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A B S T R A C T

Rootkit infections have plagued IT systems for several decades now. As non-trivial threats often employed by
sophisticated adversaries, rootkits have received a large amount of attention, from both the industrial and ac-
ademic communities. Consequently, rootkit detection has a rich literature, but most papers focus on only
detecting the fact that an infection happened. They rarely offer mitigation, let alone identifying the piece of
malware. We aim to solve this by not only detecting rootkit infections but by finding the malware as well. Our
paper has three main goals: extend the state of the art of cross-view-based detection of Loadable Kernel Modules
(the de-facto delivery method of Linux kernel rootkits), provide a memory forensics tool that implements our
detection method and enables further investigation of loaded modules, and publish the dataset we used to
evaluate our solution. We implemented our tool in the form of a Volatility plugin and compared it to the already
existing module detection capability of Volatility. We tested them on 55 rootkit-infected memory dumps,
covering 27 different versions of the Linux kernel. We also provide compatibility analysis with different kernel
versions, ranging from the initial release to the latest (6.13, at the time of writing).

1. Introduction

Malware infection is a longstanding problem that affects almost
every facet of today’s interconnected, global IT infrastructure. The first
computer viruses were experiments and pranks, but they quickly grew
destructive, and in time, criminals found a way to monetize on malware-
infected machines (Liao et al. (2016)).

Apart from a few notable exceptions, like ransomware infections, it is
in the best interest of malware to remain hidden, and thus operational as
long as possible. To avoid detection, many malware samples employ
simple tricks, like using packers or renaming processes (Cozzi et al.
(2018)). There is a type of malware, however, that takes hiding to
another level and tries to achieve total invisibility: this subgroup of
malware is called rootkits, and they often put a considerable amount of
effort into hiding. They usually hide different resources associated with
malware components, like running processes, files, or open network
connections.

As rootkits evolved, so did the tools that aimed to detect them. The
challenge was twofold: any detection solution must not only outsmart its
target but must be able to protect itself from the rootkits it is hunting for.
The complexity of these challenges comes from the advanced

techniques, that rootkits apply, often in the deep layers of the operating
system, and the total control they have over the infected machine.

Many rootkit detection solutions published in the past decades suffer
from the same deficiency: they identify rootkit infections, typically by
detecting traces of some technique applied by rootkits. However, they
cannot take actions to mitigate the issue or identify the rootkits them-
selves. This limits their usefulness as parts of antivirus solutions, and
even more so in the field of digital forensics. During an investigation, if
the suspicion of rootkit infection arises, the rootkit should be found and
analyzed, before the case can be closed.

This paper addresses this issue by providing forensics experts with a
tool that is capable of finding hidden kernel modules in memory dumps
of Linux machines. Kernel modules are the most popular and convenient
way to implement rootkit functionality (Li et al. 2015). Our1 solution
falls into the category of cross-view-based (Nadim et al. (2023)) detec-
tion, where information is collected from different data sources, and
these sources are cross-referenced with each other, to find hidden re-
sources by identifying inconsistencies. We also address a shortcoming of
cross-view-based detection: when a rootkit does not try to hide its
module, cross-view-based methods will not flag it as suspicious. For this,
we offer a tool that can be used to identify suspicious modules among the

☆ Code: https://github.com/CrySyS/ModXRef.☆☆ Data: https://www.crysys.hu/rnagy/datasets/rootkit.html.
E-mail address: rnagy@crysys.hu.

1 Throughout this paper, first person plural was used, as it is customary in the field of computer science, despite of the paper having a sole author. The author
worked alone on the paper, all colleagues who helped with proofreading the manuscript are listed in the Acknowledgement Section.
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benign ones and conduct a deeper investigation, to determine their
maliciousness.

The main contributions of our paper are the following:

• We extend the capabilities of cross-view-based detection, regarding
Loadable Kernel Modules. The method we propose works across a
wide range of Linux kernel versions and surpasses the hiding capa-
bilities of any LKM rootkit we encountered so far. It was tested
against a large number of rootkits (both open-source and found in the
wild), and it proved to be robust against all the techniques that
rootkits apply to hide modules. We give a detailed description of this
method in Section 3.

• We address a major shortcoming of cross-view-based rootkit detec-
tion: if a certain resource is not hidden, despite being able to find it,
cross-view-based detection cannot flag it as suspicious. To overcome
this issue, our Volatility plugin also reports a wide variety of infor-
mation about the modules it finds and facilitates their deeper
investigation. To demonstrate this, in Section 4, we present a case
study about finding the THOR open-source rootkit.

• To test our Volatility plugin and compare its effectiveness against
other, already existing solutions, we collected and compiled many
rootkits and infected Linux machines with them, to acquire memory
dumps. Our dataset consists of 35 memory dumps infected with
open-source rootkits, and another 20 infected by rootkits we ac-
quired from VirusTotal. We make this dataset publicly available
(both the memory dumps and their corresponding symbol tables),
because we believe it might be useful for the community to evaluate
rootkit detection solutions.

The rest of this paper is organized the following way: in Section 2, we
provide some background on rootkits, the different approaches of
rootkit detection, and position our solution compared to other cross-
view-based solutions that detect hidden modules. In Section 3, we give
a detailed description of our approach and the data sources it uses. In
Section 4 we present a case study about identifying and analyzing
modules, that cross-view-based detection does not flag as suspicious.
Section 5 details how we evaluated our detection method. In Section 6,
we discuss the limitations of our solution and provide a compatibility
analysis between our method and different versions of the Linux kernel,
and finally, in Section 7, we conclude our paper.

2. Background and related works

2.1. Rootkits

Rootkits come in two flavors depending on where they operate in the
software stack.

User-space rootkits, as the name suggests, stay in the user space; they
often patch existing system administration tools, hook library functions,
or abuse certain features of the operating system. They can hide certain
resources from the users or system administrators, but not from a fo-
rensics expert, inspecting a memory dump of the infected system.

Kernel-space rootkits attack different layers of the kernel to hide
certain resources and apply a wide range of techniques. The feasibility of
detection depends on the applied techniques, but generally speaking, the
deeper the rootkit goes into the layers of the kernel, the harder it is to
detect its traces.

In this paper, we only focus on kernel-space rootkits, developed to
the Linux kernel. Similar techniques might be applicable to other
operating systems as well, but these are out of the scope of our research.

2.2. Rootkit attack vectors

First, we must discuss how kernel-space rootkits can be implemented
on Linux. To be able to implement such functionality, an attacker must
be able to execute code in the context of the kernel, or the kernel’s

memory must be modified (Sd, 2001).
Reading and writing the kernel memory is possible through the file

/dev/kmem, but since no legitimate application uses it, only attackers,
it is often disabled on modern versions of popular Linux distributions.
Another similar file is /dev/mem, which provides access to the physical
memory, but due to frequent abuse, it is locked as well.2 Only certain
parts of the physical memory are accessible this way, thus rootkits can
no longer modify the kernel memory using these files.

Yet, executing code in kernel space is still possible: if, for example,
the attacker finds a memory corruption vulnerability, it might be
possible to divert the execution and use Return-Oriented Programming
(ROP) to implement arbitrary functionality (Roemer et al. (2012)).

A much more convenient way is to use Loadable Kernel Modules
(LKMs). These can be loaded into or unloaded from the running kernel at
any time. Many drivers are implemented in this way, which allows the
kernel to be built into a smaller binary file, and not loading unnecessary
drivers also reduces its attack surface. This is by far the most popular and
convenient way to implement kernel rootkit functionality, and as an act
of self-preservation, many rootkits attempt to hide the loaded module in
which they are implemented.

Another possibility is abusing the extended Berkeley Packet Filter
(eBPF). This is a relatively new trend among kernel rootkits. Using eBPF,
it is possible to inject bytecode into the kernel memory, which will be
executed when triggered by any tracing subsystem of the kernel. This
allows the implementation of rootkit-like functionality similarly to
earlier, hooking-based solutions, but without using a kernel module.

Once a rootkit is capable of performing modifications in the memory
of the kernel, it may begin its operation. Many techniques exist to hide
certain resources, but most of them can be divided into two categories:

Function hooking happens when a rootkit can modify the kernel in
such a way, that instead of the original function, the attackers imple-
mentation will be executed. For example, the read system call can be
hooked, so when it is called on a specific file, certain lines can be omitted
(e.g. by doing this with the file /proc/modules, certain modules can
be made invisible).

Direct Kernel Object Manipulation (DKOM)3 is a technique where data
structures are modified in the kernel memory to achieve a certain goal.
For example, if a list is used to store information about a set of resources,
removing an element from the list will effectively hide a certain instance
of said resource from all parties that rely on that specific list. An example
could be the list of modules, that is used to generate the content of the
file /proc/modules; removing a module from this list is a simple and
widely used technique to hide modules.

2.3. Rootkit detection

Since rootkits are not a new problem, and their detection has a
considerable literature, naturally, multiple approaches were explored.

Signature-based rootkit detection works just like detecting any other
malware using signatures: signatures or fingerprints are extracted from
known samples and a database is constructed from them. This can later
be used to detect known threats (e.g Yamauchi and Akao (2017)).

Behavior-based detection looks for abnormal behavior or other
anomalies, that might be caused by a rootkit infection. Such anomalies
can include timing discrepancies, unusual memory access patterns, and
many more. This approach relies on a priori measurements and might
not be accurate enough outside a controlled environment (e.g Li et al.
(2019)).

Integrity-based detection can be a powerful approach against rootkits
that modify static sections of memory, but it typically requires a priori
knowledge about the protected system (e.g. Deyannis et al. (2020)).

2 https://lwn.net/Articles/267427/ (Last visited: 2024.10.10).
3 In this case, the term “kernel object” refers to any C struct in the kernel

memory, not just kobjects, which we will detail in Section 3.2.
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Cross-view-based solutions work by collecting information about the
same set of objects, from different sources. These different sources are
cross-referenced to identify inconsistencies, most likely caused by a
rootkit infection. It can detect DKOM attacks effectively, but it has
limitations: it cannot detect resources, that are associated with the
rootkit, but were not hidden. Also, if a certain resource is removed from
all possible data sources, that the detector scans, it will not be able to
detect the rootkit. This approach was taken by Wang et al. (2005), Jones
et al. (2008), Xu and Jiang (2011) and our solution belongs in this
category as well.

2.4. State of the art

Cross-view-based detection is a well-established method to detect
rootkits, however, applying it to find kernel modules is less common, as
most solutions focus on other resources, like hidden processes and files.

The kernel communicates information to the user space about
modules in two ways: through a file, named /proc/modules, whose
content is populated by iterating a list inside kernel memory (commonly
referred to as “module list”), and via a directory named /sys/mod-

ules. In this directory, every module has its own subdirectory, and
these are created by traversing a list called module_kset. We will give
detailed descriptions of these data structures and Section 3, but knowing
about them is necessary in order to compare the already proposed so-
lutions. The lsmod utility, which we use to list loaded modules, pro-
cesses the content of /proc/modules, and consults /sys/modules
for additional information (i.e. modules missing from /proc/modules

will not be present in the output of lsmod).
The weakest among cross-view-based module detectors are solutions

that compare data from the same source but on different architectural
levels. rkhunter (Boelen, Michael (2003)), for example, compares the
output of lsmod to the content of /proc/modules, making it capable
of detecting attacks in the user space only. Quynh and Takefuji (2007)
apply a similar approach: their solution was implemented by the Xen
hypervisor, and it compares the output of lsmod and the content of the
module list in the kernel memory. This means that it can detect modules
hidden by hooking certain kernel functions, but not the ones that
remove their modules from the module list.

Other solutions rely on artificial data sources: Rhee et al. (2010)
track allocation and de-allocation events inside the kernel to maintain a
shadow copy of the module list, which they can periodically compare to
the real module list, while Lu et al. (2023) use Kprobe4 technology, a
built-in way of tracing inside the Linux kernel to monitor lists in the
memory. They also watch certain system calls, like the ones responsible
for initializing and removing kernel modules, and raise an alarm, if a
module was removed from the list of modules without the invocation of
the delete_module syscall. These approaches might be robust against
rootkits if implemented properly, but they must be deployed proac-
tively, making them unsuitable for detecting rootkits in a typical
memory forensics scenario.

Of course, not only artificially crafted data sources can be used for
cross-view-based detection: modreveal (Lihi, Jafar (2023)), for
example, compares the output of lsmod to the list of modules in the
kset, which it acquires through a kernel-space component. This tech-
nique is closely related to the one implemented by Volatility (Volatility
Foundation), where the content of the kset is compared to the content
of the module list, both directly parsed from the kernel memory. Both
versions of Volatility implement this functionality, in plugins called
linux_check_modules at version 2, and linux.check_modules at
version 3. This approach can detect if a module is removed from the
module list only, but as Appendix A shows, many rootkits can evade this
check by tampering with the kset as well.

Two solutions that stand out in terms of detection capability, are

tracee (Aqua Security (2020)) and SigGraph (Xu and Jiang (2011)).
tracee is an open-source project, that utilizes eBPF to monitor various
security-related events throughout the Linux kernel. It is capable of
capturing module load and unload events, and dumping the module to
the disk, while it also claims to be able to detect hidden modules. The
documentation about this feature is limited: it is a “self-triggered hook”,
that “periodically checks for a hidden module”. Based on the source
code, it collects modules from the module list, the kset and another
source called the module layout tree. Like many solutions on this list,
this one is not applicable directly to memory images either, but the
concept it implements can be ported. It is a subset of what our Volatility
plugin implements.

SigGraph, on the other hand, generates graphs of the data structures
inside the memory, that are linked together by pointers. It works on both
live machines and memory dumps and it is capable of finding hidden
processes and modules. It was only tested on a narrow range of kernel
versions (2.6.12-6 – 2.6.34-2), but based on its description, if it is
compatible with later versions of the Linux kernel, it should be capable
of findingmodules via the module layout tree as well. On the other hand,
it would not be able to find modules, if they are not directly accessible
from any global variable.

Compared to the above-mentioned solutions, ours uses different data
sources, not just different views of one data source. It only uses sources
that appear in the kernel memory naturally, no artificial ones are used. It
cross-references 7 different sources in total, containing ones, where
modules are not directly accessible from global variables (i.e. ones the
SigGraph would not be able to find). In the next section, we give a
detailed overview of all these data sources, how they work, and how we
can extract module information from them.

3. Detection approach

Our solution collects kernel modules from 7 different sources
throughout the memory of the Linux kernel. The modules are collected
into one list per source. When traversing all these sources is done, the
modules from all these sources are collected into one unified list. We
iterate through this unified list, and for each element, our tool reports, in
which sources could it be found. Thus hidden modules can be identified,
as they are not present in every sources’ list. For example, many rootkits
remove their module from the module list (Section 3.1), but not from
every other source we will present in this section.

In this section, we give a detailed description of the sources we used
to enumerate the loaded kernel modules: what they are used for, how
they work, how modules can be accessed through them, and their evo-
lution across the different versions of the Linux kernel.

3.1. The list of modules

When a module is loaded into the Linux kernel, memory is allocated
for an object of type struct module, to store all relevant information
about the freshly loaded module. All these module structures are placed
in a doubly linked list for accounting purposes, which is accessible
through the global variable modules.

As it is customary in the kernel, modules contain a list_head

called list. These list_heads are used to implement the doubly
linked list and the location of the next module in the memory can be
computed from the list_head’s next pointer. Fig. 1 illustrates, how
the modules are organized into a doubly linked list.

Fig. 1. The doubly linked list of modules.4 https://lwn.net/Articles/132196/ (Last visited: 2025.01.22).
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This list is used to populate the file /proc/modules, which in turn
is used by lsmod, the utility designed to obtain information about
currently loaded modules.

This list was already present in the kernel at version 2.6.12-rc2, the
first version that GitHub tracks. During our search for open-source
rootkits to test our detection method, all rootkits that used DKOM to
hide their modules tampered with this list. It is also commonly used by
cross-view-based detectors.

3.2. The kset of modules

Whenever reference counting is necessary for something in the
kernel memory, kernel objects (kobjects) are used. These are
embedded into other structures, and kernel objects of the same type can
be organized into kernel sets (ksets). modules contain a structure of
type module_kobject, and each of these has an embedded kobject.
All kobjects, that are embedded into modules, are collected into a
kset, called module_kset.

By iterating through the doubly linked list of kobjects associated
with module_kset, we can enumerate modules. By knowing the base
address of a kobject, we can compute the location of the mod-

ule_kobject, and thus the location of the module as well. Fig. 2
shows how the different structures are embedded in each other and how
the kobjects form a doubly linked list.

The list of kobjects in module_kset is used to populate the
directory /sys/modules, through which the kernel offers additional
information about the loaded modules.

This data structure first appeared in kernel version 2.6.25-rc1, and
rootkits often remove their modules from the module_kset, since
many rootkit detection solutions cross-reference the content of this
kset with the module list.

3.3. The module layout tree

Besides the module structure, other areas of memory are also asso-
ciated withmodules, for example, to store the code and data loaded from
the module’s file. In the earlier days of the Linux kernel, to find out
which module a memory address belongs to, the module list was tra-
versed and certain members of the module structure were checked. To
make this lookup faster, the module layout tree was created: the
description of the allocated memory was moved to the structure mod-
ule_layout, and the module_layouts are organized into a latched
red-black (basically, two red-black trees side-by-side, to avoid the need
for locking). This tree can be traversed from the global variable
mod_tree, and through the nodes of the latched red-black tree, we can
access the module they are associated with. Fig. 3 details how the tree
nodes are embedded into the module layout, and how the module can
be accessed by traversing the tree.

This data structure was added to the Linux kernel at version 4.2-rc1.
Later, at version 6.4-rc1, the module_layout structure was replaced
by module_memory, but the tree remains, and the technique is still
applicable. We did not find any rootkit, that tried to hide its presence
from the module layout tree; on the other hand, we know about one
solution (tracee), that utilizes this data structure for detection.

3.4. Virtual memory areas (VMAs)

There are two memory allocators available in the Linux kernel:
kmalloc and vmalloc. The former is used when the allocated memory
must be continuous both in the virtual and physical address space, while
vmalloc can allocate continuous virtual memory that is mapped to
arbitrary physical memory pages.

All memory associated with modules gets allocated by vmalloc, and
these memory areas are also accounted for. vmap_area structures are
used to describe them, and despite the lack of direct connection to
modules, through memory scanning, they can be identified.

vmap_areas are placed in a doubly linked list, accessible from the
global variable vmap_area_list. This list is used to populate the file
/proc/vmallocinfo, which can be used to obtain information about
the memory allocations.

vmap_areas are also organized into a red-black tree, accessible from
vmap_area_root. This allows faster lookup if one wants to determine,
which memory area an address belongs to.

The module structures themselves are stored in such memory areas,
thus by scanning the memory ranges pointed by a vmap_areas, we can
find them. For kernels pre-4.2, it is possible to match the module_init
and module_core members of the module. The first one is a NULL

pointer, if the module finished initialization, while the second one is the
same as the start address of the vmap_area. For kernels between 4.2

Fig. 2. The modules and their embedded kernel objects.

Fig. 3. The relationship of the different structures related to the module
layout tree.

Fig. 4. The relationship of vmap_areas and modules.
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and 6.4, where the module_layout structure exists, the head of this
structure can be matched: its first member is the same as the start
address of the vmap_area, while the second one is its size. After 6.4, the
same can be done with module_memory structures. Fig. 4 illustrates,
how vmap_area structures are related to modules.

We collect vmap_area structures from both the list and tree and for
every memory area, we attempt to locate a module structure inside.

The vmap_area_list and vmap_area_root first appeared in the
version 2.6.28-rc1 of the Linux kernel. They remained for many years
until they were removed in version 6.9-rc1. Since then, vmap_area
structures are accessible from an array-like data structure called
vmap_nodes. This contains vmap_node structures, that contain both
list_heads and red-black tree roots, so all vmap_area structures are
accessible from these as well, just like they were from vmap_are-

a_list and vmap_area_root.
There are a small number of rootkits, that attempt to hide their

corresponding memory areas. However, as far as we know, these
structures were never used for detection before.

3.5. The bug list

The Linux kernel code uses macros like BUG and BUG_ON to signal
errors that the kernel is unable to recover from. These macros usually
expand into an undefined instruction, and if execution reaches this in-
struction, the stack trace is dumped into the kernel log, and the process,
in which this happened, is terminated.

In order to help debugging, each module has a bug table, containing
information about the BUGs used by the module. To help identify, which
module was responsible, if a BUG happens, the modules are chained
together into a list, called module_bug_list. This list contains all
modules, even if their bug table is empty, thus by traversing this list, one
can collect all loaded kernel modules.

The bug list works the exact same way as the list of modules, except
that the list head where it starts is called module_bug_list instead of
modules, and the list_head embedded into modules is named
bug_list.

This list was added to the kernel at version 2.6.12-rc2, but it was
available only for the PowerPC architectures (both 32 and 64-bit). In
version 2.6.20, its definition was moved to another source file, enabling
its use for other architectures as well. It was not removed since. As far as
we know, this data structure was never tampered with, to hide a kernel
module, and no detection solution has ever used it either, explicitly.
SigGraph, however, might have been able to find it, since the bug list
appeared in a kernel version that is part of the interval, where SigGraph
was tested.

3.6. Ftrace

Ftrace stands for Function Tracer, and it is an internal tracing utility
of the kernel, designed to help debug and analyze performance issues in
the kernel. Rootkits, on the other hand, often use it as a universal utility
to hook arbitrary functions in the kernel.

At version 4.15, the functionality of ftrace was extended, and a data
structure called ftrace_mod_maps appeared in the kernel. This maps
ftrace hooks to kernel modules, to help keep track of them. This is
essentially a doubly linked list of ftrace_mod_map structures, that
contain pointers to both their corresponding function hooks, and the
module that implements them as well. Fig. 5 illustrates this relationship.

Unlike any other data source we described in this section, this list
only contains elements for modules that utilize ftrace, not all loaded
modules. Rootkits, however, often use ftrace to hook arbitrary functions
in the kernel, meaning that many of them can be found by traversing this
list.

Although ftrace is part of the kernel since 2.6.27, the module map-
ping feature only appeared at 4.15-rc1.

As far as we know, no rootkit ever attempted to hide its ftrace hooks
and we do not know of any rootkit detection solution either, that tried to
use ftrace_mod_maps to find hidden modules.

4. A case study: THOR

In this section, we demonstrate the analysis capabilities of our
Volatility plugin through a case study, where we analyze a memory
dump from a Linux machine that was infected with an open-source
rootkit named THOR.5 It was chosen to be the subject of this case
study because it attempts to hide its module, but it uses function hooks
instead of DKOM, thus it does not cause any inconsistency among the
data structures we analyze, so it is not trivial to spot it.

The first time, we execute our plugin, it gives us a list of loaded
modules. For each of them, it is printed whether they can be found in any
of the available data sources. Since the machine whose memory dump
we analyze was running on a kernel of version 3.16.0–6, the following
data sources are available: the module list, the kset of the modules, and
the bug list. With a separate flag, it is possible to trigger the analysis of
the vmap_area_list and vmap_area_tree structures as well (these
are disabled by default due to performance reasons), but they do not
show any inconsistency either.

The system had 63 loaded modules in total. A possible way to discard
less interesting ones could be by looking at the signatures and taints
associated with each module. Since 3.16 is a relatively old version of the
kernel, none of the loaded modules were signed, but taints are more
informative in this case. Taints represent a set of events that might be
relevant for investigating problems regarding the kernel. The kernel has
a bit vector to store if any of these events occurred, but each module has
its own taints as well. For modules, a bit is only set if the module was
responsible for a specific event. In this case, 4 modules have taints: their
names are thor, vboxguest, vboxsf and vboxvideo. All of them
have the taint value of 0x1000, which means they were built externally
or out-of-tree (i.e. they were compiled separately from the kernel).

The plugin also displays how many other modules depend on a
certain module and how many other modules a certain one depends on.
These values tell us that the vbox* modules partake in such dependency
relationships, while thor does not. While it is not a requirement or
consequence of maliciousness, rootkits typically do not depend on other
modules and they are not dependencies of other modules either. On the
other hand, by querying the dependency trees of the 4 tainted modules,
we can see that vboxsf depends on vboxguest and vboxvideo de-
pends on some DRM-related modules. This information improves the
credibility of the vbox* modules, so a logical next step would be the
deeper analysis of thor

Our plugin is also capable of listing all the symbols defined by a
certain module. The C code of kernel modules is compiled to an ELF file,
which the kernel can load, and symbols (function and variable names)
are not stripped during the compilation (in fact, the kernel refuses to
load stripped module files). Moreover, the kernel keeps these symbols

Fig. 5. The relationship of ftrace_mod_maps and modules.
5 https://github.com/W4RH4WK/THOR (Last visited: 2025.01.24).
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when it loads a module, thus we can query them. Rootkit developers
often use descriptive names while writing code; in this case, this specific
module contains symbols like replace_tcp_seq_show and repla-

ce_udp_seq_show (these most likely hook well-known function
pointers to hide open network connections), pidhider_init and
pidhider_cleanup (these most likely implement hiding certain pro-
cesses) and my_hide_module (which most likely hides the kernel
module that implements the rootkit). At this point, the maliciousness of
the thor module is fairly certain.

To achieve absolute certainty, the actual code of the rootkit must be
examined. To support this, our plugin is capable of partially recon-
structing the ko file that implemented the module. We achieve this by
dumping all sections of the module into a file, the symbol table we
already parsed in the previous paragraph, and auxiliary information to
create a valid ELF file, that can be analyzed by any reverse engineering
framework, like Ghidra or Radare2.

Unfortunately, some parts of the original file are discarded once a
module is fully loaded, so only partial reconstruction is possible this
way. Thus we recommend recovering the module file from the file sys-
tem cache, if possible, but if it is not an option, our plugin can still
reconstruct much of the original module file.

Also, if the rootkit can be identified, and the source code is available,
for example, on GitHub, it might be possible to find the exact version the
attacker used. Modules typically include a so-called srcversion hash,
which is a 24-byte long hexadecimal value. During compilation, this is
computed from the source files, the module was built from. Our tool also
reports this hash for each module, if available, so by compiling different
versions of a rootkit, and comparing their srcversion hash to the found
one, an analyst might be able to determine which version was used by
the attacker.

5. Evaluation

In this section, we describe the datasets we used to evaluate our
solution and the environment we used for infecting machines with
different rootkits. We also discuss the results of these experiments,
which we detail even further in Appendix A.

To test our detection method against the rootkits we collected, we
had to infect a running system and create a memory dump from it. To do
so, we used a virtual environment, specifically Vagrant6 with Virtual-
Box.7 Memory acquisition was done by the debugvm command and the
dumpvmcore8 subcommand of VirtualBox. It can save the entire phys-
ical memory of the virtual machine to an ELF file, which we could later
analyze with Volatility.

We evaluated our solution on two sets of rootkits: one set of open-
source rootkits, collected from GitHub, and another set of rootkits we
collected from VirusTotal. In the case of GitHub, we had to compile the
rootkits, while from VirusTotal, we downloaded binaries only. Based on
the analysis of these wild rootkits, probably there is some overlap be-
tween the two sets. We didn’t remove these overlapping samples for two
reasons: they were compiled for different kernel versions, so they might
function slightly differently, and it is also possible that an attacker used
an open-source rootkit as a base and extended it with new functionality.

5.1. Open-source rootkits

This set of test rootkits consists of 35 open-source rootkits we found
on GitHub. To collect test rootkits, we manually reviewed the source
code of many rootkit projects. First, we discarded rootkits that were
implemented in the user space, and then we removed the ones that did

not use any technique to hide their kernel module. The remaining
kernel-space rootkits used one or more of the following techniques to
hide their modules: removing it from the module list, removing it from
the module kset, removing their vmap_area structures from both the
list and the tree, and hooking functions in upper layers, e.g., to stay
invisible, when someone reads the /proc/modules file. For 35 of these
rootkit projects, we could successfully compile the malware, infect a
Linux machine with it, and create a memory dump we could analyze.
Rootkits hiding by function hooking do not show inconsistencies among
the different data sources, but they are present in the list that our plugin
shows. Appendix A details the rootkits we used, the kernel versions,
where we could compile them, and how each rootkit in our dataset
attempted to hide its module.

5.2. Wild rootkits

This set of rootkits comes from VirusTotal. We collected and
analyzed kernel object files that were considered to be malicious by at
least 5 anti-virus vendors, and discarded those that did not attempt to
hide their module. These files contain a section called .modinfo, from
which we were able to determine, what kind of kernel were they
compiled to. For 20 of these samples, we were able to prepare an
environment, that we could infect and analyze. These rootkits only used
the module list and the kset of modules to hide. We also provide their
MD5 hashes and links to their VirusTotal reports.

5.3. Results

Among the 35 open-source rootkits, only 4 of them tried to hide via
function hooking, the rest tried to use DKOM. All that used DKOM
removed their module from the module list, and modifying the kset is
common as well. Tampering with the virtual memory is rare, but 3
rootkits implemented this functionality. None of them tried to hide from
the module layout tree, the bug list, or the ftrace module mappings;
however only 4 used ftrace among those that we could compile for
kernels, where it is supported. 13 of the open-source rootkits could be
detected by Volatility’s linux.check_modules plugin, while our
plugin could detect all 35.

Some of them were unstable and crashed during loading, but due to
our external memory acquisition process, we could still examine the
kernel memory. 3 of these crashed before the rootkit could hide its
module, and another 4 rootkits crashed after hiding. In 2 cases, we could
not determine if the crash happened before or after hiding, since these
rootkits tried to hide themselves by hooking functions in upper layers,
thus they did not show inconsistencies among our data sources.

All of the 20 wild rootkits attempted to hide by using DKOM: 10 of
them used only the module list, while the other 10 tampered with the
module list and the kset as well. None of them touched any of the other
5 data sources, however, only 4 of them used ftrace. For this dataset,
Volatility’s linux.check_modules could detect those 10, that
modified only the module list. Our solution, on the other hand, could
successfully detect all 20 of them.

A details the results of our experiments: for each rootkit, we show
how it attempted to hide its module, which kernel version could be used
to test it, whether it could be detected by Volatility’s linux.

check_modules plugin, and whether it was detected by ours. We also
provide links to their GitHub repositories or their VirusTotal reports, for
the sake of transparency and reproducibility. We also share the code of
our plugin,9 so anyone can test and use it, and the memory dumps as
well10.

6 https://www.vagrantup.com/ (Last visited: 2025.01.20).
7 https://www.virtualbox.org/ (Last visited: 2025.01.20).
8 https://www.virtualbox.org/manual/topics/vboxmanage.

html/#vboxmanage-debugvm (Last visited: 2025.01.20).

9 https://github.com/CrySyS/ModXRef.
10 https://www.crysys.hu/~rnagy/datasets/rootkit.html.
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6. Discussion

In this section, we discuss some of the limitations of our solution, its
relation to eBPF, a recent trend in kernel rootkit development, and we
provide compatibility analysis with different versions of the Linux
kernel.

6.1. Limitations

Of course, as any solution, ours is not perfect either. Data acquisition
is arguably the most important part of any memory forensics project, as
it directly influences the capabilities of every tool that is later used to
extract information from the memory dump. This affects our Volatility
plugin as well: in incomplete or inconsistent data, we might not be able
to identify hidden kernel modules.

This, however, is a limitation of the implementation, not the tech-
nique: the same cross-view-based detection method could be imple-
mented to defend live systems, as long as it can be protected from
rootkits, e.g. by using a Virtual Machine Manager (e.g. Rhee et al.
(2010)) or a Trusted Execution Environment (e.g. Nagy et al. (2021)).

Unfortunately, cross-view-based solutions also suffer from weak-
nesses of their own. One of these is the case, when the rootkit is hiding in
plain sight, i.e. when the module is not hidden. To mitigate this issue,
our plugin reports a wide range of information about each found mod-
ule; these can help to identify suspicious ones, as it was shown in Section
4.

Another edge-case, where cross-view-based solutions are helpless is
when something is hidden thoroughly: if a module cannot be found in
any of the data sources our plugin examines, it cannot be detected this
way.

6.2. eBPF

Since eBPF does not rely on kernel modules, our solution cannot
detect eBPF-based rootkits. On the other hand, compared to kernel
modules, the capabilities of eBPF programs are limited. They cannot, for
example, read arbitrary memory addresses. If, however, an attacker
would need such functionality, it must be implemented in the form of a
loadable kernel module. In this case, it is again in the attacker’s best
interest to hide this module. If this would be implemented using eBPF, it
would happen through hooking functions, that provide information
about modules to the upper layers of the kernel, and eventually to the
user space. In such a case, our tool would be able to find the hidden

kernel module; although it would not mark it as suspicious, since all the
used data sources would be consistent.

6.3. Compatibility analysis

The detection capability of our solution also depends on the kernel
version of the analyzed machine: between 2.6.12 and 2.6.20, only the
module list can be checked. From 2.6.20 to 2.6.25, only the module list
and the bug list are available. The kset appears at 2.6.25, and later, at
2.6.28, the structures related to the virtual memory appear as well. From
4.2 upward, we can detect by using the module layout tree as well. At
version 4.15, ftrace mappings appear in the kernel. At 6.4, mod-
ule_layouts are replaced with module_memory structures, but this
does not affect our detection capability. At 6.9, the vmap_area_list
and vmap_area_root global variables are removed, but an array-like
data structure called vmap_nodes is introduced instead. From this,
vmap_area structures are still accessible, so this, again, does not impact
our tools detection capability.

Fig. 6 depicts when these data structures were introduced to or
removed from the kernel.

7. Conclusion

In this paper, we presented a new, cross-view-based rootkit detection
solution for Linux systems to find hidden kernel modules. It does not
require modification of the kernel and it does not rely on any a priori
information or measurement. It is implemented as a Volatility plugin,
but the method itself could be ported to defend live systems as well.
Additionally, we implemented a toolkit for analysts to address a major
shortcoming of cross-view-based detection, when a rootkit is hiding in
plain sight.

To collect modules from as many sources as possible, our plugin re-
implements well known techniques (module list, kset, mod_tree), and
implements 4 more, that were never used in detection before (vmap list
& tree, bug list, ftrace mappings).

We tested our solution against a large number of rootkits, on a wide
variety of Linux kernels, and it proved to be robust enough even against
the most modern rootkits: all 55 of the tested rootkits were successfully
detected, outperforming Volatility’s current module detection mecha-
nism. We also investigated our tool’s compatibility with different ver-
sions of the Linux kernel, and it proved to be effective on some of the
oldest kernel versions as well, while supporting the most recent ones too.
Additionally, we publish both the plugin we developed, and the dataset
we used for evaluation.
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Appendix. A Test results on open-source and wild rootkits

Table A.1
This table details the open-source (first part of the table) and wild (second part of the table) rootkits that we used to test our solution, detailing how they hide their
modules, against which kernel version were they tested, and wether they could be detected by Volatility’s linux.check_modules plugin, and ours. For open-source
rootkits, we provide the GitHub user and repository name, and for wild rootkits, their MD5 hash.

Name Hiding technique ftrace Kernel version check_mod Detected by us Notes GitHub Repository/VirusTotal Report

Mod. list kset Vmaps Hooks

List Tree

brokepkg ✓ ​ ​ ​ ​ ✓ 6.2.0–39-generic ✓ ✓ ​ R3tr074/brokepkg
bds_lkm ✓ ✓ ✓ ✓ ​ ✓ 5.15.0–116-generic ⨯ ✓ ​ bluedragonsecurity/bds_lkm
bds_lkm_ftrace ✓ ✓ ✓ ✓ ​ ✓ 5.15.0–116-generic ⨯ ✓ ​ bluedragonsecurity/bds_lkm_ftrace
j-rootkit ✓ ​ ​ ​ ​ ⨯ 5.15.0–116-generic ✓ ✓ ​ JakeGinesin/j-rootkit
LKM-Rootkit ✓ ​ ​ ​ ​ ⨯ 5.15.0–116-generic ✓ ✓ ​ MatthiasCr/LKM-Rootkit
reveng_rtkit ✓ ✓ ​ ​ ​ ⨯ 5.15.0–116-generic ✓ ✓ 1 reveng007/reveng_rtkit
wkit ✓ ​ ​ ​ ​ ⨯ 5.15.0–116-generic ✓ ✓ ​ ngn13/wkit
Zhang1933/linux-rootkit ✓ ​ ​ ​ ​ ✓ 5.15.0–116-generic ✓ ✓ ​ Zhang1933/linux-rootkit
Diamorphine ✓ ​ ​ ​ ​ ⨯ 5.4.0–155-generic ✓ ✓ ​ m0nad/Diamorphine
dorosch/rootkit ✓ ✓ ​ ​ ​ ⨯ 5.4.0–155-generic ⨯ ✓ ​ dorosch/rootkit
LilyOfTheValley ✓ ✓ ​ ​ ​ ⨯ 5.4.0–155-generic ⨯ ✓ ▾ En14c/LilyOfTheValley
lkm-hidden ✓ ✓ ✓ ✓ ​ ⨯ 5.4.0–155-generic ⨯ ✓ ​ sysprog21/lkm-hidden
AFkit ✓ ✓ ​ ​ ​ ⨯ 4.15.0–206-generic ⨯ ✓ ​ t0t3m/AFkit
dmliscinsky/lkm-rootkit ✓ ​ ​ ​ ​ ⨯ 4.15.0–206-generic ✓ ✓ ▾ dmliscinsky/lkm-rootkit
Nuk3Gh0stBeta ✓ ​ ​ ​ ​ ⨯ 4.15.0–206-generic ✓ ✓ ​ juanschallibaum/Nuk3Gh0stBeta
puszek ​ ​ ​ ​ ✓ ⨯ 4.15.0–206-generic ⨯ ✓ ⧫ Eterna1/puszek-rootkit
rickrolly ✓ ✓ ​ ​ ​ ⨯ 4.15.0–206-generic ⨯ ✓ ▾ miagilepner/rickrolly
rootfoo/rootkit ✓ ✓ ​ ​ ​ ⨯ 4.15.0–206-generic ⨯ ✓ ​ rootfoo/rootkit
suterusu ✓ ✓ ​ ​ ​ ⨯ 4.15.0–206-generic ⨯ ✓ ▾ mncoppola/suterusu
Reptile ✓ ​ ​ ​ ​ – 4.9.0–13-amd64 ✓ ✓ ​ f0rb1dd3n/Reptile
ah450/rootkit ​ ​ ​ ​ ✓ – 4.4.0–210-generic ⨯ ✓ ⧫ ah450/rootkit
liinux ✓ ✓ ​ ​ ​ – 4.4.0–210-generic ⨯ ✓ ​ a7vinx/liinux
m0hamed/lkm-rootkit ✓ ✓ ​ ​ ​ – 4.4.0–210-generic ⨯ ✓ ​ m0hamed/lkm-rootkit
nurupo/rootkit ✓ ​ ​ ​ ​ – 4.4.0–210-generic ✓ ✓ ​ nurupo/rootkit
soad003/rootkit ✓ ​ ​ ​ ​ – 4.4.0–210-generic ✓ ✓ ​ soad003/rootkit
swiss_army_rootkit ✓ ✓ ​ ​ ​ – 3.16.0-6-amd64 ✓ ✓ 2 nnedkov/swiss_army_rootkit
THOR ​ ​ ​ ​ ✓ – 3.16.0-6-amd64 ⨯ ✓ ​ W4RH4WK/THOR
wukong ✓ ✓ ​ ​ ​ – 3.16.0-6-amd64 ⨯ ✓ ​ hanj4096/wukong
maK-it ✓ ✓ ​ ​ ​ – 2.6.32–754.35.1.el6 ⨯ ✓ ​ maK-/maK_it-Linux-Rootkit
adore-ng ✓ ✓ ​ ​ ​ – 2.6.32-5-amd64 ⨯ ✓ ​ yaoyumeng/adore-ng
brootus ✓ ✓ ​ ​ ​ – 2.6.32-5-amd64 ⨯ ✓ ▴ dsmatter/brootus
ivyl/rootkit ✓ ✓ ​ ​ ​ – 2.6.32-5-amd64 ⨯ ✓ ​ ivyl/rootkit
kevinkoo001/rootkit ✓ ✓ ​ ​ ​ – 2.6.32-5-amd64 ⨯ ✓ ▴ kevinkoo001/rootkit
moo_rootkit ✓ ✓ ​ ​ ​ – 2.6.32-5-amd64 ⨯ ✓ ▴ matteomattia/moo_rootkit
the_colonel ✓ ✓ ​ ​ ​ – 2.6.32-5-amd64 ⨯ ✓ ​ bones-codes/the_colonel

brokepkg ✓ ​ ​ ​ ​ ✓ 6.10.9-amd64 ✓ ✓ ​ 5f549aa8ac43363599e1ed0d7f6ddbaf
dropper ✓ ​ ​ ​ ​ ✓ 6.8.0–31-generic ✓ ✓ ​ f9a678e518d50d844694288fa8e3d4b2
r8152_helper ✓ ​ ​ ​ ​ ⨯ 6.2.0–1012-aws ✓ ✓ ​ 8502513518aa626b4bcb2f3a7dc8bdbe
graphic_card ✓ ​ ​ ​ ​ ⨯ 6.2.0–26-generic ✓ ✓ ​ ba9d6a6bbde602fd414cea09fcbd1aa0
iptable_reject ✓ ​ ​ ​ ​ ⨯ 6.2.0–26-generic ✓ ✓ ​ edc8916a4593cc8598bf9d9990cc3111
clientking ✓ ​ ​ ​ ​ ✓ 5.15.0–88-generic ✓ ✓ ​ 80b7038ce7f5b82c8f41d8c35ea393b8
template ✓ ✓ ​ ​ ​ ⨯ 5.4.0–137-generic ⨯ ✓ ​ 57d851cfdd653bce225743c279058673
ghoul ✓ ​ ​ ​ ​ ✓ 5.4.0–122-generic ✓ ✓ ​ ba9b483a3005e13e35839a3ed4d7080e
panix ✓ ​ ​ ​ ​ ⨯ 4.19.0–27-amd64 ✓ ✓ ​ 000a0065b6c33c373f929c6163e9a410
netlink ✓ ✓ ​ ​ ​ ⨯ 4.18.0–147.el8 ⨯ ✓ ​ b2eade99d74995c22f7773a0dda9cf58
Diamorphine ✓ ​ ​ ​ ​ – 4.9.0-9-amd64 ✓ ✓ ​ ace0ff660bf42028a862d84989f59f67
123 ✓ ​ ​ ​ ​ – 3.10.0–1160.119.1.el7 ✓ ✓ ​ eeb89a61e09d24c400fd4983d3b497e6
vmi ✓ ✓ ​ ​ ​ – 3.10.0–1160.114.2.el7 ⨯ ✓ ​ 14095c657097409db4cd5a0b5406fccd
rr ✓ ✓ ​ ​ ​ – 3.10.0–1127.el7 ⨯ ✓ ​ 45a74c7b4242c704c3562db0a07327ca
cryptov2 ✓ ✓ ​ ​ ​ – 3.10.0–123.9.3.el7 ⨯ ✓ ​ 2ee204622154a0f969ed72f2812ba2f0
iproute ✓ ✓ ​ ​ ​ – 3.10.0–123.9.3.el7 ⨯ ✓ ​ a36460ead268ce98095fb03aa5e1a9ca
suterusu ✓ ✓ ​ ​ ​ – 2.6.32–754.17.1.el6 ⨯ ✓ ​ 9d337c95034db706070045b7d3444f6a
inl ✓ ✓ ​ ​ ​ – 2.6.32–754.11.1.el6 ⨯ ✓ ​ 81b8ff1710160289956de28ffcdec8e8
tmp_spVMqi ✓ ✓ ​ ​ ​ – 2.6.32–696.el6 ⨯ ✓ ​ 5c37a233316d32b83c4e6a185abf54ea
504 ✓ ✓ ​ ​ ​ – 2.6.32–504.el6 ⨯ ✓ ​ de169851aca0998b01ccb585f26b8dc8

Notations used in the notes column:
▴: During loading, the rootkit crashed, before it could hide its module.
▾: During loading, the rootkit crashed, but the module is already hidden.
◆: During loading, the rootkit crashed, but we cannot determine, wether it happened before or after hiding the module.
1: The rootkit contains code to hide from the kset, but it’s not used.
2: A collection of rootkits written as part of a university course. Assignment 5 was used for testing, but all rookits that implement module hiding use the same code. It
implements hiding from the kset, yet, for some unknown reason, our plugin can detect it there.
The Volatility plugin is available at https://github.com/CrySyS/ModXRef.
The dataset is available at https://www.crysys.hu/~rnagy/datasets/rootkit.html.
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