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A B S T R A C T

It is generally agreed that logs are necessary for understanding cyberattacks post-incident. However, little is 
known about what specific information logs should contain to be forensically helpful. This uncertainty, combined 
with the fact that conventional logs are often not designed with security in mind, often results in logs with too 
much or too little information. Events in one log are also often challenging to correlate with events in other logs. 
Most previous research has focused on preserving, filtering, and interpreting logs, rather than addressing what 
should be logged in the first place. This paper explores logging sufficiency through the lens of Digital Forensic 
Readiness, and highlights the absence of causal information in conventional logs. To address this gap, we propose 
a novel logging system leveraging “gretel numbers” to track causal information—such as attacker move
ment—across multiple applications in a tamper-resistant manner. A prototype, implemented using the Extended 
Berkeley Packet Filter (EBPF) and an Nginx web server, shows that causality tracking imposes minimal resource 
overhead, though log size management remains critical for scalability.

1. Introduction

The question of how IT systems should be designed, in terms of 
logging, to help in forensic investigations of cyberattacks has received 
little attention in the research literature. It is generally agreed, however, 
that proper security logging is important, as evidenced by logging re
quirements in security standards like ISO 27001 (International Organi
zation for Standardization, 2013) (section A.12.4) and NIST SP 800-92 
(Kent and Souppaya, 2006), though these standards offer minimal 
guidance on what specific information should be logged.

The vast majority of research on this topic has been dedicated to the 
filtration and fuzzy correlation of conventional logs. These efforts aim to 
save storage space, identify case-relevant log entries, and combine logs 
from disparate systems. Even so, a significant amount of time is still 
required from forensic investigators to analyze the resulting refined logs 
and establish their validity in court. This suggests that conventional logs 
are imprecise, information-sparse, and not optimized for forensic pur
poses (cf. Fig. 1). Few studies question whether useful information is 
being produced in the first place and whether useful information exists 
that could be logged but is not currently logged. As Barse and Jonsson 
(2004) noted: “it may come as a surprise to the uninitiated that even 
after 20 years since the birth of IDS, it is still not known what kind of log 

data that are needed to detect different types of intrusions and attacks”, 
and, while improvements have been made, we argue that this observa
tion remains largely true today in the broader context of forensics pur
poses beyond Intrusion Detection Systems (IDS).

The research literature lacks a theoretical foundation for good log
ging practices (Azahari and Balzarotti, 2024), and in response, this 
paper makes three contributions: 

● Introducing the answerability of forensic questions as a metric for 
evaluating log sufficiency.

● Identifying causal information as being crucial but absent from con
ventional logs.

● Proposing and evaluating the use of “gretel numbers” for tracking 
causal information in logs.

2. Related work

Early authors have noted the inherent limitations of logs, including: 
the trade-off between storage requirements and log accuracy (Bishop, 
1990), and the skepticism surrounding the admissibility of logs in courts 
(Kenneally, 2004). These problems will likely remain for the foreseeable 
future, and this paper attempts to work within these limitations.
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Other authors have used state machine models to reason about state 
reconstruction using logs (Gladyshev and Patel, 2004; Bishop, 1990; 
Juma et al., 2020). However, a drawback of this approach is the diffi
culty of constructing state machines of real systems.

Previous work has also addressed the storage and cryptographic 
preservation of logs (Schneier and Kelsey, 1999; Bhandary et al., 2020), 
as well as the standardization of log formats (Mitre Corporation, 2012). 
Note that such standards rarely prescribe what information should be 
contained in logs, only the format. For example, Mitre CEE (Mitre Cor
poration, 2012) mentions the need for logging requirements as part of 
the log management lifecycle, but does not go into specifics.

Threat modeling has been proposed as a method for determining 
logging requirements (Peisert et al., 2007; Rivera-Ortiz and Pasquale, 
2020). However, little prescriptive guidance (beyond the use of their 
method) is provided, such as specific recommendations or detailed 
common log requirements.

Most research in this area has focused on filtering and refining 
existing logs, by means of forensic experiments to identify indicators of 
compromise (Barse and Jonsson, 2004), and techniques broadly sum
marized as “data mining” (King and Chen, 2005; Lee et al., 2013; Hos
sain et al., 2018; Michael et al., 2020; Goel et al., 2008). Before analysis, 
the data mining approaches often consolidate disparate logs into a 
unified data format, such as provenance graphs (King and Chen, 2005) 
(which include evidence graphs (Wang and Daniels, 2005)). Although 
provenance graphs are similar to those proposed in Section 5, they often 
lack precise granularity for correlation, and do not have the 
anti-tampering properties proposed there. Provenance graphs typically 
represent processes and objects as nodes, and time-stamped events as 
edges. In contrast, the proposed solution in this paper (Section 5) uses 
nodes to represent events and edges to represent causality relationships. 
While Lee et al. (2013) proposed subdividing each process into “units” 
by strategically inserting logging points through binary analysis, they 
still rely on system call logs—an approach which does not address the 
multi-host correlation problem.

3. Similar solutions

The idea of causality tracking using gretel numbers (Section 5) 
introduced in this paper, is similar to distributed tracing (OpenTelemetry 
Community, 2024), which is a method of combining traces from mul
tiple networked applications into a single trace. A trace (OpenTelemetry 
Community, 2024) is a tree data structure describing what code has 
been executed by an application (each tree node typically represents a 
subroutine execution). A trace might, e.g., be a stack trace (when 
reporting a program crash) or a flame graph (Gregg, 2013) (for visual
izing performance bottlenecks). Context propagation (OpenTelemetry 
Community, 2024) is linkage information used to combine traces and 
must be sent from the calling process to the called process. For example, 

if process A makes a remote procedure call to process B and B crashes, 
then the resulting distributed stack trace would consist of the A-trace 
with the B-trace attached as a subtree. The context propagation infor
mation in this scenario might consist of the parent-node ID (in A-trace), 
where the B-trace root should be attached. Gretel numbers, when 
transferred using messages, work similarly to context propagation in
formation, thus, gretel numbers can be seen as combining distributed 
tracing with provenance graphs (in a tamper-resistant way), which (to 
our knowledge) has not been done before.

Context propagation has been standardized in the HTTP protocol 
(W3C, 2021), but most protocols (e.g., binary database protocols and 
system calls) do not support context propagation. While the message IDs 
(Resnick, 2001) in the email message format could be used to implement 
context propagation in Mail Transfer Agents (MTAs, e.g., SENDMAIL1 and 
POSTFIX2), these IDs are normally set once by the Message Submission 
Agent (MSA) and then sent as-is through the chain of MTAs—effectively 
making the MTAs invisible in the distributed tracing system. Context 
information should be generated anew on each hop to prevent this. In 
comparison, the solution in Section 5 has a smaller intended scope (a 
single website/domain/system, rather than all email servers on the 
internet) and aims to be more extensive by spanning all protocols (not 
just email/SMTP), all system calls, and all messages (not just forwarded 
as-is).

Distributed tracing is not typically used for security (it is mostly 
intended for debugging and performance analysis), but previous work 
has proposed its use in anomaly detection (Jacob et al., 2021; Qiu et al., 
2022). Previous non-security work (Shen et al., 2023) has used kernel 
network information to infer (which may be potentially unsuitable in a 
security context) process-internal causality information, in order to 
avoid the need to implement context propagation and instrumentation.

Prominent distributed tracing systems include tools such as Open
Telemetry3 and Jaeger4. These tools typically consist of three core 
components: a centralized storage server, various collection agents, and a 
visualization tool. Collection agents might take the form of customizable 
software libraries (e.g., the OpenTelemetry client library for Python) or 
as plug-and-play-like modules (e.g., the OpenTelemetry module for 
Nginx). For the Proof-of-Concept presented in this paper (Section 6), the 
decision was made to build the system from adapting an existing 
distributed tracing tool. This approach was chosen because current tools 
lack crucial features that would necessitate extensive rewrites. Notably: 

1. There is a lack of agents for certain software (e.g., the Linux kernel),
2. The agents lack support for certain functionality (e.g., the ability to 

track system calls),
3. Excessive details provided by some agents (e.g., entire stack traces),
4. Insufficient details provided by other (e.g., metrics-only data),
5. Lack of support for context propagation in system calls and binary 

database protocols, and
6. Constraints imposed by the trace (aka. “Span”) tree-datastructure, 

which complicates some certain forms of causality tracking (e.g., 
response-flows and “stored” causality (e.g., in INODES).

As a result, existing systems would primarily be useful for storage 
and transfer to this storage—functions that are little useful in evaluating 
(Section 7) the proposed concept (Section 5).

4. Forensic Readiness for systems

Forensic Readiness (FR) has many definitions in the research 

Fig. 1. Venn-diagram of loggable information of the problem domain of this 
paper: forensically useful information missing from conventional logs, con
trasted with related work that extracts useful information from noisy conven
tional logs.

1 https://www.proofpoint.com/us/products/email-protection/open-so 
urce-email-solution.

2 https://postfix.org/.
3 https://opentelemetry.io.
4 https://jaegertracing.io.
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literature, ranging from an organization’s ability to conduct forensic 
investigations (Pangalos et al., 2010) to the properties of a system that 
allow investigation (Pasquale et al., 2018). While log sufficiency would 
fall in the latter domain, some argue (Daubner et al., 2024) that this 
research is often too high-level to be useful. Therefore, this paper pro
poses a narrower definition: a system is forensically ready with respect to a 
set of forensic questions. That is, if future questions, for some hypothetical 
investigation, can be predicted ahead of time, then the system under 
(future) investigation can be designed to facilitate accurate and reliable 
answers to those questions.

Thus, the question of “When is logging sufficient?” has been broken 
down by one level of abstraction, and what remains to be determined is: 
what are the common questions in cybersecurity investigations, and 
what logging-information would they require? This depends on the 
system, e.g., a social media network, an online bank, and a water 
treatment plant would all have questions in common, but also domain- 
specific questions. Furthermore, determining a complete list of ques
tions (like those in (Goel et al., 2008)) would be equivalent to predicting 
the future and likely impossible—but through iteration, it is possible to 
continuously improve over time, cf. risk management methodology 
(International Organization for Standardization, 2013; Daubner and 
Matulevičius, 2021). More research is still required to survey what the 
common forensic questions are.

5. Causality tracking using gretel numbers

In the process of analyzing common forensic questions, we observed 
that logs often lack causal information, making correlating logs from 
different applications challenging. Therefore, such information is 
fundamental to answering most forensic questions in systems of multiple 
applications. See e.g., Fig. 2 where an Nginx access log is analyzed using 
the who-what-when-where-why-how (5W1H) questions (sometimes 
used as a checklist in forensic analysis), where causal information might 
fall under “Why” and “How”. To address this gap, we introduce the 
concept of “gretel numbers,” to enhance log correlation by embedding 
causal information. The rest of this section delves into the details of this 
concept.

Log entries describe events, and the causality of an event explains 
why that event occurred (which pertains to How in 5W1H, since Why 
describes human intentions). We make the case that most events (logged 
or otherwise) describe SENT and RECEIVED messages (cf. Figs. 3 and 4). The 
reason a message was RECEIVED is that it was SENT, and the reason it was 
SENT is usually caused by the processing of another RECEIVED message. This 
model captures not only the communication between applications but 
also: function calls between source code modules and system calls from a 
process to the operating system (OS) kernel.

Most modern systems consist of (non-human) interactive entities (e. 
g., containerized Linux processes) organized in a layered structure, as 
illustrated by the website in Fig. 3. The figure shows the layered pro
cessing of a single external message, which forms a graph. Each external 
message forms its own graph in this way, and if two external messages 
are processed the same way, their graphs will be isomorphic. In contrast, 
Fig. 4 shows the same scenario, but described using logged events (B1 
has SENT-event SB1 and RECEIVED-event RB1). The reason message C1 was 
RECEIVED by DB (event RC1) is because API SERVER SENT message C1 (event 
SC1), which is because it RECEIVED message B1 (event RB1), and API SERVER 

is programmed to use C2 to construct B2.
The exact modeling of causality should be adapted to the needs of 

future investigations. For example, Fig. 5 models the same events as 
Fig. 4, but more accurately describes the control flow. Similarly, events 
can be inserted between two existing events to provide finer-grained 
logging, or merged or removed to save disk space (since each event re
sults in a log entry).

Table 1 illustrates the log generated by WEB SERVER (in Fig. 5), which 
forms an inverse adjacency list of the WEB SERVER-part of the graph 
(effectively pointing back into the sender’s log like a linked list). The 

Metadata-field represents data that would conventionally be logged 
(pertinent details from message A1). For distinction, each event must be 
assigned a unique identifier (ID) which, for clarity, will be referred to as 
the event’s gretel number (after the Hansel and Gretel fairy tale) and 
similarly, Figs. 4 and 5 exemplify gretel graphs. In Table 1, the event- 
names from Fig. 4 (e.g., RA1) symbolize concrete gretel number (e.g., 
which in an implementation might be a number like: 12345). Note that 
Table 1 references SB2, which did not occur inside WEB SERVER, and this is 
only possible if message B2 contains gretel number SB2 (as part of the 
message metadata). Note also that each application must independently 
generate its gretel numbers, and this is explained in more detail in 
Section 6.

The correlation of logged events is achieved by merging the local 
gretel graphs from all logs, thereby reconstructing the complete gretel 
graph. For example, if the Metadata of log entry RC1 shows an SQL- 
injection attack, the combined gretel graph could be used to find the 
log entry RA1, where the Metadata would include the external IP address 
of the attacker. At that point, the investigator no longer needs the gretel 
graph and can focus on the Metadata-field of the respective log entries. 
Unlike in conventional logging, no fuzzy correlation (e.g., based on 
timestamps) is necessary, which makes the forensic analysis quicker and 
more accurate. Furthermore, fuzzy correlation is often critically reliant 
on time synchronization using e.g., the Network Time Protocol (NTP). In 
contrast, correlation based on gretel numbers works in the face of un
synchronized clocks and degraded timekeeping.

Besides correlation, gretel numbers can also detect log tampering in 
certain scenarios. The ID and Predecessor IDs fields in Table 1 roughly 
correspond to credit and debit in accounting (McClung, 1913) (tracking 
transactions between accounts), Due to the distributed nature of gretel 
numbers, and the slight overlap between gretel graphs, each application 
bears “witness” the actions of the systems it interacts with (similarly to 
how financial records of one company can inform on the malpractices of 
another company). For example, if an attacker achieves remote code 
execution in API SERVER (e.g., using a buffer overflow vulnerability), they 
can tamper with the API SERVER log, but they cannot (necessarily) tamper 
with the logs of the other servers. If the attacker deletes RB1, they cannot 
delete SB1 without also gaining access to the WEB SERVER (which is more 
work and will take additional time), and this deletion creates a detect
able gap in the gretel graph. The attacker could omit or fake SC1 when 
sending C1, thus manipulating RC1—but doing so would produce 
another (non-isometric) graph which could be detected using anomaly 
detection (similar to how credit and debit should sum to zero in a 
balanced book). Implementing such an anomaly detection algorithm is 
not explored in this paper, but we note the potential here. Note espe
cially how gretel numbers can extend to system calls logs, allowing the 
OS to act as (just) another server/witness (cf. related work on prove
nance graphs). Note also that the degree of redundancy and 
anti-tampering offered by gretel numbers is dependent on the isolation 
between “messaging entities” (i.e., the granularity chosen for applica
tions in the system). If an attacker exploits a buffer overflow vulnera
bility in a Linux process, any logging performed by any part of that 
process (and any memory-sharing process) is susceptible to tampering. 
Thus, the process is a more suitable granularity for logging than indi
vidual source code modules (except to describe internal intricacies, such 
as when a cache hit substitutes a backend request).

6. Implementation

To test the practical feasibility of using gretel numbers, a Proof-Of- 
Concept (POC) was built5, as illustrated in Fig. 6. The POC imple
mentation consisted primarily of a customized Nginx web server6, using 

5 available at: https://github.com/jesajx/gretel.
6 https://nginx.org.
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build settings derived from Arch Linux7, and an Extended Berkley Packet 
Filter (EBPF) module8.

Nginx was used in the setup of two Docker9 containers, each built 

from the same Nginx source code, to simulate a two-layer website ar
chitecture. The first instance (NGINX-A) was configured to forward specific 
requests to the second instance (NGINX-B), analogous to the API SERVER and 
DB configuration demonstrated in earlier examples. This reuse of code 
saved development time while still demonstrating the concept of gretel 
number.

EBPF is a Linux kernel feature for monitoring low-level events by 
executing custom code directly inside the kernel. The primary advantage 
of EBPF is that it achieves this securely and efficiently, by running with 
restricted capabilities. EBPF expands the functionality of an earlier 
project (that could only filter network packets) to cover additional use 
cases and kernel internals. EBPF was used in the POC to track and log 
gretel numbers through system calls made by the two Nginx instances. 
The POC EBPF module was written in the C programming language and 
compiled into EBPF bytecode (instead of regular x86-64 machine code). 
The bytecode is uploaded to the kernel via the EBPF system call and 
executed in a lightweight virtual machine. An EBPF module consists of 
callbacks, or “probes”, that are hooked to specific parts of the kernel. In 
the POC, the EBPF module registered callbacks for system calls entry and 
exit, as well as for select file-system-handling functions. The POC EBPF- 
module was managed using a Python script that used the BCC Toolkit10

to handle compilation, upload, and logging.
The implementation involved four key aspects: 

1. Nginx internals,
2. kernel internals,
3. Context propagation in all messages, and
4. a scheme for constructing gretel numbers.

Fig. 2. An example Nginx access log explained by mapping 5W1H to different fields (e.g., “When?” to timestamp, and “Who?” to IP and user.

Fig. 3. Example logging scenario where an external message (A1) is processed 
by a website using internal message-passing. Processing spans four applications, 
organized in three layers: WEB SERVER, API SERVER, and lastly: DB and μ-SVC.

Fig. 4. The Fig. 3 message processing scenario from the perspective of logged 
events (nodes) and causality (edges): each SENT-event (Sxx) causes the corre
sponding RECEIVED-event (Rxx), which in turn causes other SENT-events (Syy).

Fig. 5. Alternate modeling of Fig. 4 that more accurately models the causality 
(edges) of events by their sequential order in the control flow (in WEB SERVER and 
API SERVER applications, respectively).

Table 1 
The log produced by WEB SERVER in Fig. 5, where each log entry is assigned a 
unique ID, and contains Predecessor IDs referencing other log entries (some in 
remote logs).

ID Predecessor IDs Metadata

RA1 (none) …
SB1 RA1 …
RB2 SB1,SB2 …
SA2 RB2 …

Fig. 6. Proof-Of-Concept architecture showing the communication between 
four main applications: TEST SCRIPT, NGINX-A, NGINX-B, and the Linux kernel—and 
various details (message interception and application–log associations).

7 https://archlinux.org/packages/extra/x86_64/nginx.
8 https://ebpf.io.
9 https://docker.com. 10 https://github.com/iovisor/bcc.
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Since the focus of this paper is to improve logging practices, the need 
for such modifications should not be seen as a limitation or drawback. 
This stands in contrast to static analysis approaches, like that in (Lee 
et al., 2013), where logging is instrumented automatically to minimize 
developer intervention. We believe that logging must be treated as a 
“first-class citizen” in software development to achieve its full potential 
and to be explainable in court.

Nginx (1) was modified to inject and extract gretel numbers in 
messages and logs. For simplicity, HTTP/1.0 was used as the commu
nication protocol (3), and a custom HTTP header was used to transmit 
gretel numbers (although a standardized context propagation header 
exists (W3C, 2021)). Tracking the gretel numbers between extraction 
and injection points primarily involved introducing a variable in each 
“thread”. Note that Nginx uses the event reactor design pattern, which 
will not be explained here. This implementation aligns more closely with 
the control-flow-oriented approach depicted in Fig. 5 than the purely 
message-mapping approach in Fig. 4. Each thread handled forking, 
merging, and insertion of new gretel numbers by updating the variable 
in place. As a result, if each received message is processed by one new 
thread, the program maintains one variable per active message, along
side temporary text buffers for messages and logs. This per-message 
overhead is minimal in terms of memory consumption and processing. 
Note, however, that Nginx handles reading and writing separately, 
resulting in two “threads” per request. The local gretel graph was written 
in full to the Nginx error log, and the access logs only contained a subset 
of gretel numbers (corresponding to events analogous to SA2 in Fig. 4, 
and mirroring the log format in Table 1). For the experiment, additional 
logging points were added to the error log (but not the access log), to 
facilitate a comparison of log sizes (Section 7).

To facilitate the reader’s ability to try the POC for themselves, EBPF 
(2) was chosen despite kernel modification being the simpler approach. 
The increased difficulty arises because EBPF, for security reasons, 
cannot modify the result of a system call, which prevents gretel numbers 
from being returned to Nginx from EBPF. The POC circumvents this 
limitation by sending both the Nginx-side SENT and RECEIVED gretel 
numbers to the kernel, where the kernel handles logging of the system- 
call-related edges. Furthermore, instead of adding a parameter to every 
system call—an approach that would break compatibility—gretel 
numbers are transmitted (3) to the kernel using the PRCTL system call 
(which is normally used to set/get miscellaneous process settings). An 
invalid PRCTL “OP-code” is used intentionally to make the Linux kernel 
ignore the call while still allowing EBPF to read the arguments. On the 
Nginx side (1), gretel numbers are not generated for every system call, 
and instead PRCTL is only called during context-switches between 
“threads” (i.e., resuming a paused thread) or when the active gretel 
number in the current thread changes—effectively the Nginx-side sys
tem call SENT-events are merged into the active thread gretel number. 
The EBPF stores the last reported gretel numbers for each running 
process (native thread).

Besides system calls, EBPF (2) is also used to store a gretel number for 
each (in-memory) INODE. When a process writes to an INODE, this can be 
seen as a “delayed” message that is delivered when another process 
reads from the INODE. Additional kernel internals could similarly be 
tracked, but the POC was limited to INODES for demonstration purposes.

Since the PRCTL system call can send at most 256 bits (four unsigned 
64-bit numbers), the POC implementation used this size for all gretel 
numbers. While this size is significantly larger than necessary, it serves 
to demonstrate the “worst-case scenario”. In practice, the gretel number 
scheme (4) should be adapted to the forensic requirements of the system 
under (future) investigation. Determining the best scheme is beyond the 
scope of this paper. However, for completeness, the basic POC gretel 
number scheme is outlined here. Each gretel number is subdivided into 
two components: a location and an arbitrary but unique number. The latter 
could be a random number, a counter, or a timestamp, with random 
numbers being the most common in the POC. The location uniquely 
represents the entity that generated the gretel number, typically 

consisting of an APP-ID. Optionally, the location can encode metadata 
about the event, such as type and or the specific source code line (e.g., 
print-statement) that generated the number. There are four applications 
in the POC: NGINX-A, NGINX-B, the TEST SCRIPT, and EBPF (with an additional 
EBPF instance required if the Nginx-servers run on separate hosts). 
Additionally, a placeholder would be needed for the “invalid applica
tion”, bringing the total to five applications Thus, 3 bits are needed to 
represent location. However, for simplicity, the POC uses a multiple of 64 
bit numbers to represent location. It is worth noting that in scenarios 
where an application (e.g., a single-process Docker container) operates 
as a singleton (i.e., at most one instance exists at a time), additional bits 
are unnecessary to differentiate between restarts—provided no arbitrary 
but unique number is reused. In a load-balancing scenario (e.g., multiple 
parallel copies of NGINX-A), it is generally better to assign each load- 
balancing “slot” is own APP-ID. In large-scale systems, a hierarchical 
location scheme, akin to IP subnetting, may be required to manage 
complexity.

In addition to the POC, a short Python script was used to translate the 
resulting logs into a graph file, enabling visualization in Gephi11. Fig. 7
presents the Gephi-exported image of an example gretel graph. The 
graph’s nodes are color-coded as follows: blue nodes represent NGINX-A 

events (left side), green nodes represent NGINX-B events (right side), red 
nodes represent EBPF events in red (scattered throughout), and magenta 
nodes represent the TEST SCRIPT (bottom center).

The top section of the graph captures the Nginx startup process, 
while the bottom section shows iterations of the respective Nginx event 
handling loops, culminating in the processing of an HTTP request. Fig. 8
zooms in on this request-interaction (bottom center) of Fig. 7. The 
numbers highlight the sequence of events: 

1. TEST SCRIPT sends a request to NGINX-A using curl,12,
2. NGINX-A forwards the request to NGINX-B,
3. NGINX-B responds to NGINX-A, and
4. NGINX-A responds to TEST SCRIPT.

Finally, while the use of a centralized storage solution would be 

Fig. 7. POC-produced example gretel graph, including Nginx startup (top) and 
the step-by-step processing (bottom) of an HTTP request (magenta).

11 https://gephi.github.io.
12 https://curl.se.
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expected to preserve logs containing gretel numbers—thereby protect
ing older logs from tampering—no such solution was included in the 
Proof-Of-Concept. Since gretel numbers are simply additional metadata 
appended to existing log entries, any standard log storage solution can 
accommodate them, including distributed redundant solutions. As a 
result, storage solutions were not further explored in this paper. It 
should be noted, however, that a gretel-number-aware storage solution 
could be beneficial for analysis (parsing gretel number schemes) and 
anti-tampering (gretel number spoofing). It is assumed that a storage 
solution would handle the authentication of each log-sending applica
tion. The credentials used for this authentication should, however, be 
assumed to be compromised at the same time as the respective appli
cation. Therefore, when an application mentions a specific gretel num
ber in its log, this should be seen as a “claim” and scrutinized as such 
during forensic analysis.

7. Evaluation

To test the performance of the POC, a simple experiment was set up: 

1. The POC was started and brought to a steady state.
2. Once stabilized, the experiment began, consisting of 10 thousand 

sequential requests sent from TEST SCRIPT to NGINX-B (via NGINX-A).
3. This experiment was repeated 10 times, under two conditions: with 

gretel numbers enabled (“with-gretel”) and disabled (“without-gre
tel”). As a result, a total of 20 experiments was conducted.

For the “without-gretel” configuration, logging points were replaced 
using C-macros to exclude gretel numbers. The gretel C-functions 
remained in the resulting binary, but were never called. Furthermore, 
the EBPF module was not run during the “without-gretel” experiments.

It is also important to note that, unlike in Fig. 7, the logging of in
dividual system calls was disabled for this experiment (i.e., removing 
most red nodes). Instead, only INODE-related events and process startup- 
related events were logged by the EBPF module. This choice was made to 
improve practicality and fairness, as logging every system call is not 
feasible in the real world.

The experiment used a desktop PC with an Intel Core i7-3770 CPU 
(3.40 GHz) CPU, 12 GiB RAM, a Solid State Drive (SSD) for OS files, and 

a Hard Disk Drive (HDD) for experiment files. The PC was running Arch 
Linux Kernel version 6.9.7-arch1-1. Little else was running on the PC 
during the experiments.

The observed variables for the experiment included: the current time 
(clock), user CPU time, system CPU times, and RAM usage. For each 
docker container CPU times and RAM usage were recorded at the start 
and end of the experiment, using values from the/SYS filesystem. Note 
that the system CPU time includes the time spent in the EBPF probes. 
Additionally, the size of the produced logs was measured after the 
experiment.

The results are presented in Table 2, with each cell formatted as μ ±
σ, w consisting of the mean (μ) and Bessel-corrected standard deviation 
(σ). The Duration refers to the total time of the experiment. The User Time 
and Sys. Time are each combined CPU time of both NGINX-A and NGINX-B. 
While the doubling in CPU time may seem alarming, the time spent 
computing is dwarfed by the time waiting on input/output (cf. Dura
tion). This simply indicates that Nginx is spending less time idle. Note 
also that the test script was considered external and therefore its CPU and 
RAM usage was not tested—although the total time does give an 
estimate.

The Access Log and Error Log fields represent the sizes of the 
respective logs—showing a 2 to 2.5 times increase in size. The size of the 
EBPF log (with-gretel only) was 5.374 ± 0.012 MiB. The size used by the 
gretel numbers in the error log was roughly 12.14 MiB, accounting for 
40 % of the file (65 % of the increase). Similarly, gretel numbers 
accounted for 60 % of the access log size (97 % of the increase). A 
reduction in the size of each gretel number (e.g., from 256-bit to 64-bit) 
could, therefore, significantly reduce the size of the log file. More 
important, however, is the placement and quantity of logging points 
strongly influence log size—as seen by comparing the access log (fewer 
logging points) to the error log (additional logging points). Fewer log
ging points would bring the error log closer to the access log in size.

The memory usage at the end of the experiment, RAM Anon, repre
sents the combined total amount of “anonymous” memory pages used by 
NGINX-A and NGINX-B. The amount of allocated memory at the start of the 
experiment followed the same proportions and was 0.044 MiB less in 
both configurations. The result shows that gretel numbers caused an 8 % 
increase in allocated memory. Such a minor increase aligns with ex
pectations, since roughly four gretel numbers are stored per request, 
along with some temporary buffers for log and message generation. 
Parallel requests may have raised the memory requirements, but the 
results show that such an increase is unlikely to be significant (Nginx 
seems to preallocate most memory).

As for network traffic, each HTTP message (request and response) 
contains a single gretel number (and some text): resulting in exactly 74 
additional bytes per message. In comparison, the header part of a typical 
(non-gretel) HTTP message ranges from 75 to 250 bytes. Each of the 10 
thousand curl-invocation caused 4 HTTP messages (curl-to-A-to-B, B-to- 
A-to-curl), resulting in exactly 2.82 MiB additional network traffic. This 
corresponds to roughly 43 KiB per second, which is quite small, but this 
would accumulate with parallel requests and multiple applications. 
However, this seems unlikely to cause issues compared to the log sizes 
(which accumulate over time).

8. Discussion, limitations & future work

The POC workarounds, such as the use of EBPF instead of directly 
modifying the Linux kernel, were deemed sufficient to demonstrate the 
feasibility of gretel numbers. However, future work should evaluate the 
concept on a more realistic testbed (e.g., more applications beyond 
Nginx and logging an appropriate subset of system calls).

The proposed causality-tracking system aims to track all applications 
and all actions within a well-defined system (e.g., a website), but not 
necessarily log all actions. In essence: every action should be able to 
account for its cause when “asked”. As demonstrated in the evaluation, 
the tracking itself is efficient, but the log space vs. accuracy trade-off 

Fig. 8. Partial gretel graph showing the processing of an external request 
(magenta) by NGINX-A (blue), which passes through the backend NGINX-B. Nodes 
represent log entries, and the edges indicate causality. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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must still be managed. Ultimately, the increased log size is the cost of 
cybersecurity, and this cost might be unavoidable.

The log size resulting from implementing gretel number tracking is 
influenced by two main factors: the bit size of each gretel number and 
the placement of logging points. Since gretel numbers dominate the log 
size, reducing their bit size (e.g., from 256-bit to 128-bit or 64-bit) could 
significantly reduce the log size. This would lead to a lower relative 
increase in log size (e.g., 30–75 %) compared to using 256-bit gretel 
numbers (a 150 % increase). However, the bit size must still be sufficient 
to maintain uniqueness. Similarly, the number of log entries is deter
mined by the placement of logging points, which in turn has minimum 
requirements determined by (future) investigation questions and 
tamper-resistance. Hence, future work will explore bit size, forensic 
questions, and tamper-resistance.

Despite the advantages of gretel numbers, fuzzy correlation remains 
necessary in certain situations—owing to untracked external systems 
and limitations of tamper-resistance. Identifying such situations remains 
a topic for future work.

Similarly, while gretel numbers could be used for anomaly detection 
in IDS systems, this was not their original intended purpose. Future work 
should investigate whether gretel numbers could improve the accuracy 
of such algorithms.

9. Conclusion

This paper discussed how logging sufficiency in an IT system can be 
defined and potentially achieved—namely by anticipating questions 
asked during (hypothetical) future investigation. A key finding is that 
causal information is fundamental for answering many such questions, 
but is often missing from conventional logs. To address this issue, the 
paper proposes a novel logging system that uses event IDs, termed 
“gretel numbers”, to track and record causality. A minimal prototype of 
the system was evaluated, showing the tracking to be highly efficient, 
but significantly increasing the necessary disk space. Space-saving 
measures will thus remain a topic for future work.

A logging system that inherently captures causal links could make 
log correlation easier, perhaps even trivial. In fact, much of the work 
done in forensic analysis, not just of logs, could be seen as reconstructing 
such causal links using limited data. Therefore, the study of causal links 
could contribute to the theory of digital forensics more broadly. This 
theory could be used to more accurately interpret digital evidence and 
maybe even define error rates (similarly to other forensic sciences). 
Furthermore, forensic datasets could model ground truth using causal 
links, leading to more precise validation of forensic tools (even if the 
tools themselves do not operate on gretel numbers), Lastly, the context 
provided by these links could potentially enhance anomaly detection 
and IDS algorithms.

Overall, this paper highlights logging design as an under-researched 
area in digital forensics. Even beyond logs, digital forensics is mostly 
concerned with artifacts that are useful by coincidence rather than by 
design. While this topic may be of less use in the day-to-day operations 
of Law Enforcement, IT organizations have the opportunity to proac
tively prepare their systems for future investigations by designing better 
evidence—and the specifics of such proactive practices warrant further 
study.
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