

A Scenario-Based Quality Assessment of Memory Acquisition Tools and its Investigative Implications

<u>Lisa Rzepka</u>, Jenny Ottmann, Radina Stoykova, Felix Freiling, Harald Baier

Universität der Bundeswehr München

Main memory

Inconsistencies

expected result

Inconsistencies

actual result

EPROCESS

- OS structure in Windows OS
- Information about (running) process

EPROCESS

EPROCESS

- Memory dump contains modified EPROCESS structure
- Modification for example removal from list
- Volatility plugin pslist does not find process

Contributions

- Automated, scenario-based methodology to compare memory acquisition tools
- Measurement results for four tools and four scenarios
- Data set consisting of 1600 memory dumps

RAM acquisition tools

Tool name	Version	Open/closed source	Commercial/free
Belkasoft RAM Capturer	downloaded 07.02.2024	closed	free
FTK Imager	v4.7.1	closed	free
Magnet RAM Capture	v1.2.0	closed	free
WinPmem	winpmem_mini v4.0 RC2	open	free

RAM acquisition tools

- Initialization: $\delta = 60$ seconds
- 100 times per tool per scenario = 400 dumps
- In summary 1600 memory dumps
- Subset can be found here: https://zenodo.org/records/14260323

Scenarios

Network connection

VeraCrypt key

jpg

Tools

Scenario	Structured analysis tool	Unstructured analysis tool	
Executed software	Volatility <i>pslist</i>	Volatility psscan	
Active ssh connection	Volatility <i>netlist</i>	Volatility netscan	
Opened VeraCrypt container	-	aeskeyfind	
Opened file (jpg)	-	Volatility filescan	

Background

Inconsistency indicators

- Two different inconsistency indicators
 - 1) Causal inconsistency
 - Cause-effect relationships
 - Vector clocks
 - Pivot program

- 2) VAD inconsistency
 - VAD tree
 - VadCount
- Volatility3 plugin

Causally consistent memory snapshot

Part of VAD tree of smss.exe

Technical results - Process

	Belkasoft	FTK	Magnet	WinPmem	Ideal
Process (structured)	96/100	96/100	69/100	94/100	10/10
Process (unstructured)	100/100	100/100	100/100	100/100	10/10
Mean VAD inconsistencies	685	785	1909	684	0
Mean causal inconsistencies	18	17	50	20	0

Technical results – Network connection

	Belkasoft	FTK	Magnet	WinPmem	Ideal
ssh connection (structured)	98/100	98/100	90/100	94/100	9/10
ssh connection (unstructured)	100/100	98/100	92/100	96/100	10/10
Mean VAD inconsistencies	739	1135	2734	952	0
Mean causal inconsistencies	28	31	56	34	0

Technical results – VeraCrypt key

	Belkasoft	FTK	Magnet	WinPmem	Ideal
VeraCrypt key	100/100	100/100	99/100	100/100	10/10
Mean VAD inconsistencies	510	907	2494	513	0
Mean causal inconsistencies	19	23	50	19	0

Technical results – Opened file

	Belkasoft	FTK	Magnet	WinPmem	Ideal
Opened jpg file	49/100	49/100	99/100	45/100	10/10
Mean VAD inconsistencies	501	1066	1538	746	0
Mean causal inconsistencies	16	11	41	15	0

Validation requirements for memory acquisition

- ISO17025 standard for testing/calibration of forensic laboratories
- Methods and tools in memory forensics derived primarily from forensic guidelines
- Both define rather broad and imprecise conditions for memory acquisition
- No validation scenarios or measurements given

Procedural results

Summary

- Inconsistencies have greater impact on structured analysis methods
- Unstructured methods are more robust, but no context
- Artifacts of opened (jpg-)files difficult
- Scenario-based testing can help in assessing limitations of tools

Future Work

Questions?

- Experiments with unstructured analysis methods
- Quality of memory analysis tools
- Additional inconsistency indicators and their relationship
- Artifacts of opened files

Subset of dataset can be found here: https://zenodo.org/records/14260323

Lisa Rzepka Research Institute CODE Universität der Bundeswehr München

lisa.rzepka@unibw.de

Background

Causal consistency

- 2 memory regions r1, r2
- 2 events e1, e2
- Orange rectangle = memory acquisition process
- X axis = time

Causally consistent memory snapshot

Causally inconsistent memory snapshot

RI Research Institute Cyber Defence Universität der Bundeswehr München

Vector clocks

- Each memory region is assigned a row in a vector
- Index is updated each time event happened in memory region (local counter)
- Processes save vector clocks and update them

Background

Virtual Address Descriptor (VAD) Tree

- Adelson-Velsky/Landis (AVL) tree
- Allocated memory for each process
- 3 node types
- VadCount

Туре	Abbreviation	
MMVAD_SHORT	VadS	
MMVAD	Vad	
MMVAD_LONG	VadL	

```
typedef struct RTL AVL TABLE {
RTL BALANCED LINKS
                               BalancedRoot:
PVOID
                               OrderedPointer:
ULONG
                               WhichOrderedElement:
ULONG
                               NumberGenericTableElements;
ULONG
                               DepthOfTree;
PRTL BALANCED LINKS
                               RestartKey;
ULONG
                               DeleteCount:
PRTL AVL COMPARE ROUTINE CompareRoutine;
PRTL AVL ALLOCATE ROUTINE AllocateRoutine;
PRTL AVL FREE ROUTINE
                               FreeRoutine:
PVOID
                               TableContext:
} RTL AVL TABLE;
```


Volatility 3 VadDiff plugin

PID	Process	VadCount	Count	Difference
92	Registry	82	73	9
452	csrss.exe	182	176	6
540	csrss.exe	113	114	1
588	winlogon.exe	95	94	1
668	services.exe	62	61	1
684	lsass.exe	153	152	1
780	svchost.exe	156	152	4
888	svchost.exe	92	78	14
400	svchost.exe	74	72	2
812	svchost.exe	57	53	4
1096	dwm.exe	254	279	25
1368	svchost.exe	111	105	6
1384	svchost.exe	102	103	1
1416	svchost.exe	67	68	1
1448	svchost.exe	117	116	1
1676	svchost.exe	78	76	2

...

Background

Virtual Address Descriptor (VAD) Tree

Background

Virtual Address Descriptor (VAD) Tree

