
When is logging sufficient?
Tracking event causality for

improved forensic analysis and correlation

Johannes Olegård

PhD Student

“Insufficient” Logging

● Security Standards say: “Please do sufficient logging!” (e.g. ISO27k)

● Sure, but how!?

– Developers don’t know.
– Academics don’t know.

● which leads to logs with:

– too little/much information
– correlation difficulties

● Focus on: existing logs

Related Work

● (servers)

Related Work: Forensic Readiness

● Forensic readiness of a System

– Design it to be easier to investigate (reduce uncertainty)

– Problem: existing research is too high-level

• req.-engineering, threat modeling, etc.

● Proposed new definition:

“A System is forensically ready with respect to a set of forensic questions.”

The short answer

● “Logging is sufficient when it can sufficiently answer your

(future) forensic questions”

● But then: what forensic questions do we typically ask?

5W1H

● a log entries provides “micro-answers” to 5W1H

○ (not always good answers)

● However: typically no answer to Why and How

○ what would these answers look like?

Correlation

● Log entries typically described message SENT and RECEIVED events.

Application A log:
● Sent a message to B.
● Sent a message to B.
● Sent a message to B.

Application B log:
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.

Application C log:
● Got a message from B.
● Got a message from B.
● Got a message from B.

Correlation

● Correlation typically relies on timestamps and guesswork.

Application A log:
● Sent a message to B.
● Sent a message to B.
● Sent a message to B.

Application B log:
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.

Application C log:
● Got a message from B.
● Got a message from B.
● Got a message from B.

Correlation

● Correlation typically relies on timestamps and guesswork.

– We could just store “causal information” in the first place!

Application A log:
● Sent a message to B.
● Sent a message to B.
● Sent a message to B.

Application B log:
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.

Application C log:
● Got a message from B.
● Got a message from B.
● Got a message from B.

● Correlation typically relies on timestamps and guesswork.

– We could just store “causal information” in the first place!
– also avoids common pitfalls: out-of-order events, unsynced clocks

Application A log:
● Sent a message to B.
● Sent a message to B.
● Sent a message to B.

Application B log:
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.
● Got a message from A.
● Sent a message to C.

Application C log:
● Got a message from B.
● Got a message from B.
● Got a message from B.

Correlation

Main idea of this paper

● Each log entry SHOULD contain:

– a unique EventID (the event’s “gretel number”)

Application A log:
 A1. Sent a message to B.
 A2. Sent a message to B.
 A3. Sent a message to B.

Application B log:
 B1. Got a message from A.
 B2. Sent a message to C.
 B3. Got a message from A.
 B4. Sent a message to C.
 B5. Got a message from A.
 B6. Sent a message to C.

Application C log:
 C1. Got a message from B.
 C2. Got a message from B.
 C3. Got a message from B.

because it sounds cooler

Main idea of this paper

● Each log entry SHOULD contain:

– a unique EventID (the event’s “gretel number”)

– at least one predecessor EventID (“What event(s) caused this one?”)

Application A log:
 A1. Sent a message to B.
 A2. Sent a message to B.
 A3. Sent a message to B.

Application B log:
 B1. Got a message from A (A1).
 B2. Sent a message to C (B1)
 B3. Got a message from A (A3).
 B4. Sent a message to C (B3).
 B5. Got a message from A (A2).
 B6. Sent a message to C (B5).

Application C log:
 C1. Got a message from B (B4).
 C2. Got a message from B (B2).
 C3. Got a message from B (B6).

Causal Graph

● (partial order)
● anti-tampering (bonus): detect anomalies in the graph

A1

A2

A3

B1

B2

B3

B4

B5

B6

C1

C2

C3

“C1: Got a message from B (B4).”

modify:
● Nginx

– upstream-chaining
– docker

● Linux kernel
– (using eBPF)
– log some syscalls

(nginx = a HTTP server)
(eBPF = runtime-injectable monitoring scripts
for linux kernel)

github.com/jesajx/gretel

Proof-of-Concept

Implementation: EventID

0000000000000005–64aa92aa321be38d–0551d49a4443f80f–74366e774f124ed7

Scope
(Logical App ID)

Scope-specific Identifier
(random number)

● 256-bit integer (~67 hexchars)
● some options:

○ random number
○ hash
○ sequential ID

print(f"{x} happened")

Implementation: algorithm

B1 B2

B1

G

G

(old, new) = advance()
print(f"{x} happened, ID={new} pred={old}")

becomes:

after:

before:

thread_local G = …

Implementation: Messages

GET /path HTTP/1.1
...

GET /path HTTP/1.1
gretel: G
...

becomes:

systemcalls: prctl() + elbow grease

● send 10k GET-requests

– repeat 10 times

– with/without gretel

● measure:

– CPU usage (user+sys)

– memory usage

– log file sizes

– (message sizes)

Experiment

Result

● CPU/RAM usage increase: tiny (< 1%)

● HTTP header increase: “medium” (2x)

– (likely dwarfed by body in real world.)

● log file size increase: big (x2.5)

– “worst case scenario”: 256-bit gretel numbers

• but this is adjustable! (also: text vs binary logs)

Conclusion

– We proposed that:

• Causal Information should be stored in logs

• (as a forensic readiness measure)

– pros:

• improved log-correlation

• anti-tampering mechanisms

– cons:

• log file size

Future work

● Dig deeper

– Anti-tampering / attacks on this logging system

– forensic datasets with automatically labeled IoCs

● What else to put in logs

– Taxonomize forensic questions (+ answers)

Thanks!

