
Forensic Science International: Digital Investigation 52 (2025) 301877

Available online 24 March 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2025 - Selected Papers from the 12th Annual Digital Forensics Research Conference Europe

When is logging sufficient? — Tracking event causality for improved
forensic analysis and correlation

Johannes Olegård * , Stefan Axelsson, Yuhong Li
Department of Computer and System Sciences, Stockholm University, Borgarfjordsgatan 12, Kista, 16407, Sweden

A R T I C L E I N F O

Keywords:
Provenance graph
Logging
Digital forensics
Anti-anti-forensics
Event-reconstruction

A B S T R A C T

It is generally agreed that logs are necessary for understanding cyberattacks post-incident. However, little is
known about what specific information logs should contain to be forensically helpful. This uncertainty, combined
with the fact that conventional logs are often not designed with security in mind, often results in logs with too
much or too little information. Events in one log are also often challenging to correlate with events in other logs.
Most previous research has focused on preserving, filtering, and interpreting logs, rather than addressing what
should be logged in the first place. This paper explores logging sufficiency through the lens of Digital Forensic
Readiness, and highlights the absence of causal information in conventional logs. To address this gap, we propose
a novel logging system leveraging “gretel numbers” to track causal information—such as attacker move
ment—across multiple applications in a tamper-resistant manner. A prototype, implemented using the Extended
Berkeley Packet Filter (EBPF) and an Nginx web server, shows that causality tracking imposes minimal resource
overhead, though log size management remains critical for scalability.

1. Introduction

The question of how IT systems should be designed, in terms of
logging, to help in forensic investigations of cyberattacks has received
little attention in the research literature. It is generally agreed, however,
that proper security logging is important, as evidenced by logging re
quirements in security standards like ISO 27001 (International Organi
zation for Standardization, 2013) (section A.12.4) and NIST SP 800-92
(Kent and Souppaya, 2006), though these standards offer minimal
guidance on what specific information should be logged.

The vast majority of research on this topic has been dedicated to the
filtration and fuzzy correlation of conventional logs. These efforts aim to
save storage space, identify case-relevant log entries, and combine logs
from disparate systems. Even so, a significant amount of time is still
required from forensic investigators to analyze the resulting refined logs
and establish their validity in court. This suggests that conventional logs
are imprecise, information-sparse, and not optimized for forensic pur
poses (cf. Fig. 1). Few studies question whether useful information is
being produced in the first place and whether useful information exists
that could be logged but is not currently logged. As Barse and Jonsson
(2004) noted: “it may come as a surprise to the uninitiated that even
after 20 years since the birth of IDS, it is still not known what kind of log

data that are needed to detect different types of intrusions and attacks”,
and, while improvements have been made, we argue that this observa
tion remains largely true today in the broader context of forensics pur
poses beyond Intrusion Detection Systems (IDS).

The research literature lacks a theoretical foundation for good log
ging practices (Azahari and Balzarotti, 2024), and in response, this
paper makes three contributions:

● Introducing the answerability of forensic questions as a metric for
evaluating log sufficiency.

● Identifying causal information as being crucial but absent from con
ventional logs.

● Proposing and evaluating the use of “gretel numbers” for tracking
causal information in logs.

2. Related work

Early authors have noted the inherent limitations of logs, including:
the trade-off between storage requirements and log accuracy (Bishop,
1990), and the skepticism surrounding the admissibility of logs in courts
(Kenneally, 2004). These problems will likely remain for the foreseeable
future, and this paper attempts to work within these limitations.

* Corresponding author. Department of Computer and System Sciences, Stockholm University, Sweden.
E-mail address: johannes.olegard@dsv.su.se (J. Olegård).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301877

https://orcid.org/0000-0001-9082-4318
https://orcid.org/0000-0001-9082-4318
mailto:johannes.olegard@dsv.su.se
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301877
https://doi.org/10.1016/j.fsidi.2025.301877
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301877&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 52 (2025) 301877

2

Other authors have used state machine models to reason about state
reconstruction using logs (Gladyshev and Patel, 2004; Bishop, 1990;
Juma et al., 2020). However, a drawback of this approach is the diffi
culty of constructing state machines of real systems.

Previous work has also addressed the storage and cryptographic
preservation of logs (Schneier and Kelsey, 1999; Bhandary et al., 2020),
as well as the standardization of log formats (Mitre Corporation, 2012).
Note that such standards rarely prescribe what information should be
contained in logs, only the format. For example, Mitre CEE (Mitre Cor
poration, 2012) mentions the need for logging requirements as part of
the log management lifecycle, but does not go into specifics.

Threat modeling has been proposed as a method for determining
logging requirements (Peisert et al., 2007; Rivera-Ortiz and Pasquale,
2020). However, little prescriptive guidance (beyond the use of their
method) is provided, such as specific recommendations or detailed
common log requirements.

Most research in this area has focused on filtering and refining
existing logs, by means of forensic experiments to identify indicators of
compromise (Barse and Jonsson, 2004), and techniques broadly sum
marized as “data mining” (King and Chen, 2005; Lee et al., 2013; Hos
sain et al., 2018; Michael et al., 2020; Goel et al., 2008). Before analysis,
the data mining approaches often consolidate disparate logs into a
unified data format, such as provenance graphs (King and Chen, 2005)
(which include evidence graphs (Wang and Daniels, 2005)). Although
provenance graphs are similar to those proposed in Section 5, they often
lack precise granularity for correlation, and do not have the
anti-tampering properties proposed there. Provenance graphs typically
represent processes and objects as nodes, and time-stamped events as
edges. In contrast, the proposed solution in this paper (Section 5) uses
nodes to represent events and edges to represent causality relationships.
While Lee et al. (2013) proposed subdividing each process into “units”
by strategically inserting logging points through binary analysis, they
still rely on system call logs—an approach which does not address the
multi-host correlation problem.

3. Similar solutions

The idea of causality tracking using gretel numbers (Section 5)
introduced in this paper, is similar to distributed tracing (OpenTelemetry
Community, 2024), which is a method of combining traces from mul
tiple networked applications into a single trace. A trace (OpenTelemetry
Community, 2024) is a tree data structure describing what code has
been executed by an application (each tree node typically represents a
subroutine execution). A trace might, e.g., be a stack trace (when
reporting a program crash) or a flame graph (Gregg, 2013) (for visual
izing performance bottlenecks). Context propagation (OpenTelemetry
Community, 2024) is linkage information used to combine traces and
must be sent from the calling process to the called process. For example,

if process A makes a remote procedure call to process B and B crashes,
then the resulting distributed stack trace would consist of the A-trace
with the B-trace attached as a subtree. The context propagation infor
mation in this scenario might consist of the parent-node ID (in A-trace),
where the B-trace root should be attached. Gretel numbers, when
transferred using messages, work similarly to context propagation in
formation, thus, gretel numbers can be seen as combining distributed
tracing with provenance graphs (in a tamper-resistant way), which (to
our knowledge) has not been done before.

Context propagation has been standardized in the HTTP protocol
(W3C, 2021), but most protocols (e.g., binary database protocols and
system calls) do not support context propagation. While the message IDs
(Resnick, 2001) in the email message format could be used to implement
context propagation in Mail Transfer Agents (MTAs, e.g., SENDMAIL1 and
POSTFIX2), these IDs are normally set once by the Message Submission
Agent (MSA) and then sent as-is through the chain of MTAs—effectively
making the MTAs invisible in the distributed tracing system. Context
information should be generated anew on each hop to prevent this. In
comparison, the solution in Section 5 has a smaller intended scope (a
single website/domain/system, rather than all email servers on the
internet) and aims to be more extensive by spanning all protocols (not
just email/SMTP), all system calls, and all messages (not just forwarded
as-is).

Distributed tracing is not typically used for security (it is mostly
intended for debugging and performance analysis), but previous work
has proposed its use in anomaly detection (Jacob et al., 2021; Qiu et al.,
2022). Previous non-security work (Shen et al., 2023) has used kernel
network information to infer (which may be potentially unsuitable in a
security context) process-internal causality information, in order to
avoid the need to implement context propagation and instrumentation.

Prominent distributed tracing systems include tools such as Open
Telemetry3 and Jaeger4. These tools typically consist of three core
components: a centralized storage server, various collection agents, and a
visualization tool. Collection agents might take the form of customizable
software libraries (e.g., the OpenTelemetry client library for Python) or
as plug-and-play-like modules (e.g., the OpenTelemetry module for
Nginx). For the Proof-of-Concept presented in this paper (Section 6), the
decision was made to build the system from adapting an existing
distributed tracing tool. This approach was chosen because current tools
lack crucial features that would necessitate extensive rewrites. Notably:

1. There is a lack of agents for certain software (e.g., the Linux kernel),
2. The agents lack support for certain functionality (e.g., the ability to

track system calls),
3. Excessive details provided by some agents (e.g., entire stack traces),
4. Insufficient details provided by other (e.g., metrics-only data),
5. Lack of support for context propagation in system calls and binary

database protocols, and
6. Constraints imposed by the trace (aka. “Span”) tree-datastructure,

which complicates some certain forms of causality tracking (e.g.,
response-flows and “stored” causality (e.g., in INODES).

As a result, existing systems would primarily be useful for storage
and transfer to this storage—functions that are little useful in evaluating
(Section 7) the proposed concept (Section 5).

4. Forensic Readiness for systems

Forensic Readiness (FR) has many definitions in the research

Fig. 1. Venn-diagram of loggable information of the problem domain of this
paper: forensically useful information missing from conventional logs, con
trasted with related work that extracts useful information from noisy conven
tional logs.

1 https://www.proofpoint.com/us/products/email-protection/open-so
urce-email-solution.

2 https://postfix.org/.
3 https://opentelemetry.io.
4 https://jaegertracing.io.

J. Olegård et al.

https://www.proofpoint.com/us/products/email-protection/open-source-email-solution
https://www.proofpoint.com/us/products/email-protection/open-source-email-solution
https://postfix.org/
https://opentelemetry.io
https://jaegertracing.io

Forensic Science International: Digital Investigation 52 (2025) 301877

3

literature, ranging from an organization’s ability to conduct forensic
investigations (Pangalos et al., 2010) to the properties of a system that
allow investigation (Pasquale et al., 2018). While log sufficiency would
fall in the latter domain, some argue (Daubner et al., 2024) that this
research is often too high-level to be useful. Therefore, this paper pro
poses a narrower definition: a system is forensically ready with respect to a
set of forensic questions. That is, if future questions, for some hypothetical
investigation, can be predicted ahead of time, then the system under
(future) investigation can be designed to facilitate accurate and reliable
answers to those questions.

Thus, the question of “When is logging sufficient?” has been broken
down by one level of abstraction, and what remains to be determined is:
what are the common questions in cybersecurity investigations, and
what logging-information would they require? This depends on the
system, e.g., a social media network, an online bank, and a water
treatment plant would all have questions in common, but also domain-
specific questions. Furthermore, determining a complete list of ques
tions (like those in (Goel et al., 2008)) would be equivalent to predicting
the future and likely impossible—but through iteration, it is possible to
continuously improve over time, cf. risk management methodology
(International Organization for Standardization, 2013; Daubner and
Matulevičius, 2021). More research is still required to survey what the
common forensic questions are.

5. Causality tracking using gretel numbers

In the process of analyzing common forensic questions, we observed
that logs often lack causal information, making correlating logs from
different applications challenging. Therefore, such information is
fundamental to answering most forensic questions in systems of multiple
applications. See e.g., Fig. 2 where an Nginx access log is analyzed using
the who-what-when-where-why-how (5W1H) questions (sometimes
used as a checklist in forensic analysis), where causal information might
fall under “Why” and “How”. To address this gap, we introduce the
concept of “gretel numbers,” to enhance log correlation by embedding
causal information. The rest of this section delves into the details of this
concept.

Log entries describe events, and the causality of an event explains
why that event occurred (which pertains to How in 5W1H, since Why
describes human intentions). We make the case that most events (logged
or otherwise) describe SENT and RECEIVED messages (cf. Figs. 3 and 4). The
reason a message was RECEIVED is that it was SENT, and the reason it was
SENT is usually caused by the processing of another RECEIVED message. This
model captures not only the communication between applications but
also: function calls between source code modules and system calls from a
process to the operating system (OS) kernel.

Most modern systems consist of (non-human) interactive entities (e.
g., containerized Linux processes) organized in a layered structure, as
illustrated by the website in Fig. 3. The figure shows the layered pro
cessing of a single external message, which forms a graph. Each external
message forms its own graph in this way, and if two external messages
are processed the same way, their graphs will be isomorphic. In contrast,
Fig. 4 shows the same scenario, but described using logged events (B1
has SENT-event SB1 and RECEIVED-event RB1). The reason message C1 was
RECEIVED by DB (event RC1) is because API SERVER SENT message C1 (event
SC1), which is because it RECEIVED message B1 (event RB1), and API SERVER

is programmed to use C2 to construct B2.
The exact modeling of causality should be adapted to the needs of

future investigations. For example, Fig. 5 models the same events as
Fig. 4, but more accurately describes the control flow. Similarly, events
can be inserted between two existing events to provide finer-grained
logging, or merged or removed to save disk space (since each event re
sults in a log entry).

Table 1 illustrates the log generated by WEB SERVER (in Fig. 5), which
forms an inverse adjacency list of the WEB SERVER-part of the graph
(effectively pointing back into the sender’s log like a linked list). The

Metadata-field represents data that would conventionally be logged
(pertinent details from message A1). For distinction, each event must be
assigned a unique identifier (ID) which, for clarity, will be referred to as
the event’s gretel number (after the Hansel and Gretel fairy tale) and
similarly, Figs. 4 and 5 exemplify gretel graphs. In Table 1, the event-
names from Fig. 4 (e.g., RA1) symbolize concrete gretel number (e.g.,
which in an implementation might be a number like: 12345). Note that
Table 1 references SB2, which did not occur inside WEB SERVER, and this is
only possible if message B2 contains gretel number SB2 (as part of the
message metadata). Note also that each application must independently
generate its gretel numbers, and this is explained in more detail in
Section 6.

The correlation of logged events is achieved by merging the local
gretel graphs from all logs, thereby reconstructing the complete gretel
graph. For example, if the Metadata of log entry RC1 shows an SQL-
injection attack, the combined gretel graph could be used to find the
log entry RA1, where the Metadata would include the external IP address
of the attacker. At that point, the investigator no longer needs the gretel
graph and can focus on the Metadata-field of the respective log entries.
Unlike in conventional logging, no fuzzy correlation (e.g., based on
timestamps) is necessary, which makes the forensic analysis quicker and
more accurate. Furthermore, fuzzy correlation is often critically reliant
on time synchronization using e.g., the Network Time Protocol (NTP). In
contrast, correlation based on gretel numbers works in the face of un
synchronized clocks and degraded timekeeping.

Besides correlation, gretel numbers can also detect log tampering in
certain scenarios. The ID and Predecessor IDs fields in Table 1 roughly
correspond to credit and debit in accounting (McClung, 1913) (tracking
transactions between accounts), Due to the distributed nature of gretel
numbers, and the slight overlap between gretel graphs, each application
bears “witness” the actions of the systems it interacts with (similarly to
how financial records of one company can inform on the malpractices of
another company). For example, if an attacker achieves remote code
execution in API SERVER (e.g., using a buffer overflow vulnerability), they
can tamper with the API SERVER log, but they cannot (necessarily) tamper
with the logs of the other servers. If the attacker deletes RB1, they cannot
delete SB1 without also gaining access to the WEB SERVER (which is more
work and will take additional time), and this deletion creates a detect
able gap in the gretel graph. The attacker could omit or fake SC1 when
sending C1, thus manipulating RC1—but doing so would produce
another (non-isometric) graph which could be detected using anomaly
detection (similar to how credit and debit should sum to zero in a
balanced book). Implementing such an anomaly detection algorithm is
not explored in this paper, but we note the potential here. Note espe
cially how gretel numbers can extend to system calls logs, allowing the
OS to act as (just) another server/witness (cf. related work on prove
nance graphs). Note also that the degree of redundancy and
anti-tampering offered by gretel numbers is dependent on the isolation
between “messaging entities” (i.e., the granularity chosen for applica
tions in the system). If an attacker exploits a buffer overflow vulnera
bility in a Linux process, any logging performed by any part of that
process (and any memory-sharing process) is susceptible to tampering.
Thus, the process is a more suitable granularity for logging than indi
vidual source code modules (except to describe internal intricacies, such
as when a cache hit substitutes a backend request).

6. Implementation

To test the practical feasibility of using gretel numbers, a Proof-Of-
Concept (POC) was built5, as illustrated in Fig. 6. The POC imple
mentation consisted primarily of a customized Nginx web server6, using

5 available at: https://github.com/jesajx/gretel.
6 https://nginx.org.

J. Olegård et al.

https://github.com/jesajx/gretel
https://nginx.org

Forensic Science International: Digital Investigation 52 (2025) 301877

4

build settings derived from Arch Linux7, and an Extended Berkley Packet
Filter (EBPF) module8.

Nginx was used in the setup of two Docker9 containers, each built

from the same Nginx source code, to simulate a two-layer website ar
chitecture. The first instance (NGINX-A) was configured to forward specific
requests to the second instance (NGINX-B), analogous to the API SERVER and
DB configuration demonstrated in earlier examples. This reuse of code
saved development time while still demonstrating the concept of gretel
number.

EBPF is a Linux kernel feature for monitoring low-level events by
executing custom code directly inside the kernel. The primary advantage
of EBPF is that it achieves this securely and efficiently, by running with
restricted capabilities. EBPF expands the functionality of an earlier
project (that could only filter network packets) to cover additional use
cases and kernel internals. EBPF was used in the POC to track and log
gretel numbers through system calls made by the two Nginx instances.
The POC EBPF module was written in the C programming language and
compiled into EBPF bytecode (instead of regular x86-64 machine code).
The bytecode is uploaded to the kernel via the EBPF system call and
executed in a lightweight virtual machine. An EBPF module consists of
callbacks, or “probes”, that are hooked to specific parts of the kernel. In
the POC, the EBPF module registered callbacks for system calls entry and
exit, as well as for select file-system-handling functions. The POC EBPF-
module was managed using a Python script that used the BCC Toolkit10

to handle compilation, upload, and logging.
The implementation involved four key aspects:

1. Nginx internals,
2. kernel internals,
3. Context propagation in all messages, and
4. a scheme for constructing gretel numbers.

Fig. 2. An example Nginx access log explained by mapping 5W1H to different fields (e.g., “When?” to timestamp, and “Who?” to IP and user.

Fig. 3. Example logging scenario where an external message (A1) is processed
by a website using internal message-passing. Processing spans four applications,
organized in three layers: WEB SERVER, API SERVER, and lastly: DB and μ-SVC.

Fig. 4. The Fig. 3 message processing scenario from the perspective of logged
events (nodes) and causality (edges): each SENT-event (Sxx) causes the corre
sponding RECEIVED-event (Rxx), which in turn causes other SENT-events (Syy).

Fig. 5. Alternate modeling of Fig. 4 that more accurately models the causality
(edges) of events by their sequential order in the control flow (in WEB SERVER and
API SERVER applications, respectively).

Table 1
The log produced by WEB SERVER in Fig. 5, where each log entry is assigned a
unique ID, and contains Predecessor IDs referencing other log entries (some in
remote logs).

ID Predecessor IDs Metadata

RA1 (none) …
SB1 RA1 …
RB2 SB1,SB2 …
SA2 RB2 …

Fig. 6. Proof-Of-Concept architecture showing the communication between
four main applications: TEST SCRIPT, NGINX-A, NGINX-B, and the Linux kernel—and
various details (message interception and application–log associations).

7 https://archlinux.org/packages/extra/x86_64/nginx.
8 https://ebpf.io.
9 https://docker.com. 10 https://github.com/iovisor/bcc.

J. Olegård et al.

https://archlinux.org/packages/extra/x86_64/nginx
https://ebpf.io
https://docker.com
https://github.com/iovisor/bcc

Forensic Science International: Digital Investigation 52 (2025) 301877

5

Since the focus of this paper is to improve logging practices, the need
for such modifications should not be seen as a limitation or drawback.
This stands in contrast to static analysis approaches, like that in (Lee
et al., 2013), where logging is instrumented automatically to minimize
developer intervention. We believe that logging must be treated as a
“first-class citizen” in software development to achieve its full potential
and to be explainable in court.

Nginx (1) was modified to inject and extract gretel numbers in
messages and logs. For simplicity, HTTP/1.0 was used as the commu
nication protocol (3), and a custom HTTP header was used to transmit
gretel numbers (although a standardized context propagation header
exists (W3C, 2021)). Tracking the gretel numbers between extraction
and injection points primarily involved introducing a variable in each
“thread”. Note that Nginx uses the event reactor design pattern, which
will not be explained here. This implementation aligns more closely with
the control-flow-oriented approach depicted in Fig. 5 than the purely
message-mapping approach in Fig. 4. Each thread handled forking,
merging, and insertion of new gretel numbers by updating the variable
in place. As a result, if each received message is processed by one new
thread, the program maintains one variable per active message, along
side temporary text buffers for messages and logs. This per-message
overhead is minimal in terms of memory consumption and processing.
Note, however, that Nginx handles reading and writing separately,
resulting in two “threads” per request. The local gretel graph was written
in full to the Nginx error log, and the access logs only contained a subset
of gretel numbers (corresponding to events analogous to SA2 in Fig. 4,
and mirroring the log format in Table 1). For the experiment, additional
logging points were added to the error log (but not the access log), to
facilitate a comparison of log sizes (Section 7).

To facilitate the reader’s ability to try the POC for themselves, EBPF
(2) was chosen despite kernel modification being the simpler approach.
The increased difficulty arises because EBPF, for security reasons,
cannot modify the result of a system call, which prevents gretel numbers
from being returned to Nginx from EBPF. The POC circumvents this
limitation by sending both the Nginx-side SENT and RECEIVED gretel
numbers to the kernel, where the kernel handles logging of the system-
call-related edges. Furthermore, instead of adding a parameter to every
system call—an approach that would break compatibility—gretel
numbers are transmitted (3) to the kernel using the PRCTL system call
(which is normally used to set/get miscellaneous process settings). An
invalid PRCTL “OP-code” is used intentionally to make the Linux kernel
ignore the call while still allowing EBPF to read the arguments. On the
Nginx side (1), gretel numbers are not generated for every system call,
and instead PRCTL is only called during context-switches between
“threads” (i.e., resuming a paused thread) or when the active gretel
number in the current thread changes—effectively the Nginx-side sys
tem call SENT-events are merged into the active thread gretel number.
The EBPF stores the last reported gretel numbers for each running
process (native thread).

Besides system calls, EBPF (2) is also used to store a gretel number for
each (in-memory) INODE. When a process writes to an INODE, this can be
seen as a “delayed” message that is delivered when another process
reads from the INODE. Additional kernel internals could similarly be
tracked, but the POC was limited to INODES for demonstration purposes.

Since the PRCTL system call can send at most 256 bits (four unsigned
64-bit numbers), the POC implementation used this size for all gretel
numbers. While this size is significantly larger than necessary, it serves
to demonstrate the “worst-case scenario”. In practice, the gretel number
scheme (4) should be adapted to the forensic requirements of the system
under (future) investigation. Determining the best scheme is beyond the
scope of this paper. However, for completeness, the basic POC gretel
number scheme is outlined here. Each gretel number is subdivided into
two components: a location and an arbitrary but unique number. The latter
could be a random number, a counter, or a timestamp, with random
numbers being the most common in the POC. The location uniquely
represents the entity that generated the gretel number, typically

consisting of an APP-ID. Optionally, the location can encode metadata
about the event, such as type and or the specific source code line (e.g.,
print-statement) that generated the number. There are four applications
in the POC: NGINX-A, NGINX-B, the TEST SCRIPT, and EBPF (with an additional
EBPF instance required if the Nginx-servers run on separate hosts).
Additionally, a placeholder would be needed for the “invalid applica
tion”, bringing the total to five applications Thus, 3 bits are needed to
represent location. However, for simplicity, the POC uses a multiple of 64
bit numbers to represent location. It is worth noting that in scenarios
where an application (e.g., a single-process Docker container) operates
as a singleton (i.e., at most one instance exists at a time), additional bits
are unnecessary to differentiate between restarts—provided no arbitrary
but unique number is reused. In a load-balancing scenario (e.g., multiple
parallel copies of NGINX-A), it is generally better to assign each load-
balancing “slot” is own APP-ID. In large-scale systems, a hierarchical
location scheme, akin to IP subnetting, may be required to manage
complexity.

In addition to the POC, a short Python script was used to translate the
resulting logs into a graph file, enabling visualization in Gephi11. Fig. 7
presents the Gephi-exported image of an example gretel graph. The
graph’s nodes are color-coded as follows: blue nodes represent NGINX-A

events (left side), green nodes represent NGINX-B events (right side), red
nodes represent EBPF events in red (scattered throughout), and magenta
nodes represent the TEST SCRIPT (bottom center).

The top section of the graph captures the Nginx startup process,
while the bottom section shows iterations of the respective Nginx event
handling loops, culminating in the processing of an HTTP request. Fig. 8
zooms in on this request-interaction (bottom center) of Fig. 7. The
numbers highlight the sequence of events:

1. TEST SCRIPT sends a request to NGINX-A using curl,12,
2. NGINX-A forwards the request to NGINX-B,
3. NGINX-B responds to NGINX-A, and
4. NGINX-A responds to TEST SCRIPT.

Finally, while the use of a centralized storage solution would be

Fig. 7. POC-produced example gretel graph, including Nginx startup (top) and
the step-by-step processing (bottom) of an HTTP request (magenta).

11 https://gephi.github.io.
12 https://curl.se.

J. Olegård et al.

https://gephi.github.io
https://curl.se

Forensic Science International: Digital Investigation 52 (2025) 301877

6

expected to preserve logs containing gretel numbers—thereby protect
ing older logs from tampering—no such solution was included in the
Proof-Of-Concept. Since gretel numbers are simply additional metadata
appended to existing log entries, any standard log storage solution can
accommodate them, including distributed redundant solutions. As a
result, storage solutions were not further explored in this paper. It
should be noted, however, that a gretel-number-aware storage solution
could be beneficial for analysis (parsing gretel number schemes) and
anti-tampering (gretel number spoofing). It is assumed that a storage
solution would handle the authentication of each log-sending applica
tion. The credentials used for this authentication should, however, be
assumed to be compromised at the same time as the respective appli
cation. Therefore, when an application mentions a specific gretel num
ber in its log, this should be seen as a “claim” and scrutinized as such
during forensic analysis.

7. Evaluation

To test the performance of the POC, a simple experiment was set up:

1. The POC was started and brought to a steady state.
2. Once stabilized, the experiment began, consisting of 10 thousand

sequential requests sent from TEST SCRIPT to NGINX-B (via NGINX-A).
3. This experiment was repeated 10 times, under two conditions: with

gretel numbers enabled (“with-gretel”) and disabled (“without-gre
tel”). As a result, a total of 20 experiments was conducted.

For the “without-gretel” configuration, logging points were replaced
using C-macros to exclude gretel numbers. The gretel C-functions
remained in the resulting binary, but were never called. Furthermore,
the EBPF module was not run during the “without-gretel” experiments.

It is also important to note that, unlike in Fig. 7, the logging of in
dividual system calls was disabled for this experiment (i.e., removing
most red nodes). Instead, only INODE-related events and process startup-
related events were logged by the EBPF module. This choice was made to
improve practicality and fairness, as logging every system call is not
feasible in the real world.

The experiment used a desktop PC with an Intel Core i7-3770 CPU
(3.40 GHz) CPU, 12 GiB RAM, a Solid State Drive (SSD) for OS files, and

a Hard Disk Drive (HDD) for experiment files. The PC was running Arch
Linux Kernel version 6.9.7-arch1-1. Little else was running on the PC
during the experiments.

The observed variables for the experiment included: the current time
(clock), user CPU time, system CPU times, and RAM usage. For each
docker container CPU times and RAM usage were recorded at the start
and end of the experiment, using values from the/SYS filesystem. Note
that the system CPU time includes the time spent in the EBPF probes.
Additionally, the size of the produced logs was measured after the
experiment.

The results are presented in Table 2, with each cell formatted as μ ±
σ, w consisting of the mean (μ) and Bessel-corrected standard deviation
(σ). The Duration refers to the total time of the experiment. The User Time
and Sys. Time are each combined CPU time of both NGINX-A and NGINX-B.
While the doubling in CPU time may seem alarming, the time spent
computing is dwarfed by the time waiting on input/output (cf. Dura
tion). This simply indicates that Nginx is spending less time idle. Note
also that the test script was considered external and therefore its CPU and
RAM usage was not tested—although the total time does give an
estimate.

The Access Log and Error Log fields represent the sizes of the
respective logs—showing a 2 to 2.5 times increase in size. The size of the
EBPF log (with-gretel only) was 5.374 ± 0.012 MiB. The size used by the
gretel numbers in the error log was roughly 12.14 MiB, accounting for
40 % of the file (65 % of the increase). Similarly, gretel numbers
accounted for 60 % of the access log size (97 % of the increase). A
reduction in the size of each gretel number (e.g., from 256-bit to 64-bit)
could, therefore, significantly reduce the size of the log file. More
important, however, is the placement and quantity of logging points
strongly influence log size—as seen by comparing the access log (fewer
logging points) to the error log (additional logging points). Fewer log
ging points would bring the error log closer to the access log in size.

The memory usage at the end of the experiment, RAM Anon, repre
sents the combined total amount of “anonymous” memory pages used by
NGINX-A and NGINX-B. The amount of allocated memory at the start of the
experiment followed the same proportions and was 0.044 MiB less in
both configurations. The result shows that gretel numbers caused an 8 %
increase in allocated memory. Such a minor increase aligns with ex
pectations, since roughly four gretel numbers are stored per request,
along with some temporary buffers for log and message generation.
Parallel requests may have raised the memory requirements, but the
results show that such an increase is unlikely to be significant (Nginx
seems to preallocate most memory).

As for network traffic, each HTTP message (request and response)
contains a single gretel number (and some text): resulting in exactly 74
additional bytes per message. In comparison, the header part of a typical
(non-gretel) HTTP message ranges from 75 to 250 bytes. Each of the 10
thousand curl-invocation caused 4 HTTP messages (curl-to-A-to-B, B-to-
A-to-curl), resulting in exactly 2.82 MiB additional network traffic. This
corresponds to roughly 43 KiB per second, which is quite small, but this
would accumulate with parallel requests and multiple applications.
However, this seems unlikely to cause issues compared to the log sizes
(which accumulate over time).

8. Discussion, limitations & future work

The POC workarounds, such as the use of EBPF instead of directly
modifying the Linux kernel, were deemed sufficient to demonstrate the
feasibility of gretel numbers. However, future work should evaluate the
concept on a more realistic testbed (e.g., more applications beyond
Nginx and logging an appropriate subset of system calls).

The proposed causality-tracking system aims to track all applications
and all actions within a well-defined system (e.g., a website), but not
necessarily log all actions. In essence: every action should be able to
account for its cause when “asked”. As demonstrated in the evaluation,
the tracking itself is efficient, but the log space vs. accuracy trade-off

Fig. 8. Partial gretel graph showing the processing of an external request
(magenta) by NGINX-A (blue), which passes through the backend NGINX-B. Nodes
represent log entries, and the edges indicate causality. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

J. Olegård et al.

Forensic Science International: Digital Investigation 52 (2025) 301877

7

must still be managed. Ultimately, the increased log size is the cost of
cybersecurity, and this cost might be unavoidable.

The log size resulting from implementing gretel number tracking is
influenced by two main factors: the bit size of each gretel number and
the placement of logging points. Since gretel numbers dominate the log
size, reducing their bit size (e.g., from 256-bit to 128-bit or 64-bit) could
significantly reduce the log size. This would lead to a lower relative
increase in log size (e.g., 30–75 %) compared to using 256-bit gretel
numbers (a 150 % increase). However, the bit size must still be sufficient
to maintain uniqueness. Similarly, the number of log entries is deter
mined by the placement of logging points, which in turn has minimum
requirements determined by (future) investigation questions and
tamper-resistance. Hence, future work will explore bit size, forensic
questions, and tamper-resistance.

Despite the advantages of gretel numbers, fuzzy correlation remains
necessary in certain situations—owing to untracked external systems
and limitations of tamper-resistance. Identifying such situations remains
a topic for future work.

Similarly, while gretel numbers could be used for anomaly detection
in IDS systems, this was not their original intended purpose. Future work
should investigate whether gretel numbers could improve the accuracy
of such algorithms.

9. Conclusion

This paper discussed how logging sufficiency in an IT system can be
defined and potentially achieved—namely by anticipating questions
asked during (hypothetical) future investigation. A key finding is that
causal information is fundamental for answering many such questions,
but is often missing from conventional logs. To address this issue, the
paper proposes a novel logging system that uses event IDs, termed
“gretel numbers”, to track and record causality. A minimal prototype of
the system was evaluated, showing the tracking to be highly efficient,
but significantly increasing the necessary disk space. Space-saving
measures will thus remain a topic for future work.

A logging system that inherently captures causal links could make
log correlation easier, perhaps even trivial. In fact, much of the work
done in forensic analysis, not just of logs, could be seen as reconstructing
such causal links using limited data. Therefore, the study of causal links
could contribute to the theory of digital forensics more broadly. This
theory could be used to more accurately interpret digital evidence and
maybe even define error rates (similarly to other forensic sciences).
Furthermore, forensic datasets could model ground truth using causal
links, leading to more precise validation of forensic tools (even if the
tools themselves do not operate on gretel numbers), Lastly, the context
provided by these links could potentially enhance anomaly detection
and IDS algorithms.

Overall, this paper highlights logging design as an under-researched
area in digital forensics. Even beyond logs, digital forensics is mostly
concerned with artifacts that are useful by coincidence rather than by
design. While this topic may be of less use in the day-to-day operations
of Law Enforcement, IT organizations have the opportunity to proac
tively prepare their systems for future investigations by designing better
evidence—and the specifics of such proactive practices warrant further
study.

References

Azahari, A., Balzarotti, D., 2024. On the inadequacy of open-source application logs for
digital forensics. Forensic Sci. Int.: Digit. Invest. 49, 301750. https://doi.org/
10.1016/j.fsidi.2024.301750.

Barse, E., Jonsson, E., 2004. Extracting attack manifestations to determine log data
requirements for intrusion detection. In: 20th Annual Computer Security
Applications Conference, pp. 158–167. https://doi.org/10.1109/CSAC.2004.20.

Bhandary, M., Parmar, M., Ambawade, D., 2020. Securing logs of a system - an IoTA
tangle use case. In: 2020 International Conference on Electronics and Sustainable
Communication Systems. ICESC), pp. 697–702. https://doi.org/10.1109/
ICESC48915.2020.9155563.

Bishop, M., 1990. A model of security monitoring. In: [1989 Proceedings] Fifth Annual
Computer Security Applications Conference, IEEE Comput. Soc. Press, Tucson, AZ,
USA, pp. 46–52. https://doi.org/10.1109/CSAC.1989.81024.

Daubner, L., Matulevičius, R., 2021. Risk-oriented design approach for forensic-ready
software systems. In: Proceedings of the 16th International Conference on
Availability, Reliability and Security. ACM, Vienna Austria, pp. 1–10. https://doi.
org/10.1145/3465481.3470052.

Daubner, L., Buhnova, B., Pitner, T., 2024. Forensic experts’ view of forensic-ready
software systems: a qualitative study. J. Softw.: Evolut. Proc. 36 (5), e2598. https://
doi.org/10.1002/smr.2598.

Gladyshev, P., Patel, A., 2004. Finite state machine approach to digital event
reconstruction. Digit. Invest. 1 (2), 130–149. https://doi.org/10.1016/j.
diin.2004.03.001.

Goel, A., Farhadi, K., Po, K., Feng, W.-c., 2008. Reconstructing system state for intrusion
analysis. ACM SIGOPS - Oper. Syst. Rev. 42 (3), 21–28. https://doi.org/10.1145/
1368506.1368511.

Gregg, B., 2013. Blazing Performance with Flame Graphs. URL. https://www.usenix.
org/conference/lisa13/technical-sessions/plenary/gregg.

Hossain, M.N., Wang, J., Weisse, O., Sekar, R., Genkin, D., He, B., Stoller, S.D., Fang, G.,
Piessens, F., Downing, E., Chen, Y., Kim, T., Wenisch, T.F., Orso, A., Strackx, R.,
Lee, W., Zappala, D., Duan, H., Genkin, D., Yarom, Y., Hamburg, M., 2018.
Dependence-Preserving Data Compaction for Scalable Forensic Analysis. USENIX,
pp. 1723–1740.

International Organization for Standardization, 2013. Information Technology —
Security Techniques — Information Security Management Systems — Requirements,
Standard ISO 27001:2013. International Organization for Standardization, Geneva,
CH. Oct.

Jacob, S., Qiao, Y., Lee, B., 2021. Detecting cyber security attacks against a microservices
application using distributed tracing. In: Proceedings of the 7th International
Conference on Information Systems Security and Privacy, pp. 588–595. https://doi.
org/10.5220/0010308905880595.

Juma, N., Huang, X., Tripunitara, M., 2020. Forensic analysis in access control:
foundations and a case-study from practice. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’20.
Association for Computing Machinery, New York, NY, USA, pp. 1533–1550. https://
doi.org/10.1145/3372297.3417860.

Kenneally, E.E., 2004. Digital logs—proof matters. Digit. Invest. 1 (2), 94–101. https://
doi.org/10.1016/j.diin.2004.01.006.

Kent, K., Souppaya, M., 2006. Guide to Computer Security Log Management, Tech. Rep.
NIST Special Publication (SP) 800-92. National Institute of Standards and
Technology. https://doi.org/10.6028/NIST.SP.800-92. Sep.

King, S.T., Chen, P.M., 2005. Backtracking intrusions. ACM Trans. Comput. Syst. 23 (1),
51–76. https://doi.org/10.1145/1047915.1047918.

Lee, K.H., Zhang, X., Xu, D., 2013. LogGC: garbage collecting audit log. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security. CCS
’13, Association for Computing Machinery, New York, NY, USA, pp. 1005–1016.
https://doi.org/10.1145/2508859.2516731.

McClung, R.G., 1913. The Theory of Debit and Credit in Accounting. Mills and company,
Boston, Morgan. Accessed: 2024-12-16). URL. http://archive.org/details/theoryofde
bitcre00mcclrich.

Michael, N., Mink, J., Liu, J., Gaur, S., Hassan, W.U., Bates, A., 2020. On the forensic
validity of approximated audit logs. In: Annual Computer Security Applications
Conference. ACM, Austin USA, pp. 189–202. https://doi.org/10.1145/
3427228.3427272.

Mitre Corporation, 2012. Mitre CEE Version 1.0-beta1. URL. https://cee.mitre.org/
language/1.0-beta1/. (Accessed 2 December 2024).

OpenTelemetry Community, 2024. OpenTelemetry Specification 1.40.0, 2024-12-16,
URL. https://opentelemetry.io/docs/specs/otel/.

Pangalos, G., Katos, V., 2010. Information assurance and forensic readiness. In:
Sideridis, A.B., Patrikakis, C.Z. (Eds.), Next Generation Society. Technological and
Legal Issues. Springer, Berlin, Heidelberg, pp. 181–188. https://doi.org/10.1007/
978-3-642-11631-5_17.

Table 2
Experiment results, comparing the performance impact with and without gretel numbers. The results show minimal CPU time and RAM overhead, but a significant
increase in log size, when implementing gretel numbers.

Type Duration User Time Sys. Time Access Log Error Log RAM Anon

(s) (s) (s) (MiB) (MiB) (MiB)

without-gretel 64.5 ± 0.527 1.304 ± 0.034 3.937 ± 0.073 0.83 ± 0.0 13.842 ± 0.0 3.013 ± 0.004
with-gretel 66.7 ± 0.483 1.898 ± 0.103 5.576 ± 0.085 2.069 ± 0.0 32.448 ± 0.0 3.282 ± 0.006

J. Olegård et al.

https://doi.org/10.1016/j.fsidi.2024.301750
https://doi.org/10.1016/j.fsidi.2024.301750
https://doi.org/10.1109/CSAC.2004.20
https://doi.org/10.1109/ICESC48915.2020.9155563
https://doi.org/10.1109/ICESC48915.2020.9155563
https://doi.org/10.1109/CSAC.1989.81024
https://doi.org/10.1145/3465481.3470052
https://doi.org/10.1145/3465481.3470052
https://doi.org/10.1002/smr.2598
https://doi.org/10.1002/smr.2598
https://doi.org/10.1016/j.diin.2004.03.001
https://doi.org/10.1016/j.diin.2004.03.001
https://doi.org/10.1145/1368506.1368511
https://doi.org/10.1145/1368506.1368511
https://www.usenix.org/conference/lisa13/technical-sessions/plenary/gregg
https://www.usenix.org/conference/lisa13/technical-sessions/plenary/gregg
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref11
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref11
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref11
http://refhub.elsevier.com/S2666-2817(25)00016-2/sref11
https://doi.org/10.5220/0010308905880595
https://doi.org/10.5220/0010308905880595
https://doi.org/10.1145/3372297.3417860
https://doi.org/10.1145/3372297.3417860
https://doi.org/10.1016/j.diin.2004.01.006
https://doi.org/10.1016/j.diin.2004.01.006
https://doi.org/10.6028/NIST.SP.800-92
https://doi.org/10.1145/1047915.1047918
https://doi.org/10.1145/2508859.2516731
http://archive.org/details/theoryofdebitcre00mcclrich
http://archive.org/details/theoryofdebitcre00mcclrich
https://doi.org/10.1145/3427228.3427272
https://doi.org/10.1145/3427228.3427272
https://cee.mitre.org/language/1.0-beta1/
https://cee.mitre.org/language/1.0-beta1/
https://opentelemetry.io/docs/specs/otel/
https://doi.org/10.1007/978-3-642-11631-5_17
https://doi.org/10.1007/978-3-642-11631-5_17

Forensic Science International: Digital Investigation 52 (2025) 301877

8

Pasquale, L., Alrajeh, D., Peersman, C., Tun, T., Nuseibeh, B., Rashid, A., 2018. Towards
forensic-ready software systems. In: Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER
’18. Association for Computing Machinery, New York, NY, USA, pp. 9–12. https://
doi.org/10.1145/3183399.3183426.

Peisert, S., Bishop, M., Karin, S., Marzullo, K., 2007. Toward models for forensic analysis.
In: Second International Workshop on Systematic Approaches to Digital Forensic
Engineering (SADFE’07). IEEE, Bell Harbor, WA, USA, pp. 3–15. https://doi.org/
10.1109/SADFE.2007.23.

Qiu, L., Song, X., Yang, J., Cui, B., 2022. Bee: end to end distributed tracing system for
source code security analysis, highlights in science. Eng. Technol. 1, 209–218.
https://doi.org/10.54097/hset.v1i.463.

Resnick, P., 2001. Internet Message Format, Request for Comments RFC 2822, Internet
Engineering Task Force. Apr. https://doi.org/10.17487/RFC2822. URL. https://dat
atracker.ietf.org/doc/rfc2822. (Accessed 9 December 2024).

Rivera-Ortiz, F., Pasquale, L., 2020. Automated modelling of security incidents to
represent logging requirements in software systems. In: Proceedings of the 15th

International Conference on Availability, Reliability and Security, ARES ’20.
Association for Computing Machinery, New York, NY, USA, pp. 1–8. https://doi.org/
10.1145/3407023.3407081.

Schneier, B., Kelsey, J., 1999. Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2 (2), 159–176. https://doi.org/10.1145/317087.317089.

Shen, J., Zhang, H., Xiang, Y., Shi, X., Li, X., Shen, Y., Zhang, Z., Wu, Y., Yin, X., Wang, J.,
Xu, M., Li, Y., Yin, J., Song, J., Li, Z., Nie, R., 2023. Network-centric distributed
tracing with DeepFlow: troubleshooting your microservices in zero code. In:
Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23.
Association for Computing Machinery, New York, NY, USA, pp. 420–437. https://
doi.org/10.1145/3603269.3604823.

W3C, 2021. Trace Context. URL. https://www.w3.org/TR/trace-context/. (Accessed 10
October 2024).

Wang, W., Daniels, T., 2005. Building evidence graphs for network forensics analysis. In:
21st Annual Computer Security Applications Conference. ACSAC’05), pp. 11–266.
https://doi.org/10.1109/CSAC.2005.14.

J. Olegård et al.

https://doi.org/10.1145/3183399.3183426
https://doi.org/10.1145/3183399.3183426
https://doi.org/10.1109/SADFE.2007.23
https://doi.org/10.1109/SADFE.2007.23
https://doi.org/10.54097/hset.v1i.463
https://doi.org/10.17487/RFC2822
https://datatracker.ietf.org/doc/rfc2822
https://datatracker.ietf.org/doc/rfc2822
https://doi.org/10.1145/3407023.3407081
https://doi.org/10.1145/3407023.3407081
https://doi.org/10.1145/317087.317089
https://doi.org/10.1145/3603269.3604823
https://doi.org/10.1145/3603269.3604823
https://www.w3.org/TR/trace-context/
https://doi.org/10.1109/CSAC.2005.14

	When is logging sufficient? — Tracking event causality for improved forensic analysis and correlation
	1 Introduction
	2 Related work
	3 Similar solutions
	4 Forensic Readiness for systems
	5 Causality tracking using gretel numbers
	6 Implementation
	7 Evaluation
	8 Discussion, limitations & future work
	9 Conclusion
	References

