract from a video 
distinguishable and unique traces left by its capturing device. The trace 
we analyze in this study is PRNU (photo-response non-uniformity) of the 
sensor of a capturing device (Fridrich, 2009). In the literature, the good 
properties of PRNU such as high dimensionality, robustness, and sta
bility have been widely acknowledged (Altinisik et al., 2020; Al-Ani and 
Khelifi, 2017; Goljan et al., 2016; Mohanty et al., 2021; Kang et al., 
2014; Zhang et al., 2023).

Given a test video and a capturing device, CDI can be formally 

formulated as a binary hypothesis testing problem, i.e., 

H0: The device does not capture the test device.
H1: The device captured the test video.

The testing result can be decided by checking the similarity between 
two PRNUs, namely, 

ρ(PR,PT)≷
H1

H0

θ, (1) 

where θ is a predefined threshold, and ρ(⋅, ⋅) represents a similarity 
measure which will be detailed in Section 3.1, PR and PT, called refer
ence PRNU and test PRNU in this manuscript, represent the PRNU’s 
estimated from the capturing device and the test video, respectively.

1.2. Limitation of prior art

We still face problems with video CDI if the given test video is 
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captured by a modern smartphone, though steady progress has been 
made (Mandelli et al., 2020; Iuliani et al., 2019; Altinisik et al., 2020; 
Taspinar et al., 2020; Altinisik and Sencar, 2021). The video stabiliza
tion procedure in a smartphone to align the shaking video content makes 
the PRNU in each frame misaligned. As a result, we cannot congregate 
enough source-matched signals to remove compression and some other 
influences on the PRNU extracted. A possible solution is performing 
re-alignment for the PRNU sequence with the help of PRNU matching 
(Mandelli et al., 2020; Altinisik and Sencar, 2021). It requires plenty of 
still images available to extract a precise reference PRNU, with which we 
can take registration for the PRNU within a video frame. Because we 
usually cannot know how each video frame is transformed, the 
re-alignment process involves a brute-force search of geometrical 
transformation parameters. Considering that the transformation of a 
frame for stabilization could be heterogeneous, this search process is 
time-consuming and possibly enlarges the false alarm rate of CDI. 
Another solution is based on an experimental observation that we can 
obtain an accurate result of video CDI as long as enough video frames are 
available and efficiently used for extracting PRNU (Taspinar et al., 
2020). However, it is still unknown how many frames are needed for a 
convincing CDI result.

1.3. Proposed approach

We first divide a test PRNU into blocks and then match each block 
with an essential part of the reference PRNU extracted from images, to 
attenuate the effect of video stabilization. The proposed method is based 
on our analysis of the varied adverse effects of video stabilization on 
different strategies for PRNU extraction. In addition to global trans
formation, the analysis concerns the local one, the parameters of which 
are uneasy to estimate via the registration method. We make an inter
esting observation from the analysis that the adverse effect of the local 
transformation on one strategy is similar to the global one’s. The accu
racy of CDI of a stabilized test video is mainly related to the number of 
effective matches. And the proposed block-based method can provide us 
with more probes.

1.4. Advantages over prior art and summary of experimental results

Our proposed block-based method integrates the advantages of the 
two previous solutions. In the first solution, we need to estimate a 
minimum of four parameters regarding the transformations of scaling 
(1), rotation (1), and translation (2), respectively. While our proposed 
block-based method only estimates the parameters associated with 
scaling and transition. We ignore rotation because matching with small 
blocks can help us decrease the rotation effect while noticeably 
improving the computational efficiency of CDI. The experiment is per
formed on a public video database. Test results show that the proposed 
strategy can make full use of each test video frame. The time complexity 
is also lower than the prior art that estimates all three kinds of 
geometrical transformation parameters.

Paper Organization: The rest of this paper is organized as follows. 
Section 2 shows the related works. In Section 3 we first introduce the 
basic techniques for extraction of PRNU from video and then introduce 
the PRNU’s misalignment owing to video stabilization. Section 4 ob
serves the effect of video stabilization on state-of-the-art strategy for 
video CDI, based on which a new block-based one is proposed in Section 
5. We verify our analysis results in Section 6 with comprehensive ex
periments, followed by the conclusion in Section 7.

2. Related works

Taspinar et al. (2016) proposed to realign the frames which were 
assumed undergoing affine transformation caused by video stabiliza
tion. However, this method was only tested in a lab setting. Recently 
Mandelli et al. (2020) proposed a method to choose the frames in a video 

sequence that were aligned with each other. The experimental results in 
the published papers mentioned above showed that extracting PRNU 
from the video is uneasy to achieve good performance in comparison 
with extracting from the image. In (Iuliani et al., 2019) Iuliani et al. 
proposed a hybrid approach that mainly tried to use images instead of 
video clips to extract a reference PRNU. The motivation is that images 
and video clips should share the same PRNU as long as they both are 
captured by the same camera sensor. Furthermore (Iuliani et al., 2019), 
addressed the problem of how to match two PRNUs with different di
mensions and the aforementioned misalignment due to video stabiliza
tion. Test results showed that realigning the PRNUs via brute-force 
search usually was memory- and computation-consuming work. Hence, 
Bellavia et al. (2019) proposed another wary for efficient PRNU align
ment based on analyzing scene content. Besides, Mandelli et al. (2020)
employed the particle swarm optimization method to search for the best 
transformation from image to video PRNU. And Altinisik et al. (Altinisik 
and Sencar, 2021) found the accuracy of estimation can be further 
improved by extending the search of the parameters of geometric 
transformation from 2-D to 3-D.

3. Revisiting PRNU extraction in case of video stabilisation

In this section, we first introduce the PRNU extraction method to 
make our manuscript self-contained, and then describe the technique of 
video stabilization equipped with a smartphone camera. Finally, we 
analyze the PRNU extracted from a stabilized video.

Everywhere in this article, we use a capital letter in Italics to 
represent a matrix of image, frame, or PRNU and use a capital letter in 
Blackboard font like F to represent a set of images, frames, or blocks. |F|
represents the number of elements in F. The PRNU extracted from an 
image or frame set F is denoted by K(F). The probability of a random 
variable X is denoted by P(X). Unless specified otherwise, the product of 
two matrices is element-wise, namely Z[i, j] = X[i, j]Y[i, j] if Z = XY.

3.1. Video PRNU extraction and matching

We usually start PRNU extraction by removing the irrelevant signal 
from an image or video frame F, namely 

W = F − f(F), (2) 

where f(•) is a filter designed to generate an ideal noise-free frame from 
the input. When only one image or frame is available for probing into 
video CDI, the residue W is taken as an estimated PRNU, even though it 
is usually inaccurate as no real filter f(•) can provide us with a noise-free 
frame. On the other hand, if a large number of frames are available, we 
have more than one residual extracted from each frame to further 
improve the accuracy of extraction. Chen et al. proposed a video PRNU 
extraction method (Chen et al., 2007) based on an output model of a 
camera sensor. Specifically, they resolved one frame F into three parts, 

F = F(0) + F(0)⋅K + Ξ, (3) 

where F(0) represented an ideal frame depending exclusively on the 
input light, K was a PRNU’s multiplicative factor together with F(0) 

producing PRNU, and Ξ represented all of the noises left, like distortion 
due to image compression and modeling error. Then K̂ was extracted 
from a sequence of frames via the following equation derived from max- 
likelihood estimation, namely 

K̂ =

∑m
k=1WkFk

∑m
k=1(Fk)

2 . (4) 

It is noted that most state-of-the-art methods employ (4) in esti
mating the reference PRNU for a given capturing device.

Refer to (1), PRNU-based CDI checks the similarity between a 
reference and the given test. One similarity measure used widely in the 
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literature is normalized cross-correlation (NCC for short), i.e., 

ϱ(PR,PT) = maxm,n〈
PR − PR

‖PR − PR‖
,

PT [m, n] − PT

‖PT [m, n] − PT‖
〉, (5) 

where m, n defines the scope of sliding search to compensate for the 
translation between two PRNUs, viz PR and PT.

3.2. Video stabilization

There is an implied condition to use (4) to obtain an estimate of 
PRNU, i.e., all the images and frames involved should be aligned with 
each other. Nowadays most smartphones have an in-camera video sta
bilization system (VSS for short) to account for or compensate for the 
undesired movements of the camera during video capturing. The VSS 
obtains information on camera movement from motion sensors equip
ped with a smartphone. Each video frame is reversely transformed ac
cording to the sensor-recorded information. Because the shakiness of the 
camera varies with time, each frame undergoes different geometric 
transformations.

Furthermore, we notice that a frame may not be warped uniformly 
during video stabilization. Instead, sometimes a video frame is divided 
into pieces each of which makes an individual transformation. For 
instance, a technique called rolling shutter correction is usually inte
grated into VSS to reduce the so-called rolling shutter effect. This effect 
specifically occurs in complementary-metal-oxide-semiconductor 
(CMOS) sensor that is widely adopted by the current smartphone cam
eras (Saffih and Hornsey, 2007). Because a CMOS sensor sequentially 
outputs recorded pixel charge data row by row, there is a time lag be
tween the top and the bottom of the pixels in one frame. As a conse
quence, the undesired movement of the camera will lead to the lines 
being uncoordinated with each other when great movement occurs. 
Because global transformation cannot reduce the rolling shutter effect, 
VSS tends to carry out heterogeneous transformations to a frame.

It is easy to see that VSS can introduce misalignment of PRNU in a 
sequence of frames. In particular, different parts of a PRNU noise may 
undergo diverse geometric transformations. While the traditional video 
PRNU extraction method requires that all the frames are aligned 
perfectly with each other, so as to isolate a reliable estimate of PRNU. In 
the next subsection, we will theoretically analyze the effect of video 
stabilization on PRNU estimates.

3.3. PRNU extracted from video transformed globally or locally for 
stabilization

Let F = {F1,F2,…,Fn}, where Fi ∈ Rw×h, represents a set of n video 
frames captured by the same camera. The frames in F may be trans
formed globally or locally for stabilization. The former processes every 
frame isometrically. The latter divides a frame into several blocks each 
of which is transformed with a different transformation matrix. In this 
light, we universally represent a frame Fi by the sum of a sequence of 
matrices, i.e., Fi =

∑m
j=1Si

j. The matrix Si
j ∈ Rw×h, is obtained by keeping 

the jth strip of Fi unchanged while setting all of the others to 0. 
Furthermore we have m sets each of which is Sj = {S1

j ,S
2
j ,…,Sn

j }, j ∈ [1, 
m], representing n strips with the same location in each frame of F. The 
relationship between frames and strips is illustrated in Fig. 1.

For the clarity of analysis, in what follows we first focus our analysis 
on global transformation, i.e., the cardinality of S is equal to 1. Then we 
will further consider local transformation.

The transformations that occurred in some video frames are broadly 
similar. Referring to Table 1, we estimate the parameters associated with 
frame transformation owing to stabilization via matching each frame 
PRNU with a reference PRNU. If the correlation coefficient ρ is larger 
than a predefined threshold ϵ, the parameters associated with the 
transformation taking place in this frame are recorded. This observation 

inspires us that the frame set F can be divided into many subsets, namely 

F = F0 ∪ F1 ∪ F2 ∪ ⋯ , (6) 

where a subset Fi = {F1
i , F

2
i ,…, Ft

i} contains the frames that are associ
ated with a transformation T i. In particular, F0 represents a set in which 
frames do not undergo any significant transformations. In this light, the 
PRNU associated with a stabilized video is a mixture of transformed 
matrices, mathematically stated with the following theorem. 

Theorem 1. The expectation of PRNU directly extracted from a stabilized 
video is a linear combination of PRNU each of which is a geometrical 
transformation from K(F0).

Proof. According to (4), the PRNU extracted from F is given below, 

K(F) =

∑|F|

k=1WkFk

∑|F|

k=1(Fk)
2

=

∑|F0 |
k=2Wk

0Fk
0 +

∑|F1 |
k=1Wk

1Fk
1 + ⋯

∑|F|

k=1(Fk)
2

=

∑|F0 |
k=1(F

k
0)

2

∑|F|

k=1(Fk)
2⋅
∑|F0 |

k=1Wk
0Fk

0
∑|F0 |

k=1(F
k
0)

2 +

∑|F1 |
k=1(F

k
1)

2

∑|F|

k=1(Fk)
2⋅
∑|F1 |

k=1Wk
1Fk

1
∑|F1 |

k=1(F
k
1)

2 + ⋯

(7) 

It is easy to see that 
∑|Fi |

k=1
(Fk

i )
2

∑|F|

k=1
(Fk)2 

is an unbiased statistic of the probability 

Fig. 1. Relationship between F, S, S and F.

Table 1 
Transformation parameters estimated from ten consequent frames of a video. 
The transformation includes 3-D rotation, translation, and scale. We use 

quaternion a + b i
→

+ c j
→

+ d k
→

to represent the 3-D rotation. And we use x0 and 
y0 to represent the translation between each frame PRNU and a reference PRNU. 
The reference PRNU is extracted from 50 flat images. We do not give the scaling 
parameter here for simplicity, considering that all the frames share the same 
value of 0.531.

a b c d x0 y0

0.544 − 3.27319E-05 − 0.006228296 0.01051058 521 256
0.544 − 3.27319E-05 − 0.006228296 0.01051058 521 256
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 255
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 255
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 255
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 255
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 256
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 256
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 256
0.543 − 8.08286E-05 − 0.009787058 0.01651693 520 256
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of geometrical transformation performed on each frame. In this light, the 
expectation of K(F) is 

E(K(F)) =
∑

i
P(F∈Fi)K(Fi) =

∑

i
P(T i)K(Fi), (8) 

where K(Fi) is the PRNU extracted from the frame set Fi. Given the 
definition of Fi, K(Fi) is a geometrical transformation from K(F0).

Equation (8) gives the result that does not consider the effect of local 
transformation. We next consider the cardinality of S larger than one, in 
which case each frame is divided into a sequence of strips in the same 
manner. As a consequence, the video PRNU K̂ is segmented into a 
sequence of sub-PRNU noises, 

K(F) = K

(
∑m

i=1
Si

)

=
∑m

i=1
K(Si), (9) 

where m is the number of strips in a frame or image, and K(Si) represents 
a PRNU extracted from the ith strip in each frame. We note again that Si 
and F are equal in size. The elements in Si are also misaligned with each 
other due to video stabilization. So K(Si) can also be expressed in a 
linear combination manner as shown in (8), i.e., 

E[K(Si)] =
∑

j
P(T j)Kj,i, (10) 

where Kj,i is a PRNU corresponding to the strips in Si that undergo the 
same geometric transformation, i.e., K(Sj,i). It is reasonable to assume 
that the probability distribution of the transformation to a strip is in
dependent of its position. Hence we have P(Sj,i) = P(Sj). Take (10) into 
(9), we obtain the PRNU regarding local geometric transformation as 
follows, 

K(F) =
∑m

i=1

∑

j
P(T j)Kj,i (11) 

In summary, the PRNU extracted from a sequence of frames K(F) is a 
linear combination depending on the probability distribution of 
geometrical transformations performed on the frames. Hence, we cannot 
guarantee a reliable result of video CDI by matching the reference and 
the test PRNU unless they both are extracted from video sequences long 
enough to incorporate a sufficient quantity of identical geometrical 
transformations. Given the difficulty of estimating the distribution of 
geometrical transformations, accurately predicting the requisite number 
of frames for obtaining a dependable PRNU is a challenging task.

4. Effect of video stabilization

The reduction of NCC caused by video stabilization is related to the 
PRNU extraction strategy applied for video CDI. Hence in what follows 
we first summarize the possible strategies, and then further discuss the 
strategy most favorable for stabilized video in terms of the expectation 
of NCC. According to the central limit theorem, NCC under the H0 hy
pothesis can be seen as a normally distributed random variable with zero 
mean. Hence, unless specified otherwise, in what follows we only 
discuss the NCC under the H1 hypothesis.

4.1. CDI strategies based on PRNU extraction from video

The first plausible scenario is that only a set of video frames F are 
available to extract a reference PRNU K(F). The following two strategies 
can be employed. 

• V1: We estimate a test PRNU K(T) from the frames T of the test 
video. And then calculate NCC for video CDI by ρ(K(F),K(T)).

• V2: A residue W is extracted from each frame of the test video. The 
maximum of all the correlation coefficients of all frames in T is used 
as a similarity measure, i.e., maxF∈Tρ(K(F) ⋅F,W).

The following two strategies, I1 and I2, are applicable to CDI of an 
input test video when an image set I is available to extract a reference 
PRNU K(I). The test PRNUs associated with I1 and I2 are extracted from 
the test video similarly with V1 and V2, respectively. 

• I1: T denotes a frame set picked from the test video for extracting a 
test PRNU K(T). CDI is determined by observing the similarity be
tween KT and KR which can be calculated by correlation coefficient 
ρ(K(I),K(T))1.

• I2: A sequence of test residue is extracted from each frame of a given 
test video (with all frames denoted by T). And then match the residue 
sequence with the reference PRNU one by one, and the largest NCC is 
taken as the similarity measure, mathematically, maxF∈Tρ(K(I) ⋅F,
W).

Table 2 summarizes the four strategies given above. Strategy I2 is 
more recommended (Iuliani et al., 2019; Mandelli et al., 2020) because 
of its good performance on CDI of stabilized video.

4.2. Expectation of NCC with strategy I2

Define G the NCC between two specific PRNUs. One is extracted 
from a set of images I. The other is extracted from a set of non- 
transformed frames F0. If I and F0 are captured by the same camera 
and have the same size, we can assume that G is a random variable with 
an expectation depending only on the camera. I.e., 

E(G ) = E(ϱ(K(I),K(F0))) = E(ϱ(W,K(I) ⋅ F)|F∈ F0). (12) 

In this light, we have a theorem asserting the detection accuracy of 
video CDI with I2. 

Theorem 2. Let K(I) be the reference PRNU extracted from a set of images, 
and F be a set of test frames possibly transformed for video stabilization. The 
expectation of the NCC associated with strategy I2 satisfies the following 
inequality, 

E(maxF∈Fϱ(W,K(I) ⋅ F))⩽min(n⋅P(F 0)E(G ), E(G )), (13) 

where n is number of the frames in F, and P(F 0) represents the probability of 
a frame in F being not transformed. Proof. See Appendix A for the 
proof.

Theorem 2 shows that the local and global transformations have a 
similar effect on strategy I2. This is not intuitive because the local 
transformation usually makes the misalignment of PRNU more complex 
in comparison with the global one. Besides, we note that the perfor
mance of strategy I2 relates to the number of video frames. The upper 

Table 2 
The similarity measures of the four possible strategies for PRNU extraction, viz 
V1, V2, I1, and I2.

Strategy Reference Test Similarity Measure

V1 F T ρ(K(F),K(T))

V2 F F ∈ T maxF∈Tρ(K(F) ⋅F,W)

I1 I T ρ(K(I),K(T))

I2 I F ∈ T maxF∈Tρ(K(I) ⋅F,W)

1 Here for simplicity of theoretical analysis, we assume KR and KT share the 
same dimension to avoid the analysis of transformation effect. But in our 
experiment, this kind of geometric transformation is involved.
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bound of expectation of NCC associated with I2 can be close to the 
ground truth E(G ) with the increment of frame number. In other words, 
the effect of video stabilization can be well attenuated for strategy I2 if 
we have a large number of frames, which is well consistent with the 
statements given in (Taspinar et al., 2020). However, we cannot ignore 
that the increment of frame number also leads to a worsening of the false 
alarm rate. This issue will be addressed in the next section.

5. Block-based matching algorithm

5.1. Algorithm

The performance of strategy I2 can be improved further by a regis
tration process (Iuliani et al., 2019; Mandelli et al., 2020; Altinisik and 
Sencar, 2021). PRNU registration is likely to provide us with a variety of 
transformed test PRNU to match with a reference. However, an accurate 
registration result is difficult to achieve, especially for a random signal 
like PRNU. The aforementioned prior arts tend to use 5–10 keyframes 
from a test video as long as an acceptable CDI result is obtained. 
Although most favorable for CDI, keyframes take a rather small pro
portion of the total frames in a test video. It may need one or more 
minutes of video to obtain the 5–10 keyframes, depending on the setup 
of video encoding. Furthermore, Fridrich has proved that the false alarm 
rate of detection will increase almost linearly with the number of 
matching tests (Fridrich, 2009). Namely, PRNU registration has to limit 
its searching space of parameters for good performance.

We can obtain hundreds of frames from a few seconds of video. Every 
frame is with different geometrical transformations. It is possible to 
attenuate the effect of video stabilization to make full use of all these 
frames. Specifically, we divide the test PRNU into a number of equal- 
sized blocks each of which is matched with a part of the reference 
PRNU. The proposed block-based PRNU matching algorithm is given in 
Algorithm 1. 

Algorithm 1. Block-based PRNU Matching Algorithm for Video CDI 

The inputs of our proposed algorithm are reference PRNU extracted 
from images I and test video frames F. After obtaining a test PRNU from 
each frame, we segment it into equal-sized blocks. Then each block is 
matched with a part of the reference PRNU to calculate NCC. CDI result 
is determined by comparing the threshold τ with the maximum NCC 

among all the divided blocks.

The proposed block-based PRNU matching algorithm is illustrated in 
Fig. 2.We experimentally find that a test PRNU extracted from a video 
with normal size, say 1920x1280, can be equally divided into 6 blocks. 
In other words, each block is with the same width and 1/6 height as the 
test PRNU. Besides, given a block of test PRNU, we should limit its 
matching to a partial reference PRNU to further improve the efficiency 
and performance of the proposed algorithm. Specifically, the heights of 
the upper and the lower regions that are excluded from matching in the 
reference PRNU are, respectively, equal to the heights of the upper and 
lower excluded regions in the test PRNU. As a result, no matter what 
translation occurs we can obtain an overlap between two matching re
gions. Refer to Fig. 2, each of the six blocks and its associated matching 
region in a reference is presented. Finally, we note that the proposed 
blocking method can overcome the influence of scaling because the 
video is usually downsized from the image.

5.2. Analysis

Video CDI can benefit from our proposed block-based matching al
gorithm in the following two aspects. First, we can exclude rotation from 
matching for registration. Referring to Fig. 3, the blocks located near the 
axis of rotation are much less modified than those located far from the 
axis. We note that video stabilization usually leads to a rather slight 
rotation of a frame. In this light, we can ignore the rotation of the blocks 
located near the rotation axis. Moreover, because the proposed algo
rithm takes the maximum of NCC calculated from all the blocks as the 
final matching result, it is possible to ignore rotation for all the blocks.

Second, dividing a PRNU into blocks can enlarge the number of 
probes. Because we can see PRNU as white noise, its statistics remain 
unchanged after blocking. Hence, given a PRNU without any geomet
rical transformation, the expectation of NCC associated with our pro
posed block-based PRNU matching (block NCC for short) is equal to that 
associated with traditional frame-based PRNU matching (frame NCC for 
short), i.e., G . Furthermore, the block from a PRNU with geometrical 
transformation can be seen as a small-sized PRNU. Its expectation of 
NCC satisfies the inequality given by (13). In this light, we can moder
ately increase the accuracy of video CDI as the number of blocks is larger 
than the number of frames.

Fig. 2. The method for blocking a test PRNU to match with a part of a refer
ence PRNU.
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6. Experimental results

6.1. Setup

The information about the capturing devices employed in our test is 
given in Table 3. We employ six Apple devices from the VISION dataset 
(Shullani et al., 2017) to verify our analysis and the proposed algorithm. 
These devices all automatically turn on the function of video stabiliza
tion. The videos collected in VISION dataset have plenty of content 
recording various outdoor and indoor scenarios. Besides, each scenario 
is captured with three different modes: still mode where the capturing 
device is stably held; move mode where the capturing device is held by a 
walking user; panrot mode where the user deliberately performs a video 
record combining a pan and a rotation on the devices.

6.2. Performance of comparison test

To show the performance of our proposed block-based algorithm, we 
first compare it with a traditional algorithm (Iuliani et al., 2019) based 
on frame matching under the same experimental setting. NCC is resistant 
to translation between two PRNUs. Hence we only need to consider how 
to compensate for the scale or rotate transformation. A PRNU extracted 
from the test video frame is scaled up first to fit with the reference PRNU. 
To speed up the brute-force searching process, we limit the search for the 
scale parameter in the range estimated by (Shullani et al., 2017) which 
has been given in Table 3. Besides, for the traditional frame-based al
gorithm, we need to estimate an exact rotation parameter within a 

search range of − 2:0.2:2 in degree. For our proposed block-based al
gorithm, we only consider the estimation of scale parameters for each 
block.

The performance of the video CDI test is related to the capturing 
mode and the number of available frames. Fig. 4 presents the ROC 
(receiver operating characteristic) curves associated with the block- 
based and the frame-based algorithms employed in identifying the 
video captured with move mode. Besides, to show the performance of 
the two algorithms being given a limited number of frames, our test only 
considers the second to the tenth frames, a total of nine frames. The first 
frame is not involved because it usually does not undergo geometrical 
transformation. Then we randomly choose different numbers of frames 
from each test video to perform CDI. It is easy to see from Fig. 4 that our 
proposed block-based algorithm outperforms the traditional frame- 
based algorithm. We know that the videos captured with move mode 
are strongly influenced by video stabilization. The test results show that 
our proposed block-based video CDI algorithm can solve this problem 
efficiently.

Besides, Fig. 5 shows the performance of CDI on the videos captured 
with still mode. This kind of video is seldom influenced by video sta
bilization. The experimental results indicate that our proposed block- 
based algorithm has achieved detection performance similar to that of 
the comparison algorithm. And by comparing the results of Figs. 4 and 5, 
it can be observed that the proposed algorithm is more capable of 
resisting the influence of video stabilization. Fig. 6 shows the perfor
mance of CDI on panrot videos. While this type of video is less common 
in reality, it can be used to assess the robustness of the video CDI al
gorithm against video stabilization. We can see that both of the two 
algorithms cannot achieve good performance when only a small number 
of frames is available. Nonetheless, the detection performance becomes 
acceptable when all of the nine frames are used for CDI. Actually, in our 
test using nine frames, the proposed algorithm demonstrates the ability 
to accurately associate each video with its respective capturing device, 
with no occurrence of false alarms.

Then we record the time cost associated with the two algorithms for 
video CDI to observe the speed improvement. The results in Table 4
show the average running time to test one frame of the videos given in 
Table 3. We test the two algorithms on the same computer with Core-i7 
CPU and 32G RAM. The experimental results show that the proposed 
block-based algorithm is much faster than the traditional one. This is 
because estimating the parameters of rotation is rather time-consuming 
and challenging to obtain accurate results.

Finally, we note that the efficiency of the scheme for video CDI can 
be further improved by replacing the brute-force algorithm employed in 
the process of PRNU matching with particle swarm optimization (PSO) 
algorithm (Mandelli et al., 2020). Fig. 7 shows that the proposed 
block-based strategy can be used to further improve the performance of 
the PSO-based scheme. Here we only present the results associated with 
the case that only one frame is taken from the test video for simplicity. 
The AUC (area under the curve) values associated with the three algo
rithms for comparison are 0.91 (red line), 0.85 (dotted yellow line), and 
0.72 (dotted blue line), respectively. Furthermore, the test results show 
that it can achieve comparatively good performance to limit the search 
range of rotation from ± 2◦ to ± 1◦. This observation is consistent with 
the analysis that extending the search range can improve both the ac
curacy rate and the false alarm rate. The proposed block-based algo
rithm of video CDI can achieve a better trade-off between the two rates 
than the prior arts. From Fig. 7, it can be observed that the green line 
eventually above the red line and the blue dashed line, indicating that 
the denser search parameter space can improve the final accuracy. 
However, this improvement is very limited.

7. Conclusion

This paper proposed an efficient block-based algorithm for video CDI 
via matching PRNUs. We mainly make the following two-fold 

Fig. 3. Illustration of frame ration. The blocks on the edge of the frame are 
modified more greatly than those on the frame center.

Table 3 
Detailed information of devices used in our experiments.

Model ID in (Shullani et al., 
2017)

Scaling (Iuliani et al., 
2019)

#Videos #Images

iPhone4S D02 [0.748, 0.753] 13 50
iPhone5c D05 [0.681, 0.691] 19 50
iPhone6 D06 [0.696, 0.713] 17 50
iPhone5c D14 [0.681, 0.691] 19 50
iPhone6 D15 [0.696, 0.713] 18 50
iPad Mini D20 [0.806, 0.821] 16 50
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contributions. 

• We analyze the effect of video stabilization on CDI when the I2 
strategy is employed for PRNU extraction. The results show that 
there is a linear relationship between the number of test video frames 
and the expectation of NCC.

• Based on the analysis results, we propose a block-based matching 
algorithm for video CDI. Because the proposed algorithm effectively 
enlarges the number of matches between test PRNU and reference 
PRNU, the performance of the video CDI is remarkably improved 
when a test video has a limited number of frames.

Fig. 4. ROC curves showing the performance of a test on the videos captured with move mode. The frame-based matching algorithm considers rotation, while the 
proposed block-based matching algorithm does not involve rotation. The test is performed by selecting from each video one frame, three frames, and nine frames.

Fig. 5. ROC curves showing the performance of a test on the videos captured with still mode. In this mode, the video stabilization feature operates infrequently in 
comparison with move and panrot modes. The traditional frame-based algorithm achieves much better detection results than that in the move mode, while the 
proposed one remains stable. The test is performed by selecting from each video one frame, three frames, and nine frames.

Fig. 6. ROC curves showing the performance of a test on the videos captured with panrot mode. In this capturing mode, the video stabilization feature requires 
significant processing of the video to stabilize the content. The test is performed by selecting from each video one frame, three frames, and nine frames.
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Finally, we note that extracting reference PRNU from still images 

may become unreliable, though it is the best choice currently. Modern 
smartphones like to be equipped with multiple rear cameras to obtain 
pro-level photography experience. And a photo is taken by combining 
the output images recorded by different cameras. As a result, the PRNU 
extracted from these images becomes a combination of PRNU blocks. We 
will address this issue in our future work based on the proposed block- 
based matching algorithm.
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Appendix A 

A Expectation of NCC Regarding Strategy I2
We will separately discuss the expectation of NCC associated with the strategy I2 designed to CDI of a test video being stabilized in two different 

ways, namely, global transformation and local transformation. First, if the frames of the test video are all globally transformed, the expectation of NCC 
is 

max
F∈T

E(ϱ(W,K(I) ⋅ F), (14) 

where W is a residue extracted from frame F via (2). Based on the assumption that PRNU is white Gaussian, the largest NCC under H1 hypothesis (refer 
to (1)) is G , obtained from the frames aligned with I, i.e. F ∈ T0. On the other hand, if there is no frame aligned with I, NCC is close to zero. So the 
result of (14) depends on the probability of T containing a frame without transformation, namely P(T0). This probability is related to, n, the number of 
frames in T and can be modeled with a binomial distribution, mathematically, 

max
F∈T

E(ϱ(W,K(I)⋅F) = (1 − (1 − P(T0))
n
)⋅E(G )

⩽min(n⋅P(T0)E(G ),E(G )).
(15) 

Next, we consider the case of strategy I2 facing local transformation where a test PRNU is seldom aligned with a reference globally. Nevertheless, 
there are some strips of the test not undergoing any geometric transformation during the process of video stabilization. And hence these strips can be 
matched with the reference. Given a frame F in test frame set T, we have a NCC associated with F as follows, 

ϱ(K(I) ⋅ F,W) (16) 

Furthermore, split the frame F into strips, (16) changes to 

Table 4 
Running time (in seconds) of video CDI with our proposed block-based algo
rithm and the traditional frame-based one. We show a running time per frame 
averaged over all test videos associated with each device.

Model Frame-based Block-based

iPhone4S (D02) 831.8 220.9
iPhone5c (D05) 3482.2 396.8
iPhone6 (D06) 5348.5 678.1
iPhone5c (D14) 1211.1 102.2
iPhone6 (D15) 1777.4 220.8
iPad Mini(D20) 1943.2 422.3
Average 2432.3 340.2

Fig. 7. ROC performance of a video CDI scheme using PSO and the proposed 
block-based matching algorithm (red line), and the frame-based matching al
gorithm. The latter algorithm additionally considers rotation with two different 
ranges (dotted yellow line − 1◦: 1◦ and dotted blue line − 2◦: 2◦). (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.)
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ϱ

(

K(I)⋅
∑m

j=1
Sj,
∑m

j=1
Wj

)

, (17) 

where Sj represents the jth strip of the frame F, and Wj represents a residue extracted from Sj. A strip without any transformations is associated with the 
maximum NCC, no matter where the strip is located in the frame, i.e., 

E
(
ϱ(K(I) ⋅ Sj,Wj|Sj ∈S0

)
= E

(
ϱ
(
K(I) ⋅ Si,Wi|Si ∈S0

)
. (18) 

Adding together all the non-transformed strips from various positions we have a NCC as follows, 

∑m

j=1
E
(
ϱ(K(I)⋅Sj,Wj)|Sj ∈ S0

)
= E(ϱ(K(I)⋅F,W)|F ∈ F0)

= E(G ),

(19) 

Combining (18) and (19) we have 

ϱ
(
K(I)⋅Sj,Wj) =

⎧
⎪⎨

⎪⎩

G

m
, Sj ∈ S0

0, Sj ∕∈ S0

(20) 

where m is the number of strips in each frame. It is easy to see that the number of non-transformed strips in a frame is closely related to the expectation 
of NCC.

Given a test frame F ∈ T, we denote the set of non-transformed strips in F by 

SF
0 =

{

Si|Si ∈S0, F=
∑

i
Si, F ∈F

}

. (21) 

Such that the expectation of NCC associated with T is 

E(max{ϱ(K(I)⋅F,W)|F ∈ T}) = P(maxF∈T{|S
F
0|} = 1)⋅E(ϱ1)

+P(maxF∈T{|S
F
0|} = 2)⋅E(ϱ2) + ⋯P(maxF∈T{|S

F
0|} = m)⋅E(ϱm)

=
∑m

i=1
P(maxF∈T{|S

F
0|} = i)⋅E(ϱi),

(22) 

where P(maxF∈T{|S
F
0|}= i) represents the probability that in one frame of F there are i non-transformed strips at most, and ϱi represents the NCC 

associated with one frame containing i non-transformed strips. Refer to (20) which gives us the NCC associated with one non-transformed strip in a 
frame, we have 

ϱi = i
G

m
. (23) 

So the challenge of calculating the expectation in (22) is to obtain the probability P(maxF∈F{|S
F
0|} = i). Denote Pi the probability that a frame has i non- 

transformed strips. Such that Pi should follow a binomial distribution, i.e., 

Pi = Ci
m⋅Pi(1 − P)m− i

, (24) 

where P is the probability of a strip being not transformed, i.e., P(S0). The simplest case is i = 1, i.e. in any of n frames at most one strip is non- 
transformed. So the possible cases include there is only one frame with a non-transformed strip, and all the other n − 1 frames are all with trans
formed strips, or there are two or more frames individually with a non-transformed strip, and the strips in the rest frames are all transformed, 
mathematically, 

P(maxF∈T{|S
F
0|} = 1) = C1

n⋅P1Pn− 1
0 + C2

n⋅P2
1Pn− 2

0 + ⋯Cn
n⋅Pn

1P0
0

= (P0 + P1)
n
− C0

n⋅P0
1Pn

0

= (P0 + P1)
n
− Pn

0.

(25) 

In the same manner, we can derive the probability there are at most two non-transformed strips in one frame as follows, 

P(maxF∈T {|SF
0|} = 2

)
= C1

n ⋅P1
2(P0 + P1)

n− 1
+ C2

n⋅P2
2(P0 + P1)

n− 2
+

⋯Cn
n⋅Pn

2(P0 + P1)
0
= (P2 + P1 + P0)

n
− (P0 + P1)

n
.

(26) 

Equations (25) and (26) interprets the probability P(max |SF
0| = n|F∈ T) from another point of view. I.e., in each frame at most, there are i strips non- 

transformed, such that the probability for this event is P0 + P1 + ⋯Pi. And given n frames independently transformed, the probability that we have a 
frame with i strips non-transformed is 
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P(maxF∈T{|S
F
0|}= n) = (Pi + Pi− 1 + ⋯P0)

n
− (Pi− 1 + Pi− 2 + ⋯P0)

n
, (27) 

where minus (Pi− 1 + Pi− 2 + ⋯P0)
n indicates to remove the cases that some frames have less than i non-transformed strips.

With (27) and (23), we are ready to calculate the expectation given in (22), i.e., 

E(max{ϱ(K(I) ⋅ F,W)|F∈T}) = U⋅
E(G )

m
, (28) 

where 

U = (P0 + P1)
n
− Pn

0 + 2*[(P0 + P1 + P2)
n
− (P0 + P1)

n
]

+ ⋯ + m*[(P0 + P1 + ⋯Pm)
n
− (P0 + P1 + ⋯Pm− 1)

n
]

= m⋅

(
∑m

i=0
Pi

)n

−

(
∑m− 1

i=0
Pi

)n

−

(
∑m− 2

i=0
Pi

)n

⋯ − Pn
0

(29) 

Considering 
∑m

i=0Pi = 1, we have 

U = m − [(1 − Pm)
n
+ (1 − Pm − Pm+1)

n
+ ⋯ ]

< m − [1 − nPm + 1 − n(Pm + Pm− 1) + 1 − n(Pm + Pm− 1 + Pm− 2)⋯
+ 1 − n(Pm + Pm− 1 + ⋯ + P1)] = n⋅[mPm + (m − 1)Pm− 1 + ⋯P1]

(30) 

It is easy to see that the term in the square bracket is the expectation of a random variable that indicates the number of strips non-transformed. As 
defined in (24), the random variable follows a binomial distribution. Hence its expectation is m ⋅ P and we have 

E(max{ϱ(K(I) ⋅ F,W)|F∈T}) < n⋅m⋅P⋅
E(G )

m
= n⋅P⋅E(G ) (31) 

Considering the correlation coefficient cannot be larger than G , we obtain the result, 

E(max{ϱ(K(I) ⋅ F,W)|F∈T})⩽min(n ⋅ P ⋅ E(G ), E(G )). (32) 
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