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This research explores the application of bytewise approximate matching algorithms on executable files, eval-
uating the effectiveness of ssdeep, sdhash, TLSH, and MRSHv2 across various scenarios, where approximate
matching seems to be a natural tool to employ. Previous works already underlined that approximate matching is
often used for tasks where the algorithms have not been thoroughly and systematically evaluated. Pagani et al.
Ssdeep (2018), in particular, highlighted the shortcomings of previous research and tried to improve current knowledge
Sdhash about the applicability of approximate matching in the context of executable files by evaluating typical use cases.
TLSH We extend their work by taking a closer look at further common scenarios that are not covered in their article.
MRSHv2 Specifically, we examine use cases such as different versions of the same software and comparisons between on-
disk and in-memory representations of the same program, both for malicious and benign software.

Our findings reveal that the considered algorithms’ performance across all evaluated scenarios was generally
unsatisfactory. Notably, they struggle with size-related and localized modifications introduced during the
loading stage. Furthermore, executables with no functional similarity may be mismatched due to shared byte-
level similarity caused by embedded resources or inherent to certain programming languages or runtime envi-
ronments. Consequently, these algorithms should be used cautiously and regarded as assisting tools rather than
reliable methods for indicating similarity between executable files, as both false positives and false negatives can
occur, and users should be aware of them.

Moreover, while some of the unfavored results stem from design decisions, we observed unexpected behavior
in some experiments that we could trace back to issues in the reference implementations of the algorithms. After
fixing the implementations, the strange effects in our results indeed disappeared. It is still an open question if and
to what extent previous experiments and evaluations were affected by these issues.

1. Introduction despite variations, highlighting files similar to known interesting files,

or filtering out files similar to known uninteresting files, for instance.

The ever-growing volume of digital data presents significant chal-
lenges in digital forensics, where efficiently analyzing vast amounts of
information is crucial. Hence, the need for effective filtering, prioriti-
zation, and classification techniques becomes increasingly critical. A
common approach to this challenge is using cryptographic hashing,
which provides a simple and efficient solution for identifying and
filtering exact matches within large data sets. However, cryptographic
hashes fall short when identifying similar objects, as even a minor
alteration in a file will produce a completely different hash. This limi-
tation underlines the need for more sophisticated methods, such as
approximate matching techniques, which can identify related files
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Similarity can be measured at different abstraction layers. The lowest
layer only considers the byte sequence that makes up a file, while the
upper layers incorporate its syntactical structure or semantic content.
Detecting similarity at the upper layers requires knowledge about the
file type being processed and is typically more computationally expen-
sive. Bytewise approximate matching, on the other hand, is agnostic to
the file type and generally faster (Breitinger et al., 2014a), making it
more suitable as a filtering technique than approaches operating at
higher abstraction layers.

However, prior research has shown inconsistent results when
assessing the applicability of bytewise approximate matching to
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compute the similarity between binary programs. Specifically, Pagani
et al. (2018) provided a vital discussion of this issue, highlighting that
approximate matching has often been used without fully understanding
the implications of the selected algorithms. Furthermore, the authors
took the first step in solving this issue by conducting three case studies
representing typical use cases for approximate matching in binary pro-
gram analysis.

In our paper, we build on the work of Pagani et al., complementing
their results. Although we also investigate approximate matching in the
context of executable files, we do not focus on binary analysis. Instead,
we consider tasks more common in digital forensic investigations or
triage scenarios. In particular, we look at three use cases where detecting
similarity to known programs is particularly useful.

Detecting Updates: Detecting updated or otherwise modified versions
of known software, whether malicious or benign, is a canonical example
of a use case for approximate matching. Identifying updated versions of
known legitimate software enables safelisting techniques to assign lower
priority to the corresponding files during an analysis. For malware,
computing the similarity between samples can aid in identifying mal-
ware families and variants, understanding their evolution, and detecting
new threats based on known samples. Additionally, it can support threat
intelligence by uncovering relationships between different malware
strains.

Highlighting and Safelisting: Databases of known programs or oper-
ating system files, such as the National Software Reference Library
(NSRL) managed by NIST (White, 2005), can be used to filter out benign
files. Platforms like VirusTotal, on the other hand, can be used to
identify malicious files. Both also often provide similarity digests to
allow approximate matching. However, for reliable filtering, the two
classes must be sufficiently discernible, which is an aspect that has not
been scrutinized well enough.

Memory Forensics: Similarities between on-disk programs and their
in-memory representation are relevant for memory forensics. An analyst
may triage a list of acquired processes, filtering out well-known benign
ones while directing their attention to more suspicious or high-priority
processes. Likewise, they can connect information from an executable
on disk to the related processes, providing further insights.

Our paper evaluates four prominent bytewise approximate matching
algorithms in the above scenarios. In particular, we present the
following evaluations:

operating system files vs. malware

e all-against-all and intra-family comparison of malware samples
different releases of benign third-party software and operating sys-
tem file versions

memory-mapped files vs. their on-disk counterparts

During our experiments, we discovered notable issues in the algo-
rithms’ reference implementations, one of which significantly impacted
almost all our experiments. We solved the issues and provided the au-
thors with corresponding information and patches. In this paper, we
illustrate the impacts we observed in our evaluations.

Moreover, we illustrate why one of the algorithms computes unex-
pectedly high scores in specific scenarios.

In summary, our paper contributes by.

e evaluating four bytewise approximate matching algorithms in com-
mon forensics use cases;

e showing that the algorithms are unsuitable for most considered use
cases and perform too unreliably;

e describing issues in the reference implementations and illustrating
their impact; and
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e providing background knowledge to better interpret the similarity
scores of the algorithms.

We provide supplemental material in a GitHub repository', where we
present further figures, lists of files in our corpora with their corre-
sponding similarity digests, and evaluation scripts.

2. Scope

Much research has been done on bytewise approximate matching
algorithms. This research covered various aspects in this area, ranging
from studies of the performance and properties of the algorithms in
general or for specific use cases to the development of new algorithms.
Moreover, many works incorporate bytewise approximate matching
algorithms as building blocks for their purposes.

This paper focuses on applying four of the most prominent bytewise
approximate matching algorithms in the context of executable binary
files. We are fully aware that the algorithms were not explicitly designed
for executable files. Moreover, previous work has already pointed out
weaknesses of the algorithms in this area (Li et al., 2015; Coffman et al.,
2018; Pagani et al., 2018). Nevertheless, they are still widely employed
in recent research and practical solutions (Ali et al., 2020; Bak et al.,
2020; Nguyen et al., 2022; Namanya et al., 2020; Naik et al., 2021;
Botacin et al., 2021; Kida and Olukoya, 2023; Magonia Research, 2023;
Hutelmyer and Borre, 2024). Hence, we have the impression that the
properties of using bytewise approximate matching in this context and
the consequential implications are not understood comprehensively.

In Section 3, we present previous efforts to remedy these shortcom-
ings by systematically evaluating bytewise approximate matching al-
gorithms when applied to executable files. Our paper lines up with the
evaluations presented in these works by investigating different use cases
or assessing the currentness of their findings. We aim to evaluate how
well bytewise approximate matching algorithms perform in our sce-
narios, contributing to a more comprehensive understanding of the al-
gorithms. Given this focus, we explicitly exclude algorithms that are
tailored to specific file types or use cases, such as mrsh-mem (Liebler and
Breitinger, 2018), apx-bin (Liebler and Baier, 2019), Telfhash (Merces,
2020) or approaches such as the ones presented by Li et al. (2015), Naik
et al. (2021), or Fleming and Olukoya (2024). While they might yield
better results in particular use cases, they commonly lack the more
universal applicability bytewise approximate matching provides.

3. Related work

There has been considerable effort to evaluate the effectiveness of
approximate matching (Roussev, 2011; Breitinger et al., 2014b; Oliver
et al., 2014; Harichandran et al., 2016), which, to some extent, touches
on the evaluations of our work. However, the experiments are worth
systematic expansion and actualization. Moreover, the scope was
broader and did not focus on binary executable files.

Regarding executable files, Pagani et al. (2018) conducted a detailed
analysis of similarity hashing techniques, focusing on several practical
scenarios: the identification of libraries in statically linked programs, a
typical binary reverse engineering task; the comparison of applications
compiled with different toolchains and compiler options, relevant to
embedded systems and firmware analysis; and lastly, an examination of
different versions of the same application, which involves tracking the
evolution of malware or identifying related samples. Their research
evaluated the performance of ssdeep, sdhash, and TLSH within these
contexts to determine their effectiveness.

The study concluded that ssdeep performs poorly in most tasks, while
sdhash and TLSH were more effective. Specifically, sdhash excelled at

! https://github.com/fkie-cad/paper-material-bytewise-approximate-match
ing-scenarios-for-binaries.
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recognizing the same program compiled differently and TLSH reliably
identified software variants with source code changes. The authors
emphasized the importance of understanding the underlying mecha-
nisms of these algorithms rather than applying them mindlessly.
Several more publications assessed the robustness of bytewise
approximate matching algorithms concerning common modifications to
executable files. Liebler and Baier (2019) evaluated the same scenarios
as Pagani et al. (2018) including their framework apx-bin. Coffman et al.
(2018) inspected the influence of different compilers and obfuscation
and optimization techniques on the similarity scores of various algo-
rithms. Oliver et al. (2014) assessed the effects of introducing source
code changes such as reordering operands, functions, and statements,
adding binary data, and inserting new and changing present variables.
Martin-Pérez et al. (2021) evaluated dcfldd, ssdeep, sdhash, and
TLSH when applied to memory-mapped files for operating system files
and benign programs. Their work highlights the implications of relo-
cation in Windows processes, significantly affecting similarity scores.
Our work complements Pagani et al. (2018) by evaluating different
scenarios for executable programs. Some of our experiments have
already been conducted in related works. However, we extend them by
including more algorithms and operating systems or using a larger data
set, bridging the gap to a more systematized and thorough under-
standing of bytewise approximate matching for executable binary files.

4. Background

This section provides a brief overview of the bytewise approximate
matching algorithms examined in our work. We selected four of the most
prominent and widely used candidates in the field of bytewise similarity,
which at the same time implement different algorithmic approaches.

ssdeep generates two signatures of at most 32 to 64 Base64 charac-
ters, with each character representing a block of data from the input file
(Kornblum, 2006). The file is divided into segments based on a sliding
7-byte window, where a specific condition triggers new block bound-
aries, a method known as context-triggered piecewise hashing (CTPH).
The algorithm’s main weakness is the short hash length, which can lead
to inaccuracies, especially when the segmentation process produces
poorly sized segments for certain file types (Jakobs et al., 2022).

MRSHv2, another CTPH algorithm, generates variable-length hash
values based on a specified average block size, typically 320 bytes
(Breitinger and Baier, 2013). Smaller inputs yield shorter hashes, while
larger inputs produce longer hashes. The algorithm uses Bloom filters to
compress the data into a more manageable hash representation. The
comparison process involves matching Bloom filters between hashes,
where the best match is identified for each Bloom filter in the smaller
hash. The similarity score is calculated as the sum of these best matches
divided by the number of filters in the larger hash. Additionally,
MRSHv2 includes a comparison mode for fragment detection, in which
the sum of the best matches is divided by the number of filters in the
smaller hash. Like ssdeep, MRSHv2 can produce irregular segment sizes,
and using Bloom filters adds another factor affecting the accuracy.

Unlike CTPH algorithms, sdhash does not divide the file into seg-
ments (Roussev, 2010). Instead, it selects statistically improbable
fixed-length segments based on their entropy and adds them into Bloom
filters. Furthermore, sdhash’s comparison function is more akin to a
fragment detection. Similar to the comparison process in MRSHvV2,
sdhash performs an all-against-all comparison of the Bloom filters. In
fact, the comparison function used in MRSHv2 was derived from the
approach first introduced in sdhash.

TLSH generates a fixed-length hash representing every 5-gram in an
input file (Oliver et al., 2013). Additionally, it includes a hash header,
providing information about the file’s overall size. When comparing
TLSH hashes, the distance between the headers and the bodies of the
hashes is calculated. Although the TLSH distance score can exceed 1000,
a score above 300 typically indicates dissimilarity. To align TLSH
scoring with other algorithms, we apply the normalization technique
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introduced by Upchurch and Zhou (2015), where the distance is
normalized by subtracting the score from 300 and dividing by 3, thereby
converting it to a 0 to 100 scale. This normalization is consistently
applied to match the TLSH scoring with other similarity scores in our
research.

5. Data sets

This section provides details on the data sets we created for our
experiments.

5.1. Corpora

All experiments are based on three main corpora: a malware corpus,
a third-party software corpus, and one containing operating system files.
The following sections provide an overview of each corpus and the
characteristics of the samples included.

Malware: We used the packed and unpacked malware samples from
Malpedia (Plohmann et al., 2017), covering a diverse collection of
representative samples targeting both Linux and Windows operating
systems. Table 1 provides the numbers of packed and unpacked samples
across different operating systems.

Third-Party Software: The third-party software corpus consists of
widely used, benign applications with varied update cycles available for
Windows and Linux. We selected Mozilla Firefox and Thunderbird, VLC,
and GIMP, downloaded their installers from the official websites, and
extracted the main executable. For the Linux variants of GIMP and VLC,
we used the versions available in the package repositories of the Ubuntu
versions 22.04, 23.10, and 24.04, as the maintainers do not provide
precompiled versions on their download pages. Table 2 lists the number
of executables per software.

Operating System Files: Another category of benign software includes
operating system (OS) files. OS files are present on every system of that
specific type, and their update cycles are often tied to the OS. They are
usually deeply integrated into the system and cover a variety of program
sizes and functionalities. Our Linux OS corpus consists of all standalone
ELF files located in /usr/bin/ and /usr/sbin/ taken from the
Ubuntu versions 22.04, 23.10, and 24.04, as well as Fedora 40. The
Windows part of the corpus includes all .exe files taken from a new
Windows 10 and 11 installation. This selection ensures a broad coverage
of benign executables across multiple operating systems and
environments.

5.2. Dumps generation

To compare memory-mapped files to their on-disk counterparts, we
created a corpus using two virtual machines: a Windows 10 22H2 system
to create the Windows PE dumps and an Ubuntu 22.04.4 system to
create the ELF dumps. The respective operating system versions have
been chosen for convenience, as they were available in our lab. Table 3
summarizes the statistics of all dumps created. Several dumps could not
be created because of early process termination.

5.2.1. Windows PE dumps

We included all stand-alone executable files from Malpedia for the
PE dumps, excluding .NET binaries due to their differing behavior, such
as using an intermediate language and a runtime. For each file, we

Table 1

Number of samples and families in the malware corpus.
Malware Corpus Samples Families
Packed PE 2670 978
Unpacked PE 3531 1384
Packed ELF 161 98
Unpacked ELF 269 165
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Table 2
Number of third-party software versions.
Firefox Thunderbird GIMP VLC
Linux 1748 725 14 24
Windows 1341 475 71 46

Table 3
Dump corpora statistics.

Operating System On-Disk Versions Successful Dumps

at entry point after process attach

at main
Windows 10 22H2 Packed (2670) 2584 1143
Unpacked (1479) 1397 652
OS files (859) 833 240
Ubuntu 22.04 Packed (161) 138 22
Unpacked (178) 164 30
0S files (902) 902 899

created dumps at two different points in time during the execution.
Dump at Entry Point: Here, we dump the process at a very early
execution stage. We initiate WinDbg and load the PE file into memory.
Once running, WinDbg halts execution at the entry point, where the
file’s sections have already been mapped into memory according to its
PE headers. If the file has been relocated, code section addresses may
differ from their original values on disk; further eventual modifications
like thread local storage callbacks might also have altered the memory.
Then, we extract the memory range of the mapped PE file utilizing the
ImageBase and SizeOfImage fields from the Optional Header.
Dump after Process Attach: In this case, we attach WinDbg to the
running process after a five second delay, pausing the execution. This
dump allows us to analyze the in-memory state after a short execution
period beyond the entry point, possibly comprising more modifications.

5.2.2. Ubuntu ELF dumps

Both packed and unpacked x86-64 ELF samples from Malpedia were
included for ELF dumps. The dumps were created using GDB, the mapped
segment address ranges were extracted from /proc/<pid>/maps, and
the contents of these segments were concatenated to form the dump file.
For OS files, the dumps were captured at the first instruction of the main
function, rather than after five seconds, as many command-line utilities
from /usr/bin/ terminate too quickly. The following paragraphs pro-
vide an overview of the different dumping approaches.

Dump at Entry Point: We launch the ELF file using GDB, and capture
the memory-mapped segments at the first instruction. At this time, the
dynamic linker has loaded the shared libraries, resolved symbol ad-
dresses, and handled relocations. Control is handed over to the program,
and the LOAD segments from the ELF header have been mapped into
memory for execution.

Dump at Main: GDB launches the OS program, sets a breakpoint at the
main function, and captures the memory-mapped ELF segments after
reaching the breakpoint. At this time, the dynamic linker has loaded the
necessary shared libraries, applied relocations, and executed any
constructor functions.

Dump after Process Attach: We attach GDB to the running process five
seconds after launching the ELF file. The dumping process follows the
steps similar to previous scenarios, although we collected fewer dumps
as the process often exited before GDB could attach.

6. Identified Implementation Issues

Implementation issues can significantly affect the reliability and
integrity of experimental results, limiting the validity of conclusions
based on the corresponding evaluations. This section discusses bugs we
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encountered in MRSHv2 and sdhash, analyzes their root causes, and
evaluates their effects on the experimental outcomes.

6.1. MRSHv2

In MRSHv2, we found a bug in the logic comparing two hash values.
The bug manifests in similarity scores underestimated or overestimated
depending on the detection mode. In the regular mode, the score can
occasionally exceed 100; in the fragment mode, the score can be halved.

MRSHv2 removes Bloom filters that contain only a small number of
segments from the input file. However, this removal happens after
determining which of the two hash values is smaller. This sequence can
lead to inconsistencies in calculating the comparison score.

To illustrate this issue, consider a hypothetical scenario involving
two hash values, h and h’. h and h’ each comprise two Bloom filters,
denoted as bfy, bf> and bf;, bf,, respectively. Initially, h is identified as
the smaller fingerprint due to the input order, as both h and K’ contain
the same number of Bloom filters. Subsequently, MRSHv2 removes
Bloom filters with fewer segments than a predefined threshold. As part
of this process, bf, is removed from k' because it does not meet the
minimum segment count requirement. Consequently, k' is effectively
reduced to one Bloom filter, while h retains its two filters. Despite this
change, the comparison score is calculated based on the initial deter-
mination that h is the smaller fingerprint. This behavior leads to incor-
rect results, as described above.

6.2. sdhash

The bug in sdhash was more significant in our experiments. More-
over, we assume that the bug caused the abnormal behavior reported in
a GitHub issue (Vitale, 2022) and the paper of Fleming and Olukoya
(2024). The issue arises during the hash generation, specifically when
segments are inserted into a Bloom filter, causing it to exceed its
configured capacity.

In version 4.0%, an optional -1arge flag was introduced®, which can
be used to create larger, more fine-grained Bloom filters. However, even
if the flag is not set, the larger Bloom filters are active and track inserted
features—likely to ensure that identical features are not repeatedly
inserted across multiple smaller Bloom filters.

When the insertion of a feature into the larger Bloom filter fails,
indicating that the feature already exists, the implementation does not
increment the counters for any of the filters. Hence, a feature may be
inserted into a smaller Bloom filter without increasing its counter. This
inconsistency causes an inflated number of features in this filter, even
when those features are duplicates. As a result, the Bloom filter capacity
can become critically overfilled, leading to inflated similarity scores
because the filters are more likely to overlap during comparisons. We
evaluated the severity of this issue by hashing more than 20 000 distinct
inputs. Remarkably, this bug affected more than 50 % of the inputs. The
issue was particularly critical in more than 3.5 % of the hashes, resulting
in Bloom filters with more than half of their bits set, as illustrated in
Fig. 1.

We resolved these issues in MRSHv2 and sdhash and incorporated
the corrected and original versions into our experiments. Since MRSHv2
showed no significant differences in our experiments between the
original and the fixed version or comparison modes, only the default
version will be presented in this work. We provide the complete set of
results in the supplemental material.

2 A reviewer of this paper pointed out that version 3.4 is the latest stable
version, which is also stated on the sdhash homepage. However, the latest
release on GitHub is version 4.0, and several research papers have used this
version in their evaluations. Hence, we opted to use this version.

3 commit 0d2366f0ac1c627632774891e4ee20e9acfd702d.
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Fig. 1. Frequency of the sdhash error. The fill ratio is plotted for the most
populated Bloom filter of a hash only. For smaller files, the bug occurs less
frequently, as the Bloom filters are not filled beyond their capacity.

7. Assessing the TLSH comparison function

Our evaluations showed that TLSH often classified files as similar at
low threshold values, even when highly dissimilar. We probed the cause
of this and found that this behavior arises from the design of the com-
parison function. Here, the distance score is computed based on a body
distance metric, in combination with header attributes, including an
encoded data length.

The body distance metric is calculated by summing the pairwise
distances between 128 buckets, where each bucket comparison con-
tributes a value of 0, 1, 2, or 6, depending on the difference in their
quartile encodings. In a randomized setup, where the buckets are filled
uniformly at random, each bucket has a uniform probability of 1 of
falling into one of the quartile encodings (00, 01, 10, 11). Using this
setup, one can calculate that the expected distance between two buckets
is 1.625. With 128 buckets, as per default, this results in a total expected
distance of 208. The header distance, on the other hand, is primarily
influenced by the size difference between input files. Consequently, files
with similar sizes tend to have a minimal header distance score. This
behavior was experimentally confirmed through pseudo-random files
and a comparison of packed PE files and Windows OS files, which are
expected to show substantial differences at the binary level (cf.
Appendix A).

As a result, the normalized TLSH score is likely to exceed 30 for files
with similar sizes, even when the files are entirely dissimilar, and in
extreme cases, it may even reach 50. Hence, we emphasize that even
scores of 50 do not necessarily indicate any meaningful similarity be-
tween the inputs. The fact that two files have similar sizes may already
contribute to a baseline similarity of 30. One should be aware of this
behavior and apply similarity thresholds greater than these values to
avoid misinterpretation.

8. Operating system files vs. Malware

This section presents the results of our experiments comparing
operating system files with malware. We used the corpus described in
Section 5.2, including the memory-mapped files and their on-disk
counterparts. We compared the on-disk version of unpacked and
packed malware samples with the on-disk version of the OS files from
the same OS (i.e., Linux malware with Linux OS files and Windows
malware with Windows 10 OS files). Moreover, we compared the mal-
ware dumps with the dumps of the OS files.

Fig. 2 displays the relationship between threshold values and the
percentage of matched pairs of packed PE malware samples and OS files
based on their similarity scores. The x-axis represents the threshold
values, while the y-axis indicates the percentage of comparisons where
the similarity score between a benign OS file and a packed malware
sample exceeds the threshold.

For TLSH, a significant portion of malware samples and OS files were
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Fig. 2. Packed PE malware samples vs. Windows OS files. Pairs are considered
as matched when the computed similarity score exceeds the given threshold.

classified as similar at threshold values up to 40. This result stems from
the comparison function, in which files with similar sizes have a baseline
similarity exceeding 30, as outlined in Section 7.

sdhash also classifies many malware and OS files as similar, even at
higher thresholds. More than 0.5 % of the comparisons lead to a 100 %
match, typically indicating exact duplication or full containment. This
stems from the error previously described where Bloom filters are filled
beyond their capacity. The fixed version exhibits considerably fewer
similarities at higher thresholds, affirming that the issue is tied to the
problem in the original implementation. However, compared to the
CTPH approaches, sdhash-fix more frequently detects minor similarities
between OS files and malware. The design of its comparison function,
which operates like fragment detection, is mainly responsible for this
behavior.

When evaluating unpacked malware vs. OS files, we observed an
increasing number of OS and malware files being classified as similar,
which was expected given the reduced obfuscation and closer resem-
blance to legitimate software. The dump comparisons showed similar
trends to the on-disk results, with some in-place modifications done by
malware that increased the similarity to OS files. This was eminently
evident in an instance where we suspect that a malware sample mapped
the legitimate conhost . exe binary into its memory-mapped region.

While exploring why some OS files were matched with malware, we
discovered that certain malware and OS files share identical entries in
their . rsrc section. When this section constitutes a large portion of the
file, the approximate matching algorithms tended to output higher
scores. In a particular case involving the OS file AxInstUI. exe, we
discovered that the section was disproportionately large due to the in-
clusion of default icons. This effect was less pronounced in the CTPH
algorithms.

Another finding is that comparing malware and OS files written in Go
often leads to high scores, likely due to shared bundled libraries and
runtime components. This was eminently evident in the Linux OS pro-
gram ipp-usb, which matched various Go-written ELF malware
samples.

Lastly, certain malware and OS file pairs showed higher TLSH scores,
which we attribute to the presence of shared statically linked code.
Using the code relationship toolkit MCRIT (Plohmann, 2024), we
determined that this shared code predominantly corresponds to Visual
Studio C runtime functions.

9. Software updates

The software update experiments are structured into three sub-
categories: malware samples, third-party software, and operating
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system executables, taken from the corpora described in Section 5.1.
9.1. Malware

We conducted an all-against-all comparison between the malware
samples for the same operating system. While several works have
already evaluated approximate matching to classify malware (Shiel and
O’Shaughnessy, 2019; Botacin et al., 2021; Fleming and Olukoya,
2024), we include this evaluation for completeness and with a system-
atized, publicly available, and widely used data set. Moreover, we
compared every sample of each family with all other samples of the same
family. Finally, as a case study, we did an intra- and inter-family com-
parison for Zeus-related samples. The goal of the experiments is to assess
if samples belonging to the same family or sharing a codebase due to
leaks, code reuse, or other factors are more similar to each other.

All-against-all Comparison: This section presents the results for
comparing unpacked Windows PE samples. Naturally, the algorithms
should perform better on unpacked samples, as the purpose of the
packers is to introduce dissimilarities. This assumption was confirmed
by our results comparing packed samples. These results and the results
for ELF binaries, which are comparable to the PE file results, are shown
on the website accompanying this paper.

To provide metrics on the algorithms’ classification performance, we
calculated the precision, recall, and F1 score, displayed in Fig. 3. A
perfect precision score of 1 indicates that all detected matches belonged
to the same family, while a recall score of 1 means that all possible
matches were identified. The F1 score is the harmonic mean of precision
and recall, where a score of 1 denotes an ideal precision and recall. We
count a true positive when a sample is matched with another sample
from the same family; a false positive occurs when a sample is matched
with any sample from a different family. Malpedia is used as the ground
truth for the family labels of the samples.

None of the algorithms achieved satisfactory scores, with ssdeep
performing particularly poorly concerning the recall, failing to match
most samples. MRSHv2 performed slightly better due to its increased
block count, but the recall declined at thresholds above 20. The original
sdhash exhibited a near-zero precision, which we attribute to the
implementation bug. Once resolved, the algorithm outperformed the
CTPH approaches, as the recall did not decline as rapidly. TLSH behaved
differently, achieving high precision only at thresholds above 80. For
lower thresholds, the algorithm tends to be overly optimistic, often
matching samples from different families.

Although we did not account for actual similarities shared between
malware families, the scores remain unsatisfactory. One could expect
that with a sufficiently large threshold, even for families sharing a code
base, an optimal process would be able to detect their dissimilarity and
classify them appropriately.
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Fig. 3. F1 Score, Precision, and Recall of the malware family classification
process for Windows PE samples.
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Intra-Family: For the intra-family comparison of neighboring ver-
sions, we selected the ten families with the most versions available from
our data set, shown in Fig. 4. The versions were sorted based on the
version information provided by Malpedia, and those without such in-
formation were sorted exclusively by commit time.

Notably, as indicated by the recall, none of the algorithms consis-
tently matched all samples to their respective families. CTPH algorithms
primarily matched samples only to themselves. sdhash performed
slightly better, albeit the noted implementation bug is clearly visible for
certain Trickbot, Coldseal, and Cobra versions. The dark horizontal and
vertical lines in the corresponding heatmaps of Fig. 4 indicate that those
versions matched all other versions. In contrast, the other algorithms,
especially the fixed sdhash version, did not yield such similarities.

Lastly, TLSH showed the highest similarity scores of all algorithms
but failed to match all versions within the same malware family.
Considering the small-scale assessment of Pagani et al. (2018), which
suggests that TLSH is effective in handling artificial source code modi-
fications in malware, it appears that TLSH can somewhat reliably match
different real-world instances of the same malware family as well.
However, based on the previous results from comparing OS files with
malware, it should be considered that TLSH is optimistic in general.
Hence, an appropriately high threshold is required. Then, TLSH might
be moderately helpful in identifying similar versions within an already
labeled set of files of the same family, reducing the number of versions
needing detailed analysis.

Zeus-related: Finally, we present a case study comparing Zeus-related
families. The leak of Zeus’ source code led to several related malware
families, and one could expect these families to exhibit some similarities.
We obtained information from ZeusMuseum (Schwarz, 2024) to identify
the families associated with Zeus. Fig. 5 compares Zeus variants ordered
by their appearance using the TLSH algorithm. The other algorithms
detected fewer similarities; their results are in the supplemental
material.

TLSH detects similarities between earliest families, with Citadel,
Kins, and VMZeus showing the highest similarity. However, Zeus
OpenSSL only exhibits similarities with itself due to its static linking of
an OpenSSL version. This statically linked library constitutes a signifi-
cant portion of the binary and thus reduces its overall similarity with
other samples. Similarly, Zloader does not show similarity with samples
from other families. Despite sharing some functions with Zeus, it is
primarily a loader for Zeus OpenSSL rather than a banking trojan
(Fraunhofer FKIE, 2024).

Overall, the results of this case study turned out to be comparatively
positive for TLSH. Most families exhibited high similarity scores with
other Zeus-based families. Lower scores, on the other hand, are
reasonable because of added or removed code. Still, it should be kept in
mind that those detected bytewise similarities do not imply that TLSH is
able to match malware with similar functionality. It is important to
clearly distinguish between binary similarity and semantic similarity.

ssdeep

sdhash E i

Fig. 4. Similarity scores for the intra-family comparison of the ten most pop-
ular families from our data set.
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Fig. 5. Normalized TLSH scores for the all-against-all comparison of Zeus-
related samples.

9.2. Third-party software

Here, we present a comparison between releases of third-party
software. In an investigation, filtering versions of known programs is a
common approach to direct the analysis to more relevant files.

All algorithms detected similarities between neighboring versions,
with TLSH grouping the largest number of versions. Even the more
conservative CTPH algorithms highlighted blocks in the heatmaps in
Fig. 6, indicating updates with larger and smaller changes.

For Firefox on Windows, however, the sdhash bug was particularly
severe, matching the majority of versions with scores above 90. While
this might suggest high version similarity, the match rates stem from the
bug rather than genuine bytewise similarity. Likely, sdhash would also
erroneously match Firefox with unrelated software.

With TLSH, the identification of different versions was sometimes
less clear than with the other algorithms. In some cases, such as with
GIMP on Windows, TLSH matched later versions with very early ones.
This is not necessarily due to code reuse but could also be attributed to
the design of its comparison function.

In summary, the algorithms, particularly TLSH, seem to be able to
match different software versions to some extent.

100

Linux Windows

Fig. 6. Similarity scores for comparing releases of benign software products for
Windows and Linux.
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9.3. Operating system files

For this assessment, we compared files in identical paths with the
same names to reflect version updates across different operating sys-
tems. Our main objective was to determine if approximate matching can
effectively filter out operating system files across different OS releases.

Results: Fig. 7 includes comparisons between Windows 10 and 11 and
different Linux distribution versions. Performance was weakest with
ssdeep, as most files received a score of 0. MRSHv2, as a more resilient
CTPH algorithm, showed a slight improvement, though most files scored
low, with a few exceptions.

While the inaccuracies of ssdeep stem from its short hash length,
MRSHv2 suffers from comparing multiple Bloom filters. If functions or
code regions are reordered during compilation, they are likely to change
their respective Bloom filters, too, leading to a decreased score. In
contrast, sdhash produces higher scores due to its fragment detection-
like design and finer granularity, with each Bloom filter representing
around 10 kB of data compared to MRSHv2’s 25 kB in the current
version. TLSH is the only algorithm effectively detecting similarities
across OS versions, producing more consistent and comprehensible
scores. This is due to file sizes remaining similar across versions, and
reordering code does not affect the resulting hash as significantly as with
the other approaches.

10. On-disk vs. In-Memory

Here, we compared the on-disk file version of executables with their
dumped in-memory representation. We showcase two scenarios repre-
sentative of the overall evaluation. The first focuses on the influence of
the dump time, the second on the differences between 32-bit and 64-bit
and the impact of relocations. For the former, we refer to packed 64-bit
PE samples that have not been relocated in memory; for the latter, we
refer to unpacked PE samples.

Impact of Capture Time: Fig. 8 illustrates the differences in capture
time, comparing dumps at the entry point with their on-disk counterpart
on the left and dumps captured after five seconds of execution on the
right. We picked packed PE samples to display the effect of in-place
modifications. For unpacked malware and OS files, the difference be-
tween capture times was less significant, which is expected due to the
absence of in-place unpacking or overlay inconsistencies in both, as well
as the absence of obfuscation in OS files.

As anticipated, dumps at the entry point show consistently high
scores, as only minimal changes are introduced to the memory before
reaching the entry point. After five seconds of execution, the similarity
scores decline due to in-place modifications, including unpacking and
deobfuscation. Still, the similarity scores between on-disk and in-
memory versions remain relatively high even after this time. This may
be due to unpacking occurring in different memory regions or via pro-
cess injection affecting other processes, leaving the original sections
intact. Another possibility is that unpacking is delayed or prevented by
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Fig. 8. Similarity score distribution for comparing packed 64-bit PE samples
with their in-memory not-relocated version.

anti-analysis techniques.

TLSH stands out due to several comparisons yielding lower scores.
We traced this back to large sections of null bytes, frequently occurring
in files with substantial differences between raw and virtual section
sizes, such as UPX-packed samples. In contrast, other approaches do not
struggle with such areas of null bytes. CTPH algorithms do not trigger
within those null byte sections, and sdhash filters out low-entropy re-
gions during its feature selection process, effectively ignoring the null
bytes.

For PE malware samples, another factor that can cause low similarity
between on-disk and memory-mapped versions is the presence of an
overlay—data appended after the last section of the file. The overlay
may serve various purposes, such as holding embedded resources or any
data the malware might process later. Since the overlay is located
outside of the memory-mapped range, it is not loaded into memory upon
execution. As aresult, if a PE file contains a large overlay that constitutes
a significant part of the on-disk version, ssdeep and TLSH yield low
scores. In contrast, MRSHv2 and sdhash still produce higher scores
because their comparison functions are designed for fragment identifi-
cation. There, the missing overlay in the memory-mapped version has
minimal impact as the comparison function still detects the memory-
mapped version as a fragment of the on-disk file.

Impact of Relocation: Fig. 9 shows the results for unpacked PE samples
dumped at the entry point to highlight the differences between relocated
and non-relocated samples. We classified a dump as relocated if the
Optional Header’s ImageBase value of the on-disk and memory-
mapped file version did not align and the file contained a .reloc
section.

The influence of relocation on similarity scores is particularly
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Fig. 9. Similarity score distribution for comparing unpacked PE samples with
their in-memory version, dumped at the entry point.
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pronounced for 32-bit PE samples. While 64-bit samples use RIP-relative
addressing, reducing the need for relocations, 32-bit samples rely on
fixed addressing, resulting in more frequent relocations. Since 32-bit
relocation introduces localized modifications, most algorithms experi-
ence a drop in similarity scores. ssdeep is particularly affected due to its
short hash length since many of the 32 to 64 segments will likely be
modified during relocation. In contrast, TLSH is much less affected by
relocations, a finding consistent with Pagani et al. (2018). This is
because most 5-grams in the binary remain unchanged and the simi-
larity is primarily determined by how closely the overall count of
different 5-grams align.

11. Conclusion

During forensic investigations, the concept of similarity is not always
straightforward. Its interpretation can vary depending on the concrete
scenario, and the results of bytewise approximate matching algorithms
may not always align with the analyst’s understanding of similarity.
Therefore, it is vital to understand the nuances, strengths, and limita-
tions of these algorithms for different use cases. Our research has
contributed to this for executable files, demonstrating that bytewise
approximate matching should not be used as a standalone, all-
encompassing solution for most scenarios we considered. It can merely
serve as a component of more conceived approaches.

The following paragraphs summarize our key findings and give di-
rections for future research. Although some of our results are not
particularly surprising and confirm trends known to the community, we
argue that our evaluations and especially our explanations of the reasons
for observed effects, contribute to a better understanding of bytewise
approximate matching.

Detecting Updates: Overall, the algorithms performed poorly in mal-
ware family classification. We suggest using them only as an assisting
factor in more sophisticated classification models. However, an intra-
family comparison revealed that TLSH may be moderately helpful in
identifying similar versions within a labeled set, reducing the number of
versions for detailed analysis.

For matching different versions of third-party software and OS files,
TLSH emerged as the most suitable algorithm. This makes TLSH useful
for detecting updated software versions, reducing the need to analyze
previously examined files. In this context, TLSH can complement se-
mantic and syntactic approaches. However, to maximize its effective-
ness, a comprehensive hash database and sufficiently high similarity
score thresholds are necessary.

Highlighting and Safelisting: The investigated algorithms are hardly
suitable for distinguishing between benign and malicious software and
thus only limitedly suitable for block- and safelisting. In some cases, we
observed that OS files are matched to malware due to using language-
specific runtime environments, statically linked libraries, or shared re-
sources. These files indeed share a bytewise similarity, resulting in the
misclassification of malware as benign software and vice versa. There-
fore, it is advisable to use higher thresholds for safelisting or applying
syntactic methods, approving their higher runtime and giving up file
type independence. For instance, separately hashing PE sections could
yield more accurate results, as already suggested in prior research (Shiel
and O’Shaughnessy, 2019; Botacin et al., 2021). In general and as
indicated above, block- and safelisting with these algorithms only seem
to make some sense if a sufficiently large number of versions are present
in the database.

Memory Forensics: Caution is required when assessing memory-
mapped files with similarity hashes of on-disk files. Especially
(packed) malware can introduce elaborate changes to memory-mapped
files, resulting in notable differences from their on-disk counterparts.

The fixed sdhash version is the most suitable for analyzing memory-
mapped files among the evaluated algorithms. This fitness arises from
sdhash’s ability to handle size-related variations and regions of null
bytes. In contrast, TLSH struggles with large areas of null bytes, making
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its use on memory-mapped files inadvisable without preprocessing. On
the other hand, in scenarios where a 32-bit PE file has been relocated in
memory, TLSH is the only viable algorithm, as all other algorithms fail to
overcome the related localized modifications introduced.

None of the algorithms are fully reliable on their own, as each
struggles in different areas: sdhash and CTPH approaches with reloca-
tion, and TLSH with null bytes and overlays, highlighting the need for a
syntactic approach such as the methods described in Martin-Pérez et al.
(2021), to address these limitations.

Implementation Issues and Design Specifics: We identified an imple-
mentation bug in sdhash that distorted almost all of our experiment
results. Additionally, we found a minor issue in the MRSHv2 comparison
function, in which the smaller hash is occasionally misidentified,
resulting in faulty similarity scores. We fixed both errors and shared our

Appendix A. Details on the TLSH Body Distance
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findings with the corresponding authors. Furthermore, we unrolled why
the comparison function of TLSH behaves overly optimistic, compli-
cating the interpretation of its scores.

Future Work: Our work indicated that large portions of common
statically linked code, such as runtime environments, increase the sim-
ilarity between otherwise distinct programs. Since modern languages
like Go or Rust exhibit this behavior, more systematic evaluations of
such programs are required. Moreover, we are currently evaluating how
to create an efficient and effective database to enable better version
detection without requiring a hash of every program version. Finally,
results of previous evaluations using the reference implementations of
sdhash and MRSHv2 have to be reassessed to exclude that they were
affected by the bugs we discovered.

Given two hash values h and K’ and their respective bucket lists b and b’ consisting of 128 buckets, the expected body distance E[X] can be calculated
under the assumption that the buckets are uniformly filled at random. This calculation can be performed using the distance table A.4:

EX]=128- > 3

de{0,1,2,6}

47787947 g

Table A.4

Pairwise Distance Table for Bucket Comparisons

1 11
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Fig. A.10. TLSH body distance and header distance calculation of packed PE and Windows OS file comparisons. The body distance is averaged around 170, which,

for files of similar length, results in a normalized similarity score of above 40.
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Fig. A.11. A comparison of differently seeded pseudo-random files using the TLSH algorithm. As the file size increases, the calculated distance approaches the
expected body distance score of 208. The overall distance is slightly higher due to the header distance, which is influenced not only by the difference in lengths but
also by quartile ratio differences. Variations in the results are due to chance, with distances lower than 150 — equivalent to a 50 % similarity — being possible.
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