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A B S T R A C T

Artificial Intelligence (AI) has found multi-faceted applications in critical sectors including Digital Forensics (DF)
which also require eXplainability (XAI) as a non-negotiable for its applicability, such as admissibility of expert
evidence in the court of law. The state-of-the-art XAI workflows focus more on utilizing XAI tools for supervised
learning. This is in contrast to the fact that unsupervised learning may be practically more relevant in DF and
other sectors that largely produce complex and unlabeled data continuously, in considerable volumes. This
research study explores the challenges and utility of unsupervised learning-based XAI for DF’s complex datasets.
A memory forensics-based case scenario is implemented to detect anomalies and cluster obfuscated malware
using the Isolation Forest, Autoencoder, K-means, DBSCAN, and Gaussian Mixture Model (GMM) unsupervised
algorithms on three categorical levels. The CIC MalMemAnalysis-2022 dataset’s binary, and multivariate (4, 16)
categories are used as a reference to perform clustering. The anomaly detection and clustering results are
evaluated using accuracy, confusion matrices and Adjusted Rand Index (ARI) and explained through Shapley
Additive Explanations (SHAP), using force, waterfall, scatter, summary, and bar plots’ local and global expla-
nations. We also explore how some SHAP explanations may be used for dimensionality reduction.

1. Introduction

A key challenge in Digital Forensics (DF) workflows is bridging the
communication gap between technical forensic experts and non-
technical professionals, such as police officers and judges. In reference
to Federal Rule of Evidence (FRE)703,1 expert witnesses may base their
opinion on facts or data that would normally be inadmissible in court.
Artificial Intelligence (AI) offers significant advantages in DF by auto-
mating analysis, improving detection accuracy, and helping in-
vestigators handle large volumes of case material (digital evidence
datasets), but more so, it ensures expert evidence (EE) is clearly
conveyed and easily understood. In this context, eXplainability2 (XAI) is
crucial; black box3 models must be interpretable to be trusted and
applied in high-stakes areas like DF. XAI develops trust in AI models by
explaining how they reached certain predictions/classifications. The
clarity gained through explanations develops trust among users and

stakeholders and helps tackle the challenges of accountability and
interpretability linked to advanced AI systems.

Explainability has generally been explored for supervised learning
algorithms (that use labeled data to train models which then make label
predictions) with XAI tools more catered for these algorithms as well
Khalid et al. (2024); Hall et al. (2022, 2021); Solanke and Biasiotti
(2022); Dunsin et al. (2022). Data labeling done manually is an expen-
sive and time-consuming process Wickramasinghe et al. (2021). In DF in
particular, as volumes of forensic images grow from GBs to TBs range, it
becomes increasingly difficult to have and maintain labeled datasets. It
also requires field experts like forensic analysts or investigators in DF. In
contrast, Unsupervised Learning (UL) which uses unlabeled data to
identify unknown patterns based on the structure of the data provides a
wider scope of applicability. In fact, in real-case DF scenarios, UL al-
gorithms can effectively detect unknown threats by uncovering previ-
ously unseen patterns and relationships within datasets Öztürk and
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1 https://www.law.cornell.edu/rules/fre/rule_703.
2 The terms explainability and interpretability are used interchangeably in the paper within the context of XAI.
3 A black box AI model’s internal processes are opaque and not easily interpretable, making it difficult to understand how it arrives at its decisions/predictions

Khalid et al. (2024).
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Hızal (2024). UL algorithms are more suitable also because data does not
need labeling. This also eliminates biases associated with labeled data-
sets used in supervised learning Wickramasinghe et al. (2021).

However, UL has comparatively been under-researched with respect
to explainability. This may be attributed to a few challenges presented
with UL algorithms. On the surface level, the missing labels/ground truth
(due to the structural complexity of the data, limits of human knowl-
edge, and significant volumes that complicate the categorization pro-
cess) obscure the analysis and evaluation of results of clustering or
anomaly detection, etc. Morichetta et al. (2019). Since data is not
labeled, judging/evaluating the accuracy of the results is challenging
such as whether detected anomalies truly represent malicious activity.
Even though evaluation metrics like silhouette coefficient or rank index
provide structural insights about the results, they do not explain why a
datapoint was categorized into a particular cluster by the model Mor-
ichetta et al. (2019). Also, the results of UL algorithms can sometimes
especially be harder to interpret (requiring manual expert analysis) in
complex datasets like those in DF which contain noise (such as network
traffic, memory dumps, multimedia, disk files, logs, etc.).

In the research study that follows, we explore the challenges and
applicability of explainable UL for DF. The major contributions of this
study are as follows:

• We explore the applicability of UL in a memory forensics-based DF
case scenario, utilizing Isolation Forest and Autoencoder to detect
anomalies and K-means, DBSCAN, and Gaussian Mixture Model
(GMM) to cluster obfuscated malware in memory (using the CIC
MalMemAnalysis-2022 dataset).

• We present explanations/interpretations of anomalies and clusters
made by UL models, testing Shapley Additive Explanations (SHAP),
typically used for supervised learning.

The rest of this paper is structured as follows. Section II discusses
previous research and other related contributions. Section III details the
methodology and experimental setup. Section IV discusses the results of
the XAI-DF experiments utilizing unsupervised algorithms. Section V
discusses the final comments, conclusion, and possible future directions
in the domain.

2. Related work

2.1. State-of-the-art in XAI-DF

The utilization of AI and explainability in DF has been explored
within the supervised learning domain. We previously proposed a ho-
listic yet exhaustive XAI-DF framework detailing the workflow of DF
investigations that use XAI (Khalid et al. (2024)). Our demonstrations of
the framework include supervised learning-based network and memory
forensics case studies with Local Interpretable Model-Agnostic Expla-
nations (LIME) and SHAP explanations.

Hall et al. (2022, 2021) perform proof-of-concept implementations
of XAI for IT forensics utilizing a curated database of 23 VHD images to
source multimedia (images and videos) and file metadata for training
and testing AI models. They use LIME to get explanations.

Solanke (2022) examines the limitations of black-box AI models and
investigates approaches to enhance the interpretability of AI-driven DF.
This effort addresses the skepticism of courts, legal practitioners, and the
public regarding the use of AI in digital evidence extraction, driven by
concerns about transparency and comprehensibility.

Dunsin et al. (2022) propose an agent-based MADIK framework that
adopts a modular approach, training and testing AI models for distinct
forensic tasks such as a registry agent that deals with registry data only.
Models trained for specific DF tasks like this may perform more effi-
ciently. However, they do not explore explainability.

2.2. Explainability for unsupervised learning algorithms

Most of the existing literature on techniques and methodologies for
UL-based XAI use some degree of supervised learning in their workflows
Wickramasinghe et al. (2021). Montavon et al. (2022) propose a ‘neu-
ralization-propagation’ (NEON) approach which first converts the UL
model into a functionally equivalent neural network (a supervised algo-
rithm) followed by the usage of supervised XAI techniques such as
Layer-wise Relevance Propagation (LRP). They use this method to
explain Kernel Density Estimation and K-means clustering-based case
studies.

Morichetta et al. (2019) propose the EXPLAIN-IT methodology
which also uses supervised learning to explain clusters. The clustering
results obtained from UL models are input as labels to train a classifi-
cation (supervised) model and the results are then explained using
standard XAI tools like LIME. The proposed methodology is demon-
strated using a YouTube QoE dataset. The authors acknowledge that
using supervised models to explain UL algorithms introduces a bias.

Won Oh et al. (2022) use Autoencoder, a (neural network) UL model,
for anomaly detection of nuclear power plants as part of accident miti-
gation measures. In addition, SHAP is used to explain the anomalies.

Brito et al. (2022) perform detection and diagnosis of faults in
rotating machinery using UL anomaly detection models and use SHAP
for explanations.

2.3. Research and testing with CIC MalMemAnalysis-2022 dataset

Carrier et al. (2022) propose an updated VolMemLyzer-V2 that ex-
tracts features from memory dumps to detect obfuscated and hidden
malware. A memory dataset, CIC MalMemAnalysis-2022, is created
using the VolMemLyzer-V2 to train and test learning systems for
obfuscated malware detection. Their testing with the dataset entails
using a stacking ensemble learning approach that has two layers of
classifiers. Various supervised learning algorithms are used for binary
classification of the dataset (benign vs. malicious) achieving an accuracy
score of 99 %. This is done by using Naive Bayes (NB), Decision Tree
(DT), and Random Forest (RF) as base learners in the first layer and
Logistic Regression (LR) as the meta-learner in the second layer.

Dener et al. (2022) perform binary classification on the dataset using
nine different supervised Machine Learning (ML) and Deep Learning
(DL) models (RF, DT, Gradient Augmented Tree (GBT), LR, NB, Linear
Support Vector Machine (Linear SVC), Multilayer Perceptron (MLP),
Deep Neural Network (DNN), and Long Short-Term Memory (LSTM)).
They mostly use default parameters during model training, getting the
highest accuracy for Logistic Regression, i.e. 99.97 %.

Mezina and Burget (2022) perform both binary and multiclass (4)
classification on the dataset using common supervised models (such as
RF, LR, DT, MLP, Support Vector Machine (SVM), K-Nearest Neighbors
(KNN)) and a proposed dilated Convolution Neural Network (CNN).
They use the random searchmethod to find the optimal hyperparameters
for the common models. RF achieves 99.99 % accuracy, while their
proposed CNN model achieves 83.53 % accuracy for multi-class
classification.

Öztürk and Hızal (2024) perform binary and multiclass (4, 16)
classification of the dataset using supervised learning. Their experiments
prove the most effective model to be XGBoost under various experi-
mental conditions such as percentage splits and 10-fold cross-validation.
Accuracy scores of 99.99 %, 87.79 %, and 75.49 % are achieved for
binary and multiclass (4, 16) classification, respectively.

3. Methodology and experimental setup

To explore the implementation of the explainable unsupervised
learning for DF (particularly memory forensics) workflow, we adapt our
XAI-DF framework detailed in Khalid et al. (2024) to unsupervised
learning and experiment with the CIC MalMemAnalysis-2022 dataset to
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detect anomalies (i.e. obfuscated malware) using Isolation forest and
Autoencoder, and also cluster various malware categories in memory
using K-means, DBSCAN, and Gaussian Mixture Model (GMM). Shapley
Additive Explanations (SHAP), a state-of-the-art post-hoc XAI tool based
on game theory, is used to interpret/explain the anomalies and clusters
based on feature importance Lundberg and Lee (2017). The methodol-
ogy is detailed in Fig. 1.

3.1. CIC MalMemAnalysis-2022 dataset for learning systems

Researchers at the Canadian Institute for Cybersecurity created the
CIC MalMemAnalysis-2022 dataset using real malware to train and test
learning systems for obfuscated malware detection Carrier et al. (2022).

The dataset was created using malicious and benign memory dumps.
For malicious dumps, 2916 samples of malware categorized into Ran-
somware (Conti, MAZE, Pysa, Ako, Shade), Spyware (180Solutions,
Coolwebsearch, Gator, Transponder, TIBS), and Trojan Horse (Zeus,
Emotet, Refroso, scar, Reconyc) were executed. Benign dumps were
captured after benign Windows activity. The VolMemLyzer-V2 tool was
then used to extract 55 features from the memory dumps, creating a CSV
’CIC MalMemAnalysis-2022’. The dataset, balanced using the SMOTE
algorithm, consists of 58,596 records with 29,298 benign and 29,298
malicious instances. The ’Class’ feature can be used as a reference for
binary clustering/classification and anomaly detection, and the ’Cate-
gory’ feature which has the types (4) and sub-types (16) of malware can
be referenced for multivariate clustering/classification.

For our implementation, we use the dataset in the context of a
memory forensics investigation to perform (a) anomaly detection and
(b) binary and multivariate (4, 16) clustering-based analysis.

3.2. Unsupervised learning models for clustering

The Isolation Forest and Autoencoder models were used for anomaly
detection, whereas K-means, DBSCAN, and GMM models were used to
obtain binary and multivariate clusters of the dataset. We used the

scikit-learn (Python) implementations of these algorithms in Google
Colaboratory,4 which may be referenced from Github at https://github.
com/znbkhld/Unupervised-XAI-DF.

For anomaly detection, since the dataset contains an equal number of
malicious and benign instances, only initial 5 % of malicious instances
were retained while purging the rest to create an imbalance in benign vs.
malicious instances and, in turn, the anomalous nature of malicious in-
stances in the dataset.

For clustering, to assess the dataset’s clustering tendency (and verify
the non-random nature of the data), the Hopkins statistic was calculated,
yielding a value of 0.9, which suggests that the dataset is suitable for
clustering.

The dataset CSV was loaded using Pandas after being imported onto
Google Colab. Since this dataset does contain the ground truth, i.e. the
’Class’ and ’Category’ features, they were removed for experiments with
the unsupervised models during preprocessing. The anomalies detected
and clusters formed by all the models are purely based on the raw data
patterns without labels. Before clustering, StandardScaler was used to
standardize the features. The model hyperparameters, specifically for
DBSCAN, were identified based on ’random search’. Since DBSCAN dis-
covers clusters without an input parameter (that specifies the number of
clusters from the get-go), it was used to perform multivariate (16) type
clustering (further details in ”Results and Discussion”). K-means was
used to perform binary (2) clustering while GMM was used for binary
and multivariate (4) type clustering. Note that these specific models
with the specific types of clustering gave the best results compared to
other models (and types) which is why they are included in the study for
a detailed discussion.

Since ground truth labels were available, they were used (only) to
evaluate the performance of the unsupervised models. Isolation Forest

Fig. 1. Unsupervised learning methodology.

4 https://colab.research.google.com/.
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and Autoencoder were evaluated using Accuracy score and a confusion
matrix.5 Clustering algorithms were evaluated using two metrics: (1)
confusion matrices, and (2) Adjusted Rand Index (ARI).6 Finally, Prin-
cipal Component Analysis (PCA) was used to visualize the original class
and obtained clusters across two dimensions for comparison.

3.3. SHAP explanations for interpretability

Evaluation metrics like rank indexes can quantify the efficiency of
particular algorithms, but detailed information about the anomalies/
clusters, and the most relevant features contributing to the assignment
of instances to them may be obtained via XAI tools like SHAP Lundberg
and Lee (2017). Unlike most tools for explainability, SHAP can be used
with both supervised and unsupervised algorithms Brito et al. (2022).

We utilize SHAP to extract a range of explanations for anomalies and
cluster analysis based on feature importance. In particular, force,
waterfall, scatter, summary, and bar plots’ local and global explanations
are extracted. To do so, we use the Explainer implementation/function of
SHAP which can be applied to any model and is not limited to tree-based

Fig. 2. Confusion matrices for IF, Autoencoder, K-means, DBSCAN, and GMM models.

5 Confusion matrix, also known as error matrix, is a visual table that is used
to evaluate the performance of a model.

6 Adjusted Rand Index (ARI) computes the similarity between predicted
clusters and ground truth labels. It ranges from +1 to − 1 where +1 indicates
perfect similarity between two clusterings, 0 indicates random, and − 1 indicates
that the clusterings are completely different.
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models or neural networks.

4. Results and Discussion

4.1. Evaluation metrics

For anomaly detection of the unbalanced CIC MalMemAnalysis-2022
dataset, Isolation Forest hyperparameters were set to n_estimators =

100, max_samples = ’auto’, max_features = 55, contamination = ’auto’,
random_state= 42. The overall accuracy was quantified to 0.8595 using
all 55 features. The confusion matrix for IF is illustrated in Fig. 2a.

Autoencoder hyperparameters for anomaly detection were set to
epochs = 50, batch_size = 32, validation_split = 0.1, Activation= ReLU,
Optimizer = Adam, Loss = Mean squared error. The overall accuracy
was quantified to 0.9759 using all 55 features. The confusion matrix for
Autoencoder is illustrated in Fig. 2b.

Applying K-means clustering to the CIC dataset with n_clusters = 2
(benign vs. malware ’Class’ label) and random_state = 42 gave ARI of
0.7544 which is considered good with respect to a complex dataset. The
confusion matrix for K-means binary clustering is illustrated in Fig. 2c. A
visual comparison of the original class vs. obtained K-means (binary)
clusters can be made using the PCA plots illustrated in Fig. 3a.

DBSCAN hyperparameters were set to eps = 2.3, min_samples = 190
through random search. Since DBSCAN does not input the number of
clusters, it is evaluated based on the maximum possible clusters in the
dataset, i.e. the multivariate-16 category. DBSCAN discovers 9 clusters
from the dataset (being inaccurate) and achieving an ARI of 0.5690. The
confusion matrix and PCA plots for DBSCAN are illustrated in Figs. 2d
and 3b, respectively.

GMM was used for binary (n_components = 2, random_state = 42)
and multivariate-4 (n_components = 4, random_state = 42) clustering
giving ARIs 0.9592 and 0.6449, respectively. The confusion matrices
and PCA plots for GMM are illustrated in Fig. 2e and f and Fig. 3c,
d respectively.

GMM achieves excellent results for binary clustering. K-means and
DBSCAN results are considerably good, reinforcing that unsupervised
models may be effectively used in complex datasets like DF.

Table 1 lists the hyperparameters of the unsupervised models and the
final ARIs achieved.

4.2. SHAP explanations

SHAP explanations for IF anomaly detection based on feature
importance are illustrated in Fig. 4. A force plot7 (Fig. 4a) for the
30405th instance in the dataset which was flagged as an anomaly/ma-
licious (i.e. f(x)8 = -1) illustrates features that contribute towards its
categorization; this is a local explanation.9 A waterfall plot (Fig. 4b)
illustrates the same explanation. These plots suggest that top features for
the subject instance were handles.nsection, svcscan.nactive, and

Fig. 3. Principal Components’ comparison (original class vs. obtained clusters) for K-means, DBSCAN, and GMM models.

Table 1
Anomaly detection and clustering results for CIC MalMemAnalysis-2022 dataset.

Unsupervised algorithm Hyperparameters Evaluation
metrics

Isolation Forest (anomaly detection) n_estimators = 100, max_samples = ’auto’, max_features = 55, contamination = ’auto’, random_state = 42 0.8595 (accuracy)
Autoencoder (anomaly detection) epochs= 50, batch_size= 32, validation_split= 0.1, Activation= ReLU, Optimizer= Adam, Loss=Mean squared error 0.9759 (accuracy)
K-means (binary clustering) n_clusters = 2, random_state = 42 0.7544 (ARI)
DBSCAN (multivariate-16
clustering)

eps = 2.3, min_samples = 190 0.5690 (ARI)

GMM (binary clustering) n_components = 2, random_state = 42 0.9592 (ARI)
GMM (multivariate-4 clustering) n_components = 4, random_state = 42 0.6449 (ARI)

7 In a force plot, features highlighted in red indicate their contribution to
increasing the predicted value, while those in blue represent their influence in
decreasing the prediction.

8 In anomaly detection, f(x) is 1 in case of a benign instance and − 1 in case of
a malicious/anomaly instance.

9 Local explanations interpret categorization of one instance in a dataset while
global explanations, accounting for all instances, provide a holistic
interpretation.
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Fig. 4. SHAP explanations for Isolation Forest anomaly detection.
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Fig. 5. SHAP explanations for K-means (binary) clustering.
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Fig. 6. SHAP explanations for GMM (binary) clustering.
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handles.nfile. A scatter(/dependence) plot of the top feature for the
instance can be used to gauge how fluctuation in the feature’s value
relates to SHAP values and, by extension, impacts its categorization as
an anomaly. The vertical spread of SHAP values reflects the relative
influence of each feature on the categorization. Fig. 4c illustrates the
scatter plot of handles.nsection. The summary and bar plots illustrated
in Fig. 4d and e are global explanations providing insight into features
that are top determinants in anomaly detection holistically i.e. pslist.
avg_threads, pslist.nppid, and psxiew.not_in_deskthrd (these have the
highest mean absolute SHAP values). The bar plot also highlights around
7 features with close to no contribution; these may be removed for
further analysis as part of dimensionality reduction to get better results.

SHAP explanations for K-means (binary) clusters are illustrated in
Fig. 5. A force plot (Fig. 5a) for the 34546th instance in the dataset which
was accurately clustered to the malware category is denoted by the
value 1 for f(x)10) Fig. 5b illustrates the same explanation as a waterfall
plot. According to these explanations, the svcscan.process_services,
handles.ntimer, ldrmodules.not_in_load features are top determinants
for the 34546th instance. The svcscan.process_services feature’s contri-
bution, in particular, can be viewed via a scatter plot (Fig. 5c). The
distribution is fragmented, showing a clear separation between feature
values. The summary and bar plots illustrated in Fig. 5d and e highlight
top features globally: dlllist.av_dlls_per_proc, handles.nthread, handles.
nevent. The bar plot indicates around 10 features with close to no
contribution which may be removed.

GMM (binary) explanations are illustrated in Fig. 6. Fig. 6a and b
shows force and waterfall plots for the 34545th instance in the dataset
categorized malicious. A scatter plot for the top feature (pslist.
avg_handlers) in these local explanations (Fig. 6c) exhibits a linear trend
across its range of SHAP values and a quite wide vertical spread. Ac-
cording to the summary and bar plots illustrated in Fig. 6d and e, the top
features globally are ldrmodules.not_in_load, ldrmodules.not_in_mem,
and ldrmodules.not_in_mem_avg. The 7 features with no contribution
according to the bar plot can be removed to increase ARIs in further
testing.

These visualization techniques for interpretable explanations pro-
vide clear insights and transparency into why specific memory instances
(running processes) are classified as malicious or benign based on
behavioral patterns, API calls, and memory usage anomalies. As mal-
ware constantly evolves, periodic model updates and validation with
recent forensic datasets are recommended. These explanations may not
only bridge the knowledge gap between technical and non-technical
personnel but also assist forensic experts in refining detection strate-
gies. Forensic analysts can validate model predictions, while decision-
makers without deep technical expertise can better understand the
reasoning behind AI predictions. Integrating explainability into DF
workflows ultimately improves model reliability, facilitates more
informed responses, and strengthens proactive threat mitigation.

5. Conclusion and future work

This study demonstrates the potential of unsupervised learning-
based Explainable AI (XAI) methodologies in Digital Forensics (DF),
focusing on memory forensics to detect and cluster obfuscated malware.
By employing Isolation Forest, Autoencoder, K-means, DBSCAN, and
Gaussian Mixture Models (GMM) on the CIC MalMemAnalysis-2022
dataset, we effectively illustrated anomaly detection and clustering
outcomes across binary and multivariate levels (4 and 16 categories).

The integration of SHAP explanations provided both local and global
interpretability through visualization techniques, aiming for algo-
rithmic transparency and practical applicability in DF workflows.
Despite these promising results, several challenges remain. Future work
can expand this research to other types of forensic datasets, such as
network traffic or disk images, to validate the generalizability of the
methodology. Also, automated pipelines to integrate unsupervised XAI
workflows into end-to-end DF tools may be developed, reducing reliance
on expert intervention. These contributions will ensure that DF con-
tinues to benefit from AI-driven insights without compromising on
interpretability or reliability.
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