

Friedrich-Alexander-Universität Erlangen-Nürnberg

Evaluative Assessment of Digital Evidence

Establishing Bayesian Reasoning in Digital Forensic Science

Jan Gruber

Motivation

Evaluative Analysis in *Traditional* Forensic Science

- Reliability and uncertainty estimates are of great importance
- Statistical measurements, Bayesian reasoning, and evaluative reporting are standards
- Use of likelihood ratio approach is advised by ENFSI

...in Digital Forensic Science

- Rarely structured uncertainty estimates!
- Likelihood ratio approach *only* applied in niche fields
- → How to adhere to the high standards of forensic science?

Background & Related Work

A Primer on Likelihood Ratios

• Likelihood Ratios (LRs) are numerical measures of the evidential value

$$\mathsf{LR}_{h_p,h_d}(E) = \frac{P(E \mid h_p)}{P(E \mid h_d)}$$

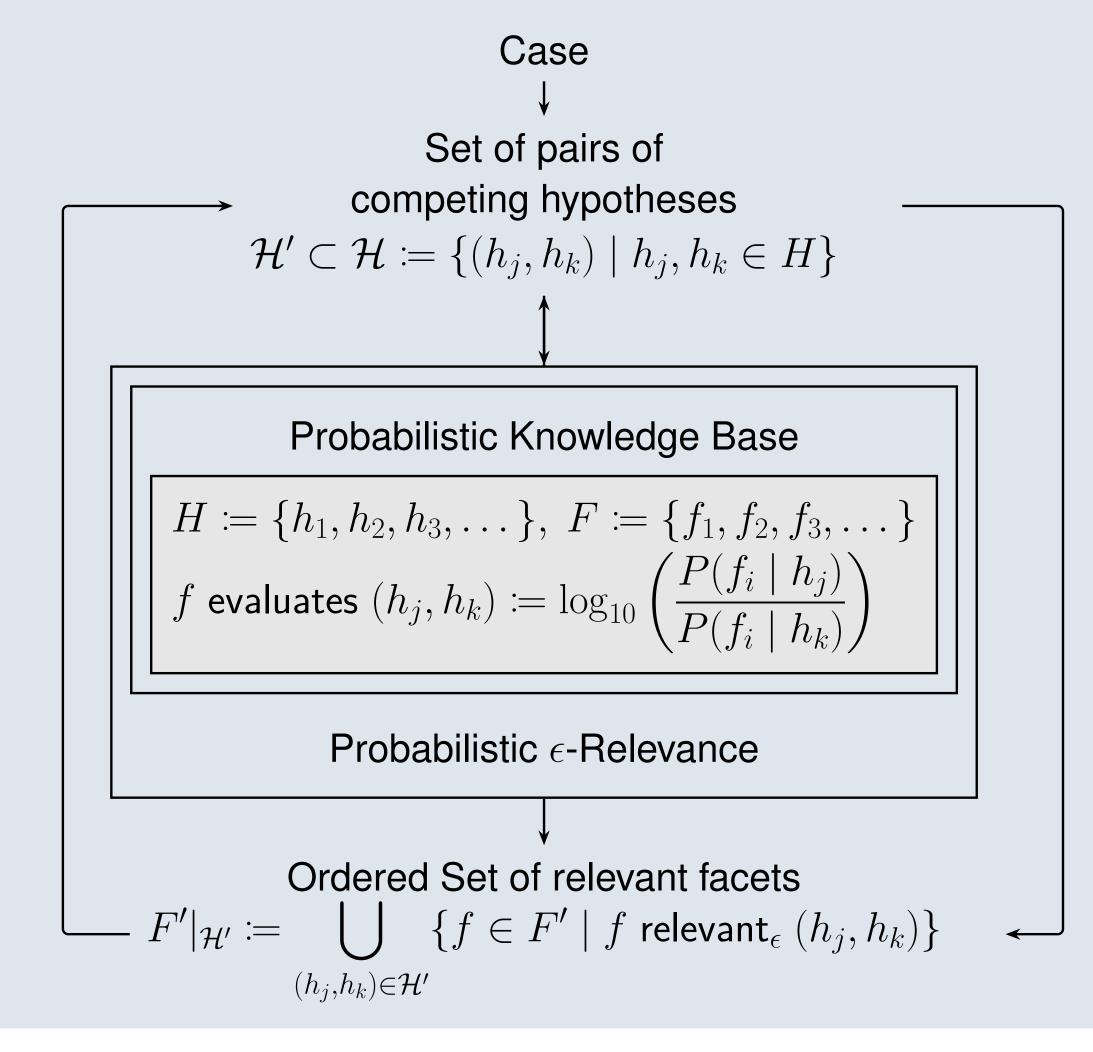
• The trier of fact makes a decision based on Bayes' theorem by updating:

prior odds \times LR = posterior odds

Usage of Likelihood Ratios in DF

- Mostly used for "measurements" from analog sensors, e.g.,
 - noise patterns for camera identification (Nordgaard/Höglund, 2011; Van Houten et al., 2011)
 - geolocation data stored on smartphones (Spichiger, 2023)
- Also used when dealing with similarity measures for...
 - o biometric face recognition (Macarulla et al., 2020)
 - o authorship attribution of text (Ishihara, 2021)

The Probabilistic Cyber-traceological Model


Overview

Based on previous publications, we propose a formalized method to identify relevant traces in DF, which is able to deal with uncertainty:

- The investigative knowledge base:
 - \circ a set of facets F
 - \circ a set of hypotheses H
 - a function

evaluates $:= F \times (H \times H) \to \mathbb{R}$

• Computation of *relevant digital evidence* for a pair of hypotheses (h_j, h_k)

- Uses Bayesian reasoning based on observable likelihoods $P(f_i \mid h_k)$
- Creates awareness of uncertainty
- Relevance assessment based on the weight of evidence $\leq \epsilon$

Outlook

Future directions?

The big question is how to instantiate the evaluates function +

- Which factors influence uncertainty?
- How to *build probabilistic models* for digital traces using the identified factors?
- Are there types of evidence for which the LR method is especially easy or hard to apply?

Conclusion

The *Cyber-traceological Model* is a promising basis to solidify DF by using Bayesian reasoning:

- Uncertainty estimates are vital
- First forays for specific and confined classes of digital traces
- Formal description is a starting point for further explorations
- → Any ideas? Collaborate with us!