
Forensic Science International: Digital Investigation 53 (2025) 301929

2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA

ANOC: Automated NoSQL database carver

Mahfuzul I. Nissan a,*, James Wagner a, Alexander Rasin b

a University of New Orleans, New Orleans, LA, USA
b DePaul University, Chicago, IL, USA

A R T I C L E I N F O

Keywords:
Database forensics
Digital forensics
NoSQL forensics
Memory forensics
Database carving
Reverse engineering

A B S T R A C T

The increased use of NoSQL databases to store and manage data has led to a demand to include them in forensic
investigations. Most NoSQL databases use diverse storage formats compared to file carving and relational
database forensics. For example, some NoSQL databases manage key-value pairs using B-Trees, while others
maintain hash tables or even binary protocols for serialization. Current research on NoSQL carving focuses on
single-database solutions, making it impractical to develop individual carvers for every NoSQL system. This
necessitates a generalized approach to forensic recovery, enabling the creation of a unified carver that can
operate effectively across various NoSQL platforms.
In this research, we introduce Automated NoSQL Carver, ANOC, a novel tool designed to reconstruct database

contents from raw database images without relying on the database API or logs. ANOC adapts to the unique
storage characteristics of various NoSQL systems, utilizing byte-level reverse engineering to identify and parse
data structures. By analyzing storage layouts algorithmically, ANOC identifies and reconstructs key-value pairs,
hierarchical storage structures, and associated metadata across multiple NoSQL platforms.
Through extensive experimentation, we demonstrate ANOC’s ability to recover data from four representative

key-value store NoSQL databases: Berkeley DB, ZODB, etcd, and LMDB. We explore ANOC’s limitations in en-
vironments where data is corrupted and RAM snapshots. Our findings establish the feasibility of a generalized
carver capable of addressing the challenges posed by the diverse and evolving NoSQL ecosystem.

1. Introduction

Addressing the current state of cybersecurity threats requires the
continuous development of tools to detect and prevent the advanced,
sophisticated threats. Detection tools, specifically, rely on a history of
events in audit logs. However, in a compromised system, the accuracy of
such logs should also be questioned - logs are subject to tampering or
bypassed altogether, e.g., temporarily disabled during malicious activ-
ity. At the same time, analyzing persistent storage and memory at the
byte-level offers a trusted view of even a compromised system - oper-
ating system design inherently abstracts such details from users and
applications, making it difficult to impossible to falsify such informa-
tion. A trusted byte-level analysis can then be used to verify the accuracy
of audit logs or potentially build a separate, independent timeline of
events, detailing data involved in a breach or how a breach occurred
(Nissan et al., 2023; Nissan; Wagner et al., 2023).

Database management systems (DBMSes) serve as the main data
repositories for organizations since they support wide-ranging

functionality to efficiently manage data together with essential security
features. Such native-DBMS security features are limited to authentica-
tion, access control, various levels of encryption, data masking, and
audit logs. Unfortunately, the challenges of modern cybersecurity
cannot be adequately addressed by only covering these native-DBMS
security essentials. To compliment current DBMS security function-
ality, a byte-level, forensic analysis of DBMS storage would support a
trusted view of a compromised DBMS server.

Most database forensics research has focused on relational DBMSes
(e.g., SQLite, PostgreSQL, Oracle, MySQL). Some research exists for
NoSQL DBMSes (e.g., MongoDB, Redis, Berkeley DB), but efforts often
focus on an individual DBMSes. This presents a challenge for forensics
research to address all NoSQL DBMSes, their different versions, and
deployments on different operating systems.

This paper proposes ANOC which uses generalized methods to
reverse-engineer and carve NoSQL DBMS storage at the byte-level,
opening the door for the development of tools to provide trusted view
of a compromised system. While this paper considers four representative

* Corresponding author.
E-mail addresses: minissan@uno.edu (M.I. Nissan), jwagner4@uno.edu (J. Wagner), arasin@cdm.depaul.edu (A. Rasin).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301929



Forensic Science International: Digital Investigation 53 (2025) 301929

2

key-value store DBMSes, our motivating philosophy is that a compre-
hensive reverse engineering tool should reconstruct everything from all
databases. Everything includes the user data; system metadata, which
provides context to user data; and unallocated storage, which can
contain deleted data or previous copies of current user data. We propose
a generalized approach for all NoSQL DBMSes - it is impractical to build
a new, specialized tool as new DBMSes are introduced or when DBMSes
change their storage architecture. We validate our approach through a
series of experiments with four representative NoSQL databases. This is
achieved by using synthetic data to learn a DBMS’s storage architecture
and the describing the metadata; once the storage architecture and
metadata are known for a given DBMS, reconstructing the DBMS at the
byte level is feasible. Our approach is database-agnostic because we
observe the effect of standard user operations performed on the data-
base. As our experiments demonstrate, there are a limited number of
strategies to represent data in storage as a response to these operations.
For example, tracking a new key-value pair in storage can be done based
on sizes of the key/value, based on an offset of where a key/value is
stored, or a combination of both. Databases are designed to localize this
storage information. The primary contributions of this paper are.

• We propose generalized algorithms to learn and parameterize data-
base storage layouts (Section 4).

• We leverage these parameters to implement generalized database
carving (Section 5).

• We evaluate ANOC on four representative key-value store NoSQL
databases (Berkeley DB, LMDB, ZODB, etcd) including corrupt stor-
age and RAM snapshots (Section 6).

Beyond the four representative key-value store DBMSes evaluated in
this paper, ANOC supports many other DBMSes. Some key-value store
NoSQL DBMSes are forks or derivatives of each other. Examples we
tested include, Durus and MDBX implement the same storage architec-
ture as ZODB and LMDB, respectively. In addition to key-value store
DBMSes ANOC supports the document store DBMSes RavenDB and
LiteDB. Exploring the architectures across types of NoSQL DBMSes (e.g.,
key-value stores, document stores, graph databases) is beyond the scope
of this paper.

2. Related work

Databases Forensics. Relational DBMSes store data in structured
tables, organizing records into fixed-size pages, indexes, and directories
(Hellerstein et al., 2007). These structured storage formats allow
forensic tools to recover damaged or deleted records even without logs
or system metadata (Wagner et al., 2017).

Forensic approaches are typically database-specific, with tools that
are designed to extract records from a particular DBMS (Choi et al.,
2021). Database forensic methods leverage structured page layouts, row
directories, and metadata catalogs to extract records (Wagner et al.,
2015, 2018). Unlike traditional file carving, which is used for recovering
standalone files (Poisel and Tjoa, 2013), database forensic tools recon-
struct data by interpreting database-specific storage structures (Frühwirt
et al., 2012) from a synthetic dataset (Lenard et al., 2020). However,
most traditional forensic tools remain database-specific, requiring ana-
lysts to develop separate methods for each relational DBMS.

To address this limitation, Wagner et al. proposed universal reverse
engineering for relational DBMSes by parameterizing database page
structures (Wagner et al., 2015, 2016; Wagner and Rasin, 2020). This
approach was later implemented in DBCarver (Wagner et al., 2017,
2019, 2020a, 2020b), a tool designed to reconstruct relational storage
structures at the byte level. DBCarver applies parameterization tech-
nique to successfully recover data from Oracle, PostgreSQL, IBM DB2,
MySQL, Microsoft SQL Server, SQLite, Firebird, and Apache Derby.

NoSQL Forensics. NoSQL database forensics research is largely
database-specific, with most studies focusing on individual systems

rather than providing a generalized approach (Yoon et al., 2016; Cho-
pade and Pachghare, 2019; Qi, 2014). Several forensic tools exist for
specific NoSQL DBMSes, leveraging database-specific storage charac-
teristics. Examples include MongoDB’s (MongoDB and Inc, 2024)
WiredTiger engine (MongoDB, 2023), which has led to forensic tools
that analyze its B-tree-based storage, allowing for record reconstruction
even after deletion (Yoon and Lee, 2018). Similarly, Redis (Redis and
Inc, 2025) forensics has been studied through its in-memory persistence
mechanisms, with tools like rdb-tools (Krishnan, 2020) and approaches
such as LESS (Sung et al., 2019) designed to analyze and recover his-
torical data from snapshot (RDB) storage formats. While these tools offer
valuable insights into specific NoSQL databases, they do not provide a
generalized forensic approach applicable across multiple databases.

NoSQL Forensic Challenges. Relational DBMSes store structured
data with centralized metadata (Cheung et al., 2005) (e.g., system cat-
alogs like MySQL’s INFORMATION_SCHEMA (Oracle Corporation,
2025), PostgreSQL’s pg_catalog (PostgreSQL Global Development
Group, 2025)), whereas NoSQL systems use diverse storage models that
vary in management of metadata and relationships (Candel et al., 2022).
Some DBMSes, such as Berkeley DB (Olson et al., 1999), LMDB
(Corporation, 2024), and etcd (Authors, 2025), use page-based storage
with headers, incorporating some structural similarities to relational
databases. However, they lack centralized system catalogs and embed
metadata in pages (Berkeley DB, LMDB) or alongside key-value pairs
(etcd). This distributed metadata complicates relationship reconstruc-
tion, as forensic tools must extract and interpret metadata dynamically
rather than relying on predefined structures. Others, such as ZODB
(Foundation, 2024), adopt serialized object storage, which deviates
entirely from page-based structures and further complicates forensic
recovery.

Generalized Approaches. Our approach builds on established file
carving techniques, which reconstruct files without relying on system
metadata or DBMS software (Garfinkel, 2007; Richard and Roussev,
2005). By drawing from research in relational database reverse engi-
neering that examines byte-level reconstruction (Wagner et al., 2015,
2017), we propose Automated NoSQL Carver (ANOC), a forensic tool that
parameterizes and carves NoSQL storage. Unlike relational forensic tools
that depend on predefined page structures, ANOC dynamically learns
NoSQL storage layouts, identifying key-value pairs, internal metadata,
and hierarchical relationships from raw storage.

3. ANOC overview

ANOC reconstructs NoSQL DBMS data from disk images or RAM
snapshots. It applies a parameterized carving approach, enabling re-
covery even when system metadata is missing or the database is cor-
rupted. Sections 4 and 5 detail the parameter extraction and carving
processes for Berkeley DB, LMDB, ZODB, and etcd, while Section 6
presents experimental evaluations. Sections 7 & 8 discuss limitations
and future research directions.

Fig. 1 is an overview of ANOC. In Step 1, the Parameter Collector
analyzes a target database to learn metadata. Synthetic data designed to
force metadata changes is automatically loaded into the database (1.A).
This known synthetic data allows ANOC to learn the database layout (1.
B) and extract key metadata (1.C), which is described with a set of
defined parameters (1.D). Initial forensic analysis of NoSQL databases
required manual investigation to identify key parameters essential for
data reconstruction. Using iterative analysis across multiple DBMSes, we
identified a set of fundamental storage characteristics across NoSQL
systems. As a result, the process became increasingly automated,
requiring minimal manual intervention. To run the parameter collector,
the user must start the target DBMS and specify the DBMS file directory.

In Step 2, the Carver uses the parameters to reconstruct system
metadata and user data as a read-only operation from an image of a
compromised system. The Carver operates as a command-line program,
requiring two inputs: the directory containing the storage image files

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

3

and an output directory. Once these inputs are provided, the Carver runs
automatically, requiring no further user interaction. The extracted data
is outputted as JSON files.

4. Parameter collector

The parameter collector examines each DBMS (and different ver-
sions) on a trusted system in a controlled environment. This section
details how significant parameter values are automatically set; however,
over 40 parameters (listed in (Nissan, 2025)) are not covered due to
space constraints.

We divide parameter collection into three primary components: page
header, record directory, and record data. The page header stores high-
level information (e.g., B-Tree level) about the record data. The record
directory maintains pointers to the record data. Finally, the record data
contains the user data along with additional metadata. The following
sections provide more detailed discussions on parameter collection for
each one of these components.

4.1. Database storage structure

Many NoSQL systems depend on sequential or algorithmically
generated storage layouts that omit record directories found in rela-
tional databases. While both NoSQL and relational databases may use
structures like B+ trees, their application differs: in relational databases,
B+ trees are tightly integrated with structured schemas and indexing,
whereas in NoSQL databases, they often store key-value pairs without
enforcing a fixed schema. Metadata in NoSQL systems is prone to be non-
deterministic, relying on hierarchical pointers or dynamically generated
maps such as key–value relationships or object references. These met-
adata structures are designed to work with database-specific algorithms
and require custom interpretations, making traditional carving methods
less directly applicable.

Fig. 2 illustrates the diverse storage structures of the four databases
examined in this paper. Berkeley DB, LMDB, and etcd utilize pages,
whereas ZODB does not. Although page concepts such as page type, (e.

g., whether it is a B+ tree leaf node containing records) and page IDs are
consistently used across A, B, and C, the metadata and data organization
structures vary significantly.

4.2. Page layout

Fig. 3 illustrates the page header layouts for each database. Among
these, Berkeley DB, LMDB, and etcd utilize pages, while ZODB does not.
A common feature across the paged databases is the 2-byte page type (e.
g., leaf node containing records) and the page ID, stored as a 32-bit or
64-bit integer.

Additionally, Berkeley DB uses 2 bytes to store the key count, and it
includes a record directory with pointers to records in the page. LMDB
also has a record directory but no key count. etcd stores the key count
using 2 bytes but does not use a record directory. Finally, ZODB, which
does not use pages, contains only metadata embedded directly in the
record data stream. Unlike the metadata in Berkeley DB, LMDB, and
etcd, the metadata in ZODB is not designed to identify record directories,
key counts, or other details typically used for record retrieval. Instead, it
is tailored to manage hierarchical object relationships.

Fig. 4 illustrates two example page information layouts. In Berkeley
DB, the page ID, page type, and key count are at offsets 8, 24, and 20,
respectively. In etcd, the page ID, page type, and key count are at offsets
0, 8, and 10, respectively. Berkeley DB also provides metadata for the
previous page ID and the next page ID at offsets 12 and 16, respectively.
In terms of storage, Berkeley DB and etcd represent the page ID with 4
and 8 bytes, respectively. Both examples allocate 2 bytes for the key
count.

The parameter collector automatically determines the offset and byte
usage for each metadata item in Fig. 4. Thus, each metadata has a) an
offset parameter and b) a size parameter. Table 1 lists example param-
eters we defined and the values automatically returned by ANOC. Page ID
parameters are determined by comparing constant offsets across pages
for a sequential number. The page size is identified by analyzing the
positions of page IDs and the order of records in a page. Databases
without pages use a contiguous layout of metadata and user data.

Fig. 1. ANOC architecture.

Fig. 2. High-Level Overview of Database Storage for Berkeley DB, LMDB, etcd,
& ZODB. Fig. 3. Storage Structures for Berkeley DB, LMDB, etcd, & ZODB.

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

4

4.3. Record directory

The record directory stores pointers that reference records (or each
key and each value) in a page. Berkeley DB and LMDB use a record
directory, while etcd and ZODB do not. Both Berkeley and LMDB store
the record directory after the page ID and key count.

Fig. 5 shows examples of record directories for Berkeley DB and
LMDB. Both examples store 2-byte little-endian addresses, and the first
directory address is consistent across all pages for a single DBMS. In
Berkeley DB, the first key and first value addresses are stored at offsets
26 and 28, respectively. Subsequent key addresses are calculated using
formula 26 + (n × 4) − 4, while subsequent value addresses follow 28 +
(n × 4) − 4. In contrast, LMDB stores only value addresses, with the first
value address at offset 16 and subsequent addresses calculated as 16 +

(n × 2) − 2. In both examples, addresses are appended from Top-to-
Bottom in the directory.

The record directory parameters, such as the offset and address size,
were automated through pointer chasing (Anders et al., 2016). Table 2
lists a sample set of parameters we defined and the values automatically
returned by ANOC for Fig. 5.

4.4. Record data

Fig. 6 illustrates four example record layout implementations in
Berkeley DB, etcd, LMDB, and ZODB. Berkeley DB record layout shows
the sizes for the key and value, which is what the record directory points
to. A constant delimiter is present 1) between the key size and key and 2)
between the value size and value. Records in this layout are inserted
using a Bottom-to-Top approach. etcd layout does not use a directory for
storing offsets. Instead, records are appended Top-to-Bottom, with no
metadata separating the key size and key, or the value size and value.
LMDB uses a record directory that points to the value sizes but does not
have addresses to the keys or key sizes. In this layout, records are
organized sequentially as value size, metadata, key size, metadata, fol-
lowed by the key and value, with no delimiter or metadata between the
key and value. It also appends records in a Bottom-to-Top order. ZODB
stores records sequentially as key size, metadata, then the key, meta-
data, value size, metadata, and finally the value. This layout appends
records Top-to-Bottom.

Table 3 lists record data parameters collected by ANOC. All four da-
tabases in Fig. 6 store the key and value sizes as 8-bit or 16-bit integers
for strings between 1 and 28 bytes or 28–216 bytes, respectively. For
example, in Table 3, for Berkeley DB, the parameter collector saves the
Key Delimiter (i.e., the constant byte sequence between the key size and
the key) as (0, 1). From the delimiter, the Key Size and the Key are at
offsets − 1 and 1, respectively.

5. Carver

The Carver operates as read-only on the user-specified files, disk
images, or RAM snapshots. The parameter file(s) provides the details
needed to reconstruct the database. The reconstructed output is returned
as a JSON file containing database metadata and user data.

Table 4 summarizes the functionality currently supported by the
Carver. The table outlines core features, i.e., page detection, page
parsing, record directory, and string decoding, specifying whether each
feature is available (✓) or not applicable (N/A) for each database. Future
work (Section 8) considers additional features.

The Carver first reads the parameters listed in Table 1. When it de-
tects a general ID marker associated with a page, it reconstructs only the
metadata and data as it is described by the parameters. This includes the
page size, page ID, record directory, record count, and record data. If
certain components are missing or not applicable to a specific database,
they are not included in the JSON output. However, because general ID
markers are typically short sequences of bytes, the Carver may identify
false matches. To eliminate false matches, it applies a series of assertions
to validate the reconstructed components. Assertions include: page
header IDs must be greater than 0, the record directory (when present)
contains at least one address, the record data includes at least one re-
cord, a record directory address is within the bounds of a page, and the
key count matches the number of records in a page.

Fig. 4. Page header layouts for Berkeley DB & etcd.

Table 1
Example page parameters used to reconstruct Fig. 2.

Parameter Berkeley LMDB etcd ZODB

General ID (1, 5) (2, 0) (2, 0) (46, 53)
General ID Offset 24 10 08 00
Page Size 4 KB 4 KB 4 KB N/A
Unique Page ID Offset 08 00 00 N/A
Previous Page ID Offset 12 N/A N/A N/A
Next Page ID Offset 16 N/A N/A N/A
Page ID Size 4 bytes 8 bytes 8 bytes N/A
Key Count Offset 20 N/A 10 N/A
Key Count Size 2 bytes N/A 2 bytes N/A

Fig. 5. Record directories for Berkeley DB & LMDB.

Table 2
Record directory parameters used to reconstruct Fig. 5.

Parameter Description Berkeley LMDB

Key Offset 1st key address offset 26 N/A
Value Offset 1st value address offset 28 16
Little Endian Addresses are stored using little-endian. True True
Top-to- Bottom Addresses appended in ascending order. True True
Address Size # bytes allocated for each address. 2 2

bytes bytes

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

5

5.1. Page header

The Carver uses the parameter file values from Table 1 to reconstruct
the page header metadata from Fig. 4. In Berkeley DB, the Carver moves
to offset 24 to reads 2 bytes, identifying whether the page was a leaf
node. It then moves to offsets 9, 12, and 16 to read 4 bytes each and
reconstruct the unique page ID, the previous page ID, and the next page
ID, respectively. At offset 20, the Carver reads 2 bytes to determine the
record count as a 16-bit integer. In etcd, the Carver follows a similar
process but noted that this example does not include previous or next
page IDs. To reconstruct the key count, the Carver moves to offset 10,
reads 2 bytes as a 16-bit integer. All values were interpreted using little-
endian format.

5.2. Record directory

Table 2 parameter values were used to reconstruct the record
directory for the two examples in Fig. 5. Table 5 outlines how the record
directory addresses were reconstructed. The Carver begins by using the
Key Offset or Value Offset parameter to move to the first address in the

record directory. Each address is derived using the formulas Key-
Addressn = Kn + (n × 4) − 4 and ValueAddressn = Vn + (n × 4) − 4. If
only key values were present, the formula KeyAddressn= Kn+ (n× 2) −
2 was used, where Kn and Vn represent decoding constants provided as
parameters. Once the bytes for each address are collected, they are
interpreted as 16-bit integers. After the first address is reconstructed, the
Carver calculates subsequent addresses based on the Address Size and
Top-to-Bottom Insertion parameters.

5.3. Record data

Table 3 parameter values were used to reconstruct the record data in
the four examples from Fig. 6. The delimiters are used to locate key/
value lengths, which are then used to extract the keys/values. If there is
a record directory (e.g., Berkeley DB and LMDB in Fig. 6), the Carver
moves to a record using this respective address.

For example, in Berkeley DB, the database contains a record direc-
tory with addresses for the keys and values. The Carver uses these ad-
dresses to move to each record. Then, the key (or value) size offsets from
the delimiter parameter, (0, 1), allow the Carver to extract the key (or
value) length. Finally, the Carver uses the key (or value) offsets from the
delimiter to extract the user data. If the database does not use a record
directory (e.g., etcd and ZODB in Fig. 6), the Carver reads the data
sequentially.

6. Experiments

ANOC has been tested on Berkeley DB, ZODB, etcd, and LMDB—on
both Windows and Linux operating systems. Table 6 summarizes the
tested DBMS version, operating system, and their respective page sizes.
To test ANOC on different systems and configurations, experiments on
Linux OS (Ubuntu 20.04 LTS) were conducted using VirtualBox with an
AMD 7950X3D @ 4.2 GHz processor. The VM was configured with 8 GB
of RAM and 4 processors. For Windows OS (Windows 11), experiments
were performed on a systemwith an Intel Core i5-1135G7@ 2.40 GHz, 8
processors, and 16 GB of RAM.

Dataset. We used the SSBM (Neil et al., 2009) benchmark to generate
data at different scales for experiments. Since this paper focuses on
key-value pair databases, we selected two representative columns from
each table, as shown in Table 7. To ensure consistency across different
databases, all data, including integers and dates, were stored as strings.
This approach was adopted because, unlike relational databases, NoSQL
databases typically store data at the byte level and often lack native

Fig. 6. Record layouts for Berkeley DB, etcd, LMDB, & ZODB.

Table 3
Record data parameters used to reconstruct Fig. 6.

Parameter Berkeley etcd LMDB ZODB

Key Size True True True True
Size Offset − 1 N/A 1 1
Delimiter (0, 1) N/A (0, 0, 0) (0, 0, 0)
Offset 1 N/A 2 − 1

Value Size True True True True
Size Offset − 1 N/A 1 1
Delimiter (0, 1) N/A (0, 0, 0) (0, 0, 0)
Offset 1 N/A 2 − 1

Table 4
Carving functionality breakdown across databases.

Function Berkeley ZODB etcd LMDB

Pages ✓ N/A ✓ ✓
Record Dir. ✓ N/A N/A ✓
Strings ✓ ✓ ✓ ✓

Table 5
Record directory address reconstructed from Fig. 5.

Address Fig. 5 Value

Berkeley DB LMDB

Key Value Value

Address1 26 27 28 29 16 17
Address2 30 31 32 33 18 19
Address3 34 35 36 37 20 21
Addressn 526 527 528 529 240 241

Table 6
DBMS version, testing operating system, & page size.

DBMS version Testing OS Page Size (KB)

Berkeley 18.1.40 Linux 4
Berkeley 18.1.40 Windows 4
ZODB 6.0 Linux N/A
ZODB 6.0 Windows N/A
etcd 3.2.26 Linux 4
etcd 3.2.26 Windows 4
LMDB 0.9.24 Linux 4
LMDB 0.9.24 Windows 4

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

6

support for data types.
Columns such as Date.datekey, Part.partkey, and Line-

order.orderkey, originally integers, were converted to strings with
left padding to maintain consistent formatting. Since NoSQL DBMSes do
not use the concept of tables, we prefixed the table name to the keys to
distinguish data. Keys were constructed as "Date#" + "datekey",
"Lineorder#" + "orderkey", and "Part#" + "partkey", resulting
in "Date#00000001", "Part#00000001", and "Line-
order#00000001". Keys such as Customer.name and Supplier.

name already include information indicating their source tables.

6.1. Accuracy

This experiment tests ANOC’s accuracy across operating systems for
Berkeley DB, ZODB, etcd, and LMDB. 15 million records were inserted
into each DBMS. Table 8 summarizes the results.

We observed 269,269 repeated records in Berkeley DB and 269,099
repeated records in LMDB. These repetitions occur because the file
layout in these databases incorporates additional metadata and redun-
dant records to facilitate efficient access within their storage model.

For Berkeley DB, ANOC reconstructed data by using the record
directory, which explicitly points to individual records in a page
ensuring no duplication in reconstruction. In contrast, for LMDB, ANOC
reconstructed 134,959 repeated records. Although ANOC used the record
directory to reconstruct records, repeated records were included
because the record directory in LMDB sometimes references entries from
previous pages. The discrepancy between the number of repeated re-
cords in the LMDB database file (269,099) and those reconstructed by
the Carver (134,959) is due to LMDB’s use of a B-tree index. Some re-
cords are found in the B-tree intermediate nodes.

ZODB organizes data sequentially in files without using a record
directory. Consequently, there were no repeated records in its database
files. The Carver successfully reconstructed all 15 million records from
ZODB without duplication, achieving 100 % accuracy.

For etcd, although 15 million records were inserted, the Carver
extracted 14,855,388 unique records, achieving 99 % accuracy. The
slight discrepancy stems from etcd’s storage optimization, which
dynamically reconstructs elements like index mappings and transaction
logs at runtime rather than persisting them explicitly. Unlike traditional
databases, etcd maintains a lean storage model where some key–value
relationships exist transiently in memory and materialize on disk only
when necessary. As a result, certain records lack a resolvable on-disk
footprint, making full recovery inherently challenging. Additionally,
key reassignments during compaction and defragmentation further

contribute to minor losses in the extraction process.

6.2. Performance

This experiment measures the runtime performance of the ANOC

Carver and its scalability for Berkeley DB, ZODB, etcd, and LMDB, using
datasets ranging from 1 million to 15 million records. We attempted to
extend the experiment beyond 15 million records; however, ZODB’s use
of the Pickle serialization format and its single-file architecture limited
our ability to insert additional records. Pickle’s sequential file handling
and lack of concurrent writes caused a bulk loading error that our data
size (~20M records) was beyond Pickle’s single file capabilities, while
ZODB’s single-file architecture inherently restricts the management and
scalability of larger datasets. The performance metrics were assessed by
measuring the carving speed (MB/s) and total runtime for each dataset.

Fig. 7 compares the carving performance of BerkeleyDB, ZODB, etcd,
and LMDB, while Tables 9–12 summarize the individual throughput
performance metrics. BerkeleyDB had the fastest carving speeds, fol-
lowed by LMDB, ZODB and etcd. For example, our dataset of 5 million
records was carved at a speed of 30.94 MB/s in 6.66 s for Berkeley DB
and at 29.15 MB/s in 6.32 s for LMDB. Additionally, the largest dataset
of 15 million records achieved a carving speed of 37.57 MB/s with a
runtime of 21.46 s for Berkeley DB and 28.29 MB/s with a runtime of
19.47 s for LMDB.

This efficiency stems from the record directory storage architectures
of Berkeley DB and LMDB. In Berkeley DB, each page includes a record
directory in the page header that provides direct pointers to record lo-
cations, enabling the Carver to locate and extract records more quickly.
Although LMDB also uses a record directory, it only contains the offset
positions of value lengths. As a result, the Carver must calculate the key
positions based on these offsets, introducing additional computational
overhead and leading to slightly slower performance compared to Ber-
keley DB.

In contrast, ZODB and etcd demonstrated slower carving speeds and
longer runtimes compared to Berkeley DB and LMDB. For the dataset
containing 5M records, ZODB achieved a carving speed of 18.91 MB/s
with a total runtime of 11.60 s, whereas etcd reached a speed of 18.16
MB/s with a runtime of 21.82 s. As for the largest dataset containing
15M records, ZODB carved at 18.61 MB/s, taking 35.88 s, while etcd
carved at 18.89 MB/s, taking 63.28 s.

This slower performance is attributed to the absence of a record
directory in ZODB and etcd (page header). Unlike Berkeley DB and
LMDB, which store pointers or offsets to records within a page, ZODB
and etcd require the Carver to traverse and process each record indi-
vidually. This architectural limitation increases computational over-
head, resulting in slower carving speeds and longer processing times
compared to Berkeley DB and LMDB.

6.3. Corruption

The objective of this experiment is to evaluate the ability of the
Carver to reconstruct database content from corrupted files. Using the
approach outlined in Section 6, we loaded customer table with sizes of
5M, 10M, and 15M into Berkeley DB and ZODB databases, and then
created a persistent storage image. Corruption with varying levels of
damage (1 %, 2%, 5%, and 10%) was simulated by overwriting random
1 KB segments of the file, where each level was applied independently.
Finally, the damaged images were processed using ANOC. The results are
summarized in Tables 13 and 14, which highlight the percentage of
records successfully reconstructed at each level.

6.3.1. Berkeley DB
For Berkeley DB, the reconstruction percentage decreased as file

damage increased, as summarized in Table 13. At 0 % corruption, the
reconstruction rate achieved was 100% across all dataset sizes, with 5M,
10M, and 15M records fully recovered. However, as damage levels

Table 7
Dataset.

Table Key Value

Customer name nation
Supplier name city
Part partkey name
Date datekey date
Lineorder orderkey shipmode

Table 8
Accuracy.

Database Records
Inserted
(Unique)

Records in DB
File

Carved Record Accuracy

Berkeley 15M 15269269 (with
repetition)

15M (Unique) 100 %

ZODB 15M 15M 15M (Unique) 100 %
etcd 15M 15M 14855388

(Unique)
99 %

LMDB 15M 15269099 (with
repetition)

15134959 (with
repetition)

100 %

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

7

increased, the recovery rates showed reductions.
For the 5M dataset, 96.5 % of records were reconstructed at 1 %

corruption, 91.3 % at 5 %, and 85.1 % at 10 % corruption. Similarly, the
10M dataset showed 94.3 % recovery at 1 % corruption and 76 % at 10
% corruption. The 15M dataset had a sharper decline, with recovery
dropping to 91.8 % at 1 % corruption and 71.6 % at 10 % corruption.

The reduction in record carving rates is due to Berkeley DB’s hier-
archical storage model, which relies on metadata structures such as
headers and row directories to organize and access data. When these
structures are damaged, our Carver is unable to recover the affected
pages.

Our experiments showed that each Berkeley DB page stored ~126
records. Corruption in the middle of a page can disrupt parsing by
damaging the key-value structure, making it impossible to extract the
affected record if its key, value, or delimiters are lost. However, recovery
may still be possible even when the record directory is damaged. Similar
to our approach with etcd and ZODB, valid key-value structures can be
identified sequentially beyond the corrupted section. However, this
method has not yet been implemented by ANOC for Berkeley DB.

6.3.2. ZODB
In contrast, ZODB exhibited a linear decline in reconstruction rates.

At 0 % corruption, all records were fully reconstructed for datasets of
sizes 5M, 10M, and 15M. With 1 % corruption, reconstruction rates
slightly decreased to 99 % across all dataset sizes. At 10 % corruption,

recovery rates were still relatively high, with 90 % for the 10M dataset
and 89.8 % for the 15M dataset.

This linear decline in recovery rates is attributed to ZODB’s
sequential storage model, which organizes key-value pairs without a
row directory. Thus, corruption in one part of storage has a localized
effect, leaving other areas unaffected and recoverable. ANOC scans
through to the end of the file, as ZODB does not store an explicit
termination marker where key-value sequences finally end. If corruption
disrupts the expected key-value layout, ANOC continues scanning for the
next valid structure, allowing recovery to resume beyond the corrupted
section.

6.4. Memory snapshots

The experiments in this section are designed to demonstrate ANOC’s

Fig. 7. Carving performance comparison.

Table 9
ANOC Carver speeds on BerkeleyDB.

No. of Records DB File Pages Time Total

(MB) (MB/s) Time (s)

5M 184 44643 30.94 6.66
10M 369 89286 31.38 13.14
15M 553 133929 37.57 21.46

Table 10
ANOC Carver speeds on LMDB.

No. of Records DB File Pages Time Total

(MB) (MB/s) Time (s)

5M 184 44650 29.15 6.32
10M 368 89294 29.35 12.55
15M 552 133938 28.29 19.47

Table 11
ANOC Carver speeds on etcd.

No. of Records DB File Pages Time Total

(MB) (MB/s) Time (s)

5M 416 101327 18.16 21.82
10M 835 203480 18.41 43.24
15M 1331 305659 18.89 63.28

Table 12
ANOC Carver speeds on ZODB.

No. of Records DB File Time Total

(MB) (MB/s) Time (s)

5M 230 18.91 11.60
10M 460 18.80 23.33
15M 690 18.61 35.88

Table 13
Data reconstructed from a corrupted file of Berkeley DB.

Records
Inserted

File Percent Damage

0 % 1 % 2 % 5 % 10 %

5M 5M (100
%)

4.8M
(96.5 %)

4.6M
(93.8 %)

4.5M
(91.3 %)

4.2M
(85.1 %)

10M 10M
(100 %)

9.4M
(94.3 %)

9.1M
(91.2 %)

8M (80.1
%)

7.6M
(76.0 %)

15M 15M
(100 %)

13.7M
(91.8 %)

12.8M
(85.1 %)

12M
(80.3 %)

10.7M
(71.6 %)

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

8

ability to carve RAM snapshots. We do this with designed query work-
loads that demonstrate the cache eviction policies for Berkeley DB and
LMDB.

6.4.1. Berkeley DB

6.4.1.1. Procedure. We set the Berkeley DB cache size to 10 MB and
queried all five tables in the following sequence: customer, supplier, part,
date, and lineorder. Each query selected 200,000 key-value pairs from the
respective table.

To distinguish between LRU and FIFO eviction policies, we re-
accessed 10,000 key-value pairs from the previously queried table
before executing the next table. For instance, before executing the query
on the supplier table, we re-accessed 10,000 keys from the customer table
to make those pages the most recently accessed. This procedure ensured
that the retention of re-accessed pages could be observed, which is
characteristic of an LRU policy, as opposed to FIFO, which would evict
the oldest read pages regardless of recent access.

Each query was designed to fill ~6.6 MB of the 10 MB cache,
ensuring conditions that trigger page evictions. After executing each
query, a process snapshot was captured, resulting in a total of five
snapshots. ANOC then reconstructed the database contents from each
snapshot to analyze which data was retained or evicted.

6.4.1.2. Results. ANOC reconstructed the database pages from the
snapshots at an average carving speed of 38 MB/s, and Fig. 8 illustrates
that Berkeley DB uses a Least Recently Used (LRU) eviction policy to
manage its cache.

Across the five snapshots, some pages from the re-accessed 10,000
key-value pairs of the previously queried table were consistently
retained in the cache, though not all were present due to space con-
straints and the eviction of older pages. In Snapshot 1, only the customer
table’s pages were present in the cache. In Snapshot 2, both supplier and
customer pages were observed, with a portion of the re-accessed customer
pages retained alongside the newly queried supplier pages. By Snapshot
3, no customer pages remained, while some re-accessed supplier pages
were retained alongside the part table pages.

In Snapshot 4, most part pages were replaced by date pages, although

some re-accessed part pages were still present. Finally, in Snapshot 5, the
cache predominantly contained lineorder table pages, with a subset of re-
accessed date pages retained. These patterns demonstrate that the most
recently accessed pages are prioritized for retention, aligning with LRU
behavior. This behavior is not consistent with FIFO (First In, First Out),
which would have evicted the re-accessed pages regardless of their
recent access, as they were inserted earlier. The presence of re-accessed
pages across snapshots confirms that Berkeley DB uses LRU rather than
FIFO for cache management.

Additionally, we observed that although the cache size was set to 10
MB, Berkeley DB utilized approximately 12.5 MB of memory during
query execution. This additional memory usage is attributed to over-
heads associated with managing B-tree structures, including internal
metadata, alignment inefficiencies during page allocation, and tempo-
rary buffers used for cursor operations.

6.4.2. Lightning memory-mapped database (LMDB)

6.4.2.1. Procedure. We set the data file size for LMDB to 50 MB, cor-
responding to 200,000 records from each table: Customer, Supplier, Part,
Date, and Lineorder. This workload was chosen to align with the
configuration of the Berkeley DB experiment, ensuring a fair comparison
of caching mechanisms between the two systems. Unlike Berkeley DB,
which implements its own caching mechanism, LMDB relies on the OS to
manage caching and page eviction. To maintain consistency, the query
workload for LMDB was also designed to match the Berkeley DB
experiment.

6.4.2.2. Results. After executing the query to select 200,000 records, we
observed that all pages of the queried table were present in the memory
snapshot. ANOC reconstructed database pages at 30 MB/s. Fig. 9 sum-
marizes the results. In Snapshot 1, all 1505 pages from the customer table
were cached, along with a few pages from other tables. In Snapshot 2, all
1516 pages from the supplier table were cached, with no eviction of the
customer pages. By Snapshot 3, the cache included all 3305 pages from
the part table, along with pages from previously queried tables. In
Snapshot 4, all 3191 pages from the date table were loaded, while pages
from earlier tables were also retained. Finally, in Snapshot 5, the OS
loaded all 3218 pages from the lineorder table and the entire database
file into memory, retaining all pages from every table.

The higher number of pages in part, date, and lineorder tables,
compared to customer and supplier, is attributed to LMDB’s B-tree
structure and management of key-value pairs. More frequent B-tree
reorganization and creation of intermediate nodes results in higher page
counts.

We also observed that the OS retained pages in memory even after
database shutdown. This reflects the OS’s caching mechanism, where
recently accessed pages are kept in memory to optimize future access. In
a separate experiment with a larger dataset (configured 2 GB file size for
15 million records), the OS frequently evicted the least recently usedFig. 8. Berkeley DB recovered cache pages.

Fig. 9. LMDB recovered cache pages.

Table 14
Data reconstructed from a corrupted file of ZODB.

Records
Inserted

File Percent Damage

0 % 1 % 2 % 5 % 10 %

5M 5M (100
%)

4.95M
(99.0 %)

4.9M
(98.0 %)

47.5M
(95.0 %)

4.5M
(90.0 %)

10M 10M
(100 %)

9.9M
(99.0 %)

9.8M
(98.0 %)

9.5M
(95.0 %)

9.0M
(90.0 %)

15M 15M
(100 %)

14.8M
(98.9 %)

14.6M
(97.9 %)

14.2M
(94.9 %)

13.4M
(89.8 %)

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

9

pages due to increased memory demand. This behavior aligns with
standard OS memory management strategies, where page retention
depends on memory availability and access patterns. When memory
demand increases, the OS prioritizes active processes and data by
evicting less frequently accessed pages.

7. Limitations

The current implementation of ANOC has three known limitations:
databases that use compression, encryption, or Log-Structured Merge-
trees (LSM).

7.1. Compression & encryption

Some NoSQL databases, such as MongoDB (WiredTiger), Badger, and
RocksDB, compress the keys and values by default. The current version
of the Parameter Collector (Section 4) relies on searching storage for the
known plaintext synthetic data. Therefore, the current version of ANOC
does not support such databases. To add support for these databases, the
compression algorithms used by each database would need to be pro-
vided to ANOC.

In addition to compression, the Carver (Section 5) does not recon-
struct encrypted data. If individual keys or values are encrypted, ANOC
could carve and return the ciphertext using the metadata. However,
ANOC would not be able to return any information if the entire file is
encrypted.

7.2. LSM-based architectures

Databases, such as LevelDB and RocksDB, use LSM-tree structures,
which write data into immutable, sequential SSTables. LSM-trees do not
have stable page boundaries and use compaction to rearrange data,
which breaks ANOC’s page-based carving model. The frequent layout
changes, fragmentation, and multi-level storage hierarchy obscure the
necessary patterns and metadata needed for carving. Supporting these
structures would require implementing LSM-specific libraries to decode
SSTables and interpret compaction logic.

8. Future work

Future work will enhance ANOC’s capability in several key areas. Our
focus will be incorporating unallocated storage areas to detect residual
information and reconstruct deleted records. This enhancement will
allow investigators to recover deleted data and validate modifications by
comparing reconstructed records with their original versions. We will
refine the parameter collection process to support various indexing
mechanisms and serialization formats, expanding compatibility with a
broader range of NoSQL databases. Additionally, our work will utilize
the output from the Carver for security auditing. By analyzing in-
memory data, we will identify unauthorized modifications, detect in-
consistencies between memory and disk storage, and uncover potential
tampering attempts. Furthermore, while ANOC currently processes
string-based data, we will extend its capabilities to recognize and extract
integers, timestamps, and other data types, making it more adaptable
across different data formats.

9. Conclusion

We presented Automated NoSQL Carver (ANOC) to address the
forensic challenges posed by diverse NoSQL storage architectures. ANOC
reconstructs database contents from raw storage using byte-level anal-
ysis, without relying on system metadata or database APIs. It identifies
key-value structures, hierarchical relationships, and metadata across
Berkeley DB, ZODB, etcd, and LMDB. Our experiments demonstrate
ANOC’s effectiveness in recovering structured data from corrupted
storage and RAM snapshots, validating its applicability in forensic

investigations.
As NoSQL databases continue to evolve, ANOC provides a generalized

framework for forensic analysis, offering a foundation for future en-
hancements in database recovery, integrity verification, and broader
NoSQL support.

Acknowledgments

This work was partially funded by the Louisiana Board of Regents
Grant LEQSF(2022-25)-RD-A-30 and by US National Science Foundation
Grant IIP-2016548.

References

Anders, M.A., Kaul, H., Chen, G.K., 2016. Pointer Chasing across Distributed Memory.
https://patentimages.storage.googleapis.com/38/e2/20/2280c48467bffe/
US20160179670A1.pdf.

Authors, E., 2025. Etcd: Distributed Reliable Key-Value Store, 2025-01-29. https://gith
ub.com/etcd-io/etcd.

Candel, C.J.F., Ruiz, D.S., García-Molina, J.J., 2022. A unified metamodel for nosql and
relational databases. Inf. Syst. 104, 101898.

Cheung, S.Y., Lu, J.J., Wyss, C.M., 2005. Metadata management and relational databases.
In: Proceedings of the 43rd Annual Southeast Regional Conference, vol. 1,
pp. 227–232.

Choi, H., Lee, S., Jeong, D., 2021. Forensic recovery of sql server database: Practical
approach. IEEE Access 9, 14564–14575.

Chopade, R., Pachghare, V.K., 2019. Ten years of critical review on database forensics
research. Digit. Invest. 29, 180–197.

Corporation, S., 2024. Lightning Memory-Mapped Database (Lmdb), 2025-01-29. http
s://github.com/LMDB.

Foundation, Z., 2024. Zodb, 2025-01-29. https://zodb.org/en/latest.
Frühwirt, P., Kieseberg, P., Schrittwieser, S., Huber, M., Weippl, E., 2012. Innodb

database forensics: reconstructing data manipulation queries from redo logs. In:
2012 Seventh International Conference on Availability, Reliability and Security.
IEEE, pp. 625–633.

Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object
validation. Digit. Invest. 4, 2–12.

Hellerstein, J.M., Stonebraker, M., Hamilton, J., et al., 2007. Architecture of a database
system. Foundat. Trends Databases 1 (2), 141–259.

Krishnan, S., 2020. Rdbtools. https://github.com/sripathikrishnan/redis-rdb-tools,
2025-01-29.

Lenard, B., Wagner, J., Rasin, A., Grier, J., 2020. Sysgen: system state corpus generator.
In: Proceedings of the 15th International Conference on Availability, Reliability and
Security, pp. 1–6.

MongoDB, I., 2023. Wiredtiger, 2025-01-29. https://source.wiredtiger.com/11.0.0/arch
-btree.html.

MongoDB, Inc., 2024. Mongodb, 2025-01-29. https://www.mongodb.com.
Neil, P.O., et al., 2009. The star schema benchmark and augmented fact table indexing.

In: Performance Evaluation and Benchmarking.
M. I. Nissan, Analysis of Forensic Artifacts in Database Memory Using Support Vector

Machine.
Nissan, M.I., 2025. ANOC Parameters. Zenodo. https://doi.org/10.5281/zenodo.15

383693.
Nissan, M.I., Wagner, J., Aktar, S., 2023. Database memory forensics: a machine learning

approach to reverse-engineer query activity. Forensic Sci. Int.: Digit. Invest. 44,
301503.

Olson, M.A., Bostic, K., Seltzer, M.I., Berkeley, D.B., 1999. In: Proceedings of the Annual
Conference on USENIX Annual Technical Conference. https://dl.acm.org/doi/10
.5555/1268708.1268751.

Oracle Corporation, 2025. Mysql 8.4 Reference Manual: Information_schema Tables,
2025-01-29. https://dev.mysql.com/doc/refman/8.4/en/information-schema.html.

Poisel, R., Tjoa, S., 2013. A comprehensive literature review of file carving. In: 2013
International Conference on Availability, Reliability and Security. IEEE,
pp. 475–484.

PostgreSQL Global Development Group, 2025. Postgresql Documentation: Schemas,
2025-01-29. https://www.postgresql.org/docs/current/ddl-schemas.html.

Qi, M., 2014. Digital forensics and nosql databases. In: 2014 11th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, pp. 734–739.

Redis, Inc., 2025. Redis, 2025-01-29. https://redis.io/.
Richard III, G.G., Roussev, V., 2005. Scalpel: a frugal, high performance file carver. In:

DFRWS. Citeseer.
Sung, H., Jin, M., Shin, M., Roh, H., Choi, W., Park, S., 2019. Less: Logging exploiting

snapshot. In: 2019 IEEE International Conference on Big Data and Smart Computing
(BigComp). IEEE, pp. 1–4.

Wagner, J., Rasin, A., 2020. A framework to reverse engineer database memory by
abstracting memory areas. In: International Conference on Database and Expert
Systems Applications. Springer, pp. 304–319.

Wagner, J., Rasin, A., Grier, J., 2015. Database forensic analysis through internal
structure carving. Digit. Invest. 14, S106–S115.

Wagner, J., Rasin, A., Grier, J., 2016. Database image content explorer: carving data that
does not officially exist. Digit. Invest. 18, S97–S107.

M.I. Nissan et al.



Forensic Science International: Digital Investigation 53 (2025) 301929

10

Wagner, J., et al., 2017. Database forensic analysis with dbcarver. In: Conference on
Innovative Data Systems Research.

Wagner, J., Rasin, A., Heart, K., Malik, T., Furst, J., Grier, J., 2018. Detecting database
file tampering through page carving. In: 21st International Conference on Extending
Database Technology.

Wagner, J., Rasin, A., Heart, K., Jacob, R., Grier, J., 2019. Db3f & df-toolkit: the database
forensic file format and the database forensic toolkit. Digit. Invest. 29, S42–S50.

Wagner, J., Rasin, A., Heart, K., Malik, T., Grier, J., 2020a. Df-toolkit: interacting with
low-level database storage. Proc. VLDB Endowment 13 (12), 2845–2848.

Wagner, J., Rasin, A., Malik, T., Grier, J., Forensics, G., 2020b. Odsa: Open database
storage access. In: 23rd International Conference on Extending Database
Technology.

Wagner, J., Nissan, M.I., Rasin, A., 2023. Database memory forensics: identifying cache
patterns for log verification. Forensic Sci. Int.: Digit. Invest. 45, 301567.

Yoon, J., Lee, S., 2018. A method and tool to recover data deleted from a mongodb. Digit.
Invest. 24, 106–120.

Yoon, J., Jeong, D., Kang, C.-h., Lee, S., 2016. Forensic investigation framework for the
document store nosql dbms: mongodb as a case study. Digit. Invest. 17, 53–65.

M.I. Nissan et al.


