Forensic Science International: Digital Investigation 53 (2025) 301934

Contents lists available at ScienceDirect

al
Investigatipn

Forensic Science International: Digital Investigation

ELSEVIER

journal homepage: www.elsevier.com/locate/fsidi
DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA R
Exploiting database storage for data exfiltration Spechier

James Wagner ®”, Alexander RasinP, Vassil Roussev?

& University of New Orleans, New Orleans, LA, USA
b DePaul University, Chicago, IL, USA

ARTICLE INFO ABSTRACT

Keywords:

Data hiding
Database forensics
Digital forensics

Steganography is a technique for hiding messages in plain sight — typically by embedding the message within
commonly shared files (e.g., images or video) or within file system slack space. Database management systems
(DBMSes) are the de facto centralized data repositories for both personal and business use. As ubiquitous re-
positories that already offer shared data access to many different users, DBMSes have the potential to be a
powerful channel to discretely deliver messages through steganography.

In this paper we present a method, Hidden Database Records (HiDR), that adapts steganography techniques to
all relational row-store DBMSes. HiDR is particularly effective for hiding data within a DBMS because it adds
data to the database state without leaving an audit trail in the DBMS (i.e., without executing SQL commands that
may be logged and traced to the sender). While sending a message in this way requires administrative privileges
from the sender, it also offers them much more control enabling the sender to erase the original message just as
easily as it was created. We demonstrate how HiDR keeps data from being unintentionally discovered but at the

same time makes that data easy to access using SQL queries from a non-privileged account.

1. Introduction

Data hiding (or steganography) is the science of hiding the act of
communication. To understand the significance of steganography, it is
important to differentiate it from cryptography. Cryptography seeks to
hide the content of the message, but does not hide the existence of
communication — a message may be observed but its content cannot be
comprehended. Instead, steganography seeks to hide the act of
communication itself rather than the content of a message — a message is
hidden, but its content may be reprehensible (i.e., plausible deniability)
when observed. Thus, cryptography and steganography are two distinct
means for obscuring communication, which can be used together to
compliment each other.

A well-designed steganography method makes the concealed data
difficult to detect while also making that data easily accessible by the
recipients. For example, ubiquitous files (e.g., video, audio, image or
text files) are good candidates for message hiding (Conlan et al., 2016;
Johnson and Jajodia, 1998). These files can be sent (and observed)
among users without raising suspicion. Additionally, these files contain
redundant and noisy data, making it easy to find unused or redundant
bytes to hide data without affecting the primary function of the file. For
example, the least significant bit of the image data (altering the image

* Corresponding author.

but imperceptible to a human eye) or a header of a media file can be used
to embed a hidden message (Hamid, 2012). There is also a significant
amount of work on hiding data in unused portions of metadata in file
systems (Garfinkel, 2007a; Kessler, 2007). User privilege can constrain
steganography, such as whether a user has the privilege to store the
message in a file (write), attach the file to an email (read), or directly
alter file system metadata (system administration).

DBMSes are widely used to manage both personal and corporate
data. For example, a lightweight DBMS such as SQLite commonly
manages personal data stored on mobile phones and web browsers;
whereas a DBMS that supports more robust access control and storage
management, such as Oracle, PostgreSQL, MySQL, or Microsoft SQL
Server, is better suited to manage corporate data. Similar to common
files, DBMSes are suitable candidates to hide messages that are shared
with many users without raising suspicion. Unlike common files, data-
base files are stationary in the file system, i.e., are never transmitted
directly; hence, users access records and values within DBMS using SQL
queries.

There is relatively little existing work on DBMS steganography ap-
plications — due to the complexity of hiding data within a DBMS and the
problem of making message delivery practical. Multiple types of internal
DBMS logging (transaction and audit logs) make it difficult to effectively

E-mail addresses: jwagner4@uno.edu (J. Wagner), arasin@cdm.depaul.edu (A. Rasin), vassil@cs.uno.edu (V. Roussev).

https://doi.org/10.1016/j.fsidi.2025.301934

2666-2817/© 2025 The Author(s).
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license

J. Wagner et al.

hide a message. In general, introducing a hidden message into the
database via an SQL command creates an associated log record.
Furthermore, while an OS administrator (with access to DBMS files) can
bypass logging and hide data in unallocated DBMS space, the data must
remain retrievable through typical SQL queries so that elevated privi-
leges are not required to receive the message.

1.1. Example: illustration of DBMS steganography

Alice wants to pass information to Bob (a colleague working in the
same company) and Carl (a company customer), but her transporting the
data off company premises may attract unwanted attention. Alice is a
System Administrator — she has administrative (OS) access to the server
where the DBMS runs, but does not have a database account. Bob has
access to the DBMS through a regular (non-administrative) account, and
Carl has no accounts or access inside the company. To send a hidden
message to Bob, Alice introduces a special record into the DBMS state,
which can be accessed by Bob through a specially formulated SQL query.
Alice could later erase the unusual record — but even if the record is
found, no audit or log information will indicate who left this message or
when. Similarly, in order to send a message to Carl, Alice adds a regular
record (within Carl’s customer profile) using the same approach. Carl
can then access his customer account through normal means to retrieve
Alice’s message. Although Alice has easier ways to send a message, this
approach lets Carl retrieve the message without performing any unusual
and thus detectable actions (i.e., Carl merely logs into his existing ac-
count as any other customer).

In this paper, we propose a database steganography method called
Hidden Database Records (HiDR). HiDR directly accesses the database
files to add records, bypassing the DBMS itself and hiding this activity
from the DBMS as a result. HiDR delivers three significant contributions
in the domain of database steganography:

o Activity that would be difficult to trace by a third party. All DBMS
logging mechanisms, constraints, and indexes are -effectively
bypassed, leaving no indication of how or when the data was intro-
duced into the database. The sender can also erase the message,
leaving only a narrow window for an observer to search for the
hidden message in the database.

e Messages can easily and unambiguously be retrieved by the intended

recipient either through SQL queries (from a regular non-

administrative DBMS account) or via a regular web portal (from a

customer account).

The method is applicable to any (both proprietary and open source)

row-store DBMS including IBM DB2, Microsoft SQL Server, Oracle,

PostgreSQL, MySQL, SQLite, Firebird, and ApacheDerby.

Table 1 summarizes the remainder of this paper.

Table 1
Summary of the remaining paper.

§ Summary

2 Background information on DB auxiliary objects, constraints, and query access
patterns to understand how HiDR messages are effectively hidden.

3 Adiscussion of related work in steganography and its current limitations with
respect to DBMSes.

4 The considerations taken when implementing HiDR to performing external
modifications to DBMS files.

5 A description of the HiDR method.

6 Anexplanation of why HiDR messages are masked, and how the hidden data can
be unambiguously retrieved.

7 Using three representative DBMSes (PostgreSQL, MySQL, and Oracle) we
demonstrate that HiDR effectively hides data, which is retrieved using SQL.

8 A discussion of prevention and detection measures to counter malicious
applications of HiDR.

Forensic Science International: Digital Investigation 53 (2025) 301934
2. DBMS constraints and queries

HiDR exploits database engine operation to both hide messages from
regular queries and provide easy retrieval for the intended recipient.
This section discusses the relevant concepts needed to understand how
this achieved.

2.1. Indexes

A database index stores value-pointer pairs (typically a B-Tree
structure) to help locate rows within a table, providing performance
benefits. A DBMS can create indexes automatically — for example, con-
straints (e.g., primary key or UNIQUE) generate an index. Index entries
are stored in pages as shown in Fig. 2 —an index is structurally similar to
a table that stores (value, pointer) records. It is important for this paper
to note that NULL values are not stored in indexes.

Fig. 1 displays an example index page, and how a value references a
record. A pointer to a table record is stored with each city value. Here,
the pointer stores the page identifier, 8, and the respective row identi-
fier, 25.

2.2. Constraints

Relational databases are designed to represent a relation (table) as a
set of tuples (rows). Each row must be unique, enforced through a pri-
mary key constraint. Primary keys are always unique and by definition
can never be NULL (“unknown”); the DBMS blocks any operation that
attempts to violate that rule.

Uniqueness of the primary key is further used to enforce integrity
through foreign keys. A foreign key is a cross-table reference: for
example, a loan payment record holds the loan ID (primary key) to
which it belongs. Referential integrity requires such foreign key refer-
ences to always be valid - either reference an existing record (e.g., an
existing loan ID) or contain a NULL as a placeholder.

Relational database rules furthermore impose a constraint on every
table column. Each column must have a well-defined data type such as
INTEGER or VARCHAR(15). As with other constraints, the DBMS
actively enforces these rules by checking every operation that might
potentially modify stored values. Any step found to be in violation of
these rules (e.g., inserting a string into an integer column) is blocked.

2.3. Query execution

A DBMS engine has two strategies to fetch data from tables: 1) an
index access performs a targeted data retrieval (i.e., use an index to fetch
relevant rows), or 2) a full table scan searches the entire table reading
both relevant and irrelevant rows. An index access is only used when an
index is available and deemed to be cheaper than a full table scan.

An SQL query that accesses multiple tables combines them with a

City Index Page Table Page

PagelD=5
RowID = 25 RowID =59

RowID = 25

PagelD = 20
RowlID = 59

PointerN

Fig. 1. Example: an index value referencing a record.

| Row25 | |, Row59 |

J. Wagner et al.

0.

Checksum

ObjectID

Row Delimiter
RowlID =2
Column Count = 2
Value Sizes = [3, 6]
Valuel = Bob

PagelD

©

Value2 = Boston
Row Delimiter
RowlID =1
Column Count = 2
Value Sizes =[5, 6]
Valuel = Alice
Value2 = Austin

Row1 Address
Row2 Address

RowN Address

<+— Rowl—» " «— Row 2 — Row N

Fig. 2. Page examples: A) high-level, B) header, C) row directory, and D)
row data.

join operation. The default join type is an INNER JOIN, which combines
only the matching rows. Using our loan example, a report about loans
and loan payments includes only loans with existing payments — a loan
without any associated payments is ignored. Several other operations
such as NATURAL JOIN or subqueries are also executed as an INNER
JOIN. An SQL query may explicitly request that unmatched values be
included in the result — this operation is known as an OUTER JOIN. An
OUTER JOIN in our loan example returns loans without any associated
payments, substituting NULLs for missing loan payment data.

3. Related work
3.1. Database forensics

HiDR directly examines and modifies database storage. Therefore,
we consider methods that read database data independent of the DBMS.
Database page carving (Wagner et al., 2017, 2019, 2020a, 2020b) is a
method that reconstructs relational DBMS file contents without relying
on the file system or DBMS. Page carving is similar to traditional file
carving (Richard and Roussev, 2005; Garfinkel, 2007b) in that data,
including deleted data, is reconstructed from disk images or RAM
snapshots without using a live system. The work in (Wagner et al., 2015)
presented a comparative study of the page structure for multiple
DBMSes. Wagner et al. expanded on this work by generalizing database
memory structures (Wagner and Rasin, 2020), which was later used for
log verification (Wagner et al., 2023). Work in (Wagner et al., 2016;
Lenard et al., 2021) described the lifetime of deleted data within an
DBMS, and (Wagner and Rasin, 2024) proposed a method to sanitize this
data so that it is not forensically recoverable. While a multitude of
built-in and 3rd party recovery tools (e.g., (OfficeRecovery, 2017; Per-
cona, 2018; Phoenix, 2018)) can extract database storage, these tools are
not can only recover “active” table (non-deleted or un-corrupt) records.
Forensic tools, such as Sleuth Kit (Carrier, 2011) and EnCASE Forensic
(Garber, 2001), are commonly used by digital investigators, but they
primarily reconstruct file system data and are not capable of parsing
DBMS files. Therefore, the most practical method for HiDR was to
examine and modify storage at the page level with a specialized version
of page carving.

3.2. Database steganography

There is much research in steganography at the file system or OS
level, and steganography for files (e.g., image files (Ansari et al., 2020),
audio file (Cui et al., 2020), QR Codes (Patel and Pragathi, 2022)) that
are typically shared. Garfinkel et al. (Garfinkel, 2007a), Conlan et al.
(2016), and Dhawan et al. (Dhawan and Gupta, 2021) provided over-
views of steganography research. However, all of this work has limited

Forensic Science International: Digital Investigation 53 (2025) 301934

applications for DBMSes. DBMS files cannot be interpreted individually
and must use the DBMS to read the files. Furthermore, data hidden in
unallocated space must be added in such a way that it can be queried,
which is not explored by any of the related work. A few methods for
hiding database data were proposed, but we consider them to be limited.
These methods are DBMS-specific and require SQL commands to be
executed using the DBMS, which creates evidence in two types of DBMS
logs (write-ahead and audit).

Pieterse et al. (Pieterse and Olivier, 2012) proposed PostgreSQL
DBMS hiding methods, which alter the system catalog tables. This
required modifications to the relational schema which included
removing constraints, and removing and adding columns to tables using
SQL commands. We believe these SQL commands can leave a significant
amount of evidence behind and are not inconspicuous. Furthermore, we
argue that modifying the database schema would have significant im-
pacts on user database applications and would be rather noticeable. The
operations performed were also highly specific to PostgreSQL.

Furhwirt et al. (Fruhwirt, 2015) proposed methods that require a
record to be inserted using SQL, and either removing the pointer in the
secondary index or the primary key indexes. By removing pointers in
indexes, they claim index accesses are common and therefore, their
hidden data is less likely to be returned by SQL queries. However, cur-
rent trends in database systems research argues that secondary indexes
are limited to only queries with the highest selectivity due to improve-
ment in I/0 efficiency of hardware (Kester et al., 2017). We argue and
demonstrate that bypassing constraints (rather than just indexes) makes
HiDR more likely to exclude a hidden record in regular query results.

4. DBMS file modification

HiDR directly modifies database files without the DBMS API (e.g.,
SQL). DBMSes do not provide an API to modify or even directly inspect
the storage at the page level. When a DBMS file is modified, correct
format and all relevant metadata must be considered to avoid corrupting
the page (or the entire database instance). Three things must be
considered to perform live database file modifications: 1) page check-
sum, 2) committed transactions, and 3) dirty pages.

Any page modification requires updating the corresponding check-
sum, even if the DBMS is shut down. For all data and metadata updated
in a page, the checksum is always the last thing to be updated. This is
because updating another part of a page may result in a new checksum
value. If the checksum value is not correct, the DBMS flags the page or
even the entire file as corrupt.

Transactions help manage concurrent access to the DBMS and are
used for recovery post-failure. For example, consider a customer who
transfers $10 from account A($50) to account B($5). Should the transfer
fail mid-flight (after subtracting $10 from A, but before adding $10 to
B), transactional mechanism restores account A back to $50. Changes
are stored in the transactional log (e.g., <A, $50, $40>, <B, $5, $15>)
and are finalized by transactional COMMIT. If modifications are per-
formed in a live database instance, transaction logs can verify that there
are no relevant uncommitted transactions.

DBMSes do not immediately write pages back to disk after pages
were loaded and modified in the buffer cache — a page that contains
pending changes in the cache is a dirty page. This is significant because
our manually modified DBMS page can be overwritten when a dirty page
is flushed to disk. This does not prevent HiDR from working or pose any
corruption risk, but can overwrite some of the changes (undoing the
changes we made to the page). Therefore the sender might need to verify
that the message was not destroyed by internal DBMS activity. Since a
COMMIT does not force pages to be written to disk, some DBMSes offer
an explicit SQL command to flush the buffer cache contents to disk.

5. HIDR

As previously mentioned, HiDR operates at the page level to

J. Wagner et al.

introduce records into the DBMS state. Pages are directly read and
modified using a Hex editor or a programming language (for this paper
we used Python 2.7). Along with the considerations for DBMS file
modifications discussed in Section 4, metadata within the page must be
correctly updated to avoid corruption. In this section, we describe how
HiDR alters pages. The terminology and concepts apply (but are not
limited) to DB2, SQL Server, Oracle, PostgreSQL, MySQL, Apache Derby,
SQLite, and Firebird.

5.1. Pages

Before we describe the HiDR specifics, we provide an overview of
database pages. The DBMS storage layer partitions all physical objects
(e.g., tables, indexes, and system catalogs) into fixed pages with a typical
size of 4 or 8 KB. Using a fixed page size across an entire database
instance significantly simplifies storage and cache management. Page
size can be changed but only through rebuilding all affected database
objects: page size cannot be changed for individual tables, at a minimum
it is global per tablespace (a logical storage unit).

When data is inserted or modified, the DBMS controls data place-
ment within pages and internally maintains additional metadata.
Despite the wide variety of DBMSes from different vendors on the
market, many commonalities exist between DBMSes in how page data is
stored and maintained. Every row-store (storing record values on the
same page) DBMS uses pages with three main components: header, row
directory, and row data. Fig. 2A displays a high-level breakdown of a
page with all three of these structures. HiDR modifies the page com-
ponents in the following order: 1) Row Data, 2) Row Directory, and 3)
Page Header. This sequence ensures data is correctly added to the
database state without corruption.

5.2. Row data

The row data stores the user data along with the metadata that de-
scribes each value contained in the records. Fig. 2D shows an example
row data structure (there are some minor DBMS-specific variations). In
this example, each record stores a row delimiter, row identifier, column
count, value sizes, and the user data values. Table 2 summarizes the
significant pieces of metadata stored with each record in the row data
segment for each DBMS. Each DBMS uses a subset of these metadata
items to represent its internal storage; none of the metadata is used in all
DBMSes. At the same time, there is significant overlap in how the met-
adata is used — we have included the DBMSes that use each piece of
metadata to demonstrate the similarity in storage choices between
DBMSes.

HiDR first adds the user data along with all of the necessary metadata
expected in the row data for that DBMS. For example, to add a record to
the row data for a PostgreSQL DBMS, the following need to be gener-
ated: a row identifier, column count, and column sizes.

Table 2
Row data metadata descriptions.

Parameter Summary

Row Identifier
[1,4,6,7]

The internal row identifier pseudo-column, which corresponds to
arecord’s pointer. Sometimes only a subset of the row identifier is
stored with the record.

Column Count The number of columns for a record (this value is fixed for each

[1,5,6,7,8] table page, but stored with each record).
Column Sizes The size of each column. Typically only the sizes for strings are
[1,3,4,5,6, stored, whereas other datatypes such as integers assume a fixed

7] storage space.

Column Pointers to each column within the record.
Directory
[2, 8]

Forensic Science International: Digital Investigation 53 (2025) 301934
5.3. Row directory

The row directory stores pointers to each record — when a record is
added to a page, a corresponding pointer is created. Fig. 2C shows an
example of how the row directory could be positioned within the page
structure. Table 3 summarizes how exactly the row directory is posi-
tioned in each DBMS. It is also possible that a DBMS uses a sparse row
directory, in which case an address does not necessarily need to be
appended to the row directory. When a sparse row directory is used, one
pointer is typically created for every 4-6 records. A sparse row directory
is rarely used, and we only observed it for the index organized tables
used by MySQL.

HiDR appends the page address of the record to the row directory.
For example, if record is added to a PostgreSQL DBMS page, a pointer is
appended to the bottom of the row directory since this is the next space
to be chosen by that DBMS (as per Table 3).

5.4. Page header

The page header contains metadata describing the user records
stored in the page. The page header metadata we consider for the pur-
poses of this paper are the checksum, free space pointer, object identi-
fier, page identifier, and record count. Fig. 2B demonstrates how this
metadata could be positioned in a page header. Table 4 describes each
one of these metadata items for each DBMS.

For HiDR, the relevant metadata in the header is updated: the free
space pointer, record count, and checksum. The free space pointer is
updated to reflect the next free space following the added record to
avoid overwriting of the record by subsequent DBMS operations. Next,
the record count is incremented by one. The page checksum is always
the last metadata item to be updated. This is because the page checksum
computation may (checksum functions vary in different DBMSes) use
metadata that was previously updated. Therefore, changing other met-
adata after the checksum update may result in an incorrect checksum.

5.5. HiDR deployment considerations

The simplest way to modify DBMS files is to shut down the DBMS or
place it into a backup mode (which ensures no active transactions can
execute). However, a DBMS shutdown is not conducive to hiding a
message — and the same techniques can also be easily executed against a
live database. To record the hidden message in a live DBMS, we prefer to
choose the pages that are not currently being modified and will not be
overwritten when the DBMS buffer cache is flushed to disk. Such pages
can be identified by inspecting RAM or the DBMS transaction log.
However, this process requires additional effort and may still fail to
detect some of the pages that will be overwritten. Therefore, Alice can
instead opt to create multiple message copies throughout the database
file to reduce the likelihood of the message being accidently overwritten
and lost.

When performing HiDR, it is useful to know the table to which you
are adding the record. The object identifier and page identifier enable us
to determine the page identity. While the name of an object (e.g., table
name) is not stored in a page, the object identifier can be mapped to the
system catalog data to retrieve a plaintext name (e.g., customer table).

Table 3
Row directory metadata descriptions.

Parameter Summary

Top-to-bottom Row directory addresses are appen-ded from top-to-bottom of the
[2,3,5,6,7] page

Bottom-to-top Row directory addresses are appended from bottom-to-top
[1, 4, 8]

[1] ApacheDerby, [2] DB2, [3] Firebird, [4] MySQL, [5] Oracle, [6] PostgreSQL,
[71 SQLite, [8] SQLServer.

[1] ApacheDerby, [2] DB2, [3] Firebird, [4] MySQL, [5] Oracle, [6] Post-
greSQL, [7] SQLite, [8] SQLServer.

J. Wagner et al.

Table 4
Page header metadata descriptions.
Parameter Summary
Checksum Used by the DBMS to detect corruption within a page; it is
[1,2,3,4,5,6, updated whenever a page is modified.
7, 8]
Record Count The number of active records within a page. If a record is
[1,2,3,4,5,6, deleted in a page the record is decremented by one; if a record

7, 8] is added to a page, it is incremented by one.
Free Space Pointer ~ The address where the next record will be appended to the
[1,2,3,4,5,6, page.

7, 8]

ObjectID Represents the object to which the page belongs.
[1%,2,3,4,5,6%
8]

PagelD DBMS-dependent, a unique number for each page - either for
[2, 3, 4,5,6, 8] each object within a file, or across all database files.

[1] ApacheDerby, [2] DB2, [3] Firebird, [4] MySQL, [5] Oracle, [6] PostgreSQL,
[7] SQLite, [8] SQLServer.
& The ObjectID is stored in the row data with each record.

The page identifier is static for any given page, regardless of whether the
page is in the buffer cache or in persistent storage. To remain incon-
spicuous, newly added records should not differ significantly from the
existing records in the table.

5.6. Quantification of hidden message throughput

There are no limitations on the number of records that can be added
through HiDR. In this paper we only describe adding records to free
space in existing DBMS pages — although other mechanisms are avail-
able, this one is the simplest. In practice, multiple pages in each table are
likely to have free space in them. This is because free space is created by
many common user commands, such as DELETE, UPDATE, and rebuild/
defragment commands. Moreover, most DBMSes allocate storage to a
table in units of an extent, which is a group of pages (about 10). It is
unlikely for the entire extent of pages to be immediately filled by rows.

If none of the pages in a table have free space, a new page must be
manually built, added to the database file, and assigned to the relevant
table. The steps to perform such an operation are beyond the scope of
this paper and require modifying some metadata that was not discussed
in this paper.

Initial Page

FreeSpacePtr

Row1 Address
Row2 Address

Page With Hidden Record

b{ Checksum’
) FreeSpacePtr’
{ Row Count =3

Row1 Address
Row2 Address

»(Row3 Address

Record addition

4 Row Delimiter

{ Metadata
h{ Hello, World
o

Fig. 3. An illustration of record addition.

Row?2

Rowl

Forensic Science International: Digital Investigation 53 (2025) 301934

5.7. Record addition example

Fig. 3 illustrates HiDR adds records to DBMS state. Here, the record
(‘Hello’, ‘World’) was added to a page. The updated page attributes are
bolded and labeled with a star. Along with the record values themselves,
additional row data metadata is updated. Next, a row directory address
is appended to the row directory. The page header row count is incre-
mented by one and the free space pointer is updated are then updated.
Finally, the checksum is updated.

6. DBMS data hiding

HiDR is logically similar to an SQL INSERT command, in that data
becomes part of the database state and can be queried using the DBMS
APL In this section, we describe why HiDR is effective for hiding data
within a DBMS, and how HiDR data remains retrievable with regular
(specifically targeted) SQL queries.

6.1. Message hiding effectiveness

HiDR is effective at concealing a message within a DBMS because it
adds the data to the database state unbeknownst to the DBMS. There-
fore, all of DBMS access control, logging mechanisms, constraints, and
indexes are effectively bypassed.

6.1.1. Access control

HiDR does not require the user (the sender) to have an account in the
DBMS where the message is being hidden. Only write access to DBMS
files (at the OS level) is required to create the hidden message, and only
regular table read access is needed to retrieve the message.

6.1.2. DBMS logging

DBMS logging (both transaction and audit) only records the activity
executed through the DBMS API as SQL commands. Since Hi DR does not
use SQL and the operation is not part of any DBMS transaction, Hi DR
activity is not logged. Live DBMS files are constantly updated by ongoing
user queries and therefore any logging at the file system level would be
difficult to attribute to HiDR data.

6.1.3. OS logging

It would generally be difficult to attribute a file system journal entry
to specific HiDR activity. A running DBMS performs many writes across
its files. In order to better conceal HiDR activity at the OS level, the
modifications to DBMS files could be performed by impersonating DBMS
process ID (thereby making HiDR writes indistinguishable from other
DBMS activity).

6.1.4. Constraints

DBMS constraints are only enforced when commands are executed,
and they are not retroactively checked. Therefore, the DBMS never
performs a constraint check on the HiDR data. If existing constraints are
violated, that would only become apparent if these constraints were
dropped and recreated, which is not a typical database activity. Other-
wise, no indication will be given that a constraint-violating record exists
in the DBMS storage.

HiDR’s ability to bypass constraints contributes significantly to data
concealment. Current database systems research trends favor full table
scans over index accesses due to the improvements in I/0 throughput
costs over seek costs (Kester et al., 2017). Executing a single table scan is
not typical because relational database design normalizes data across
multiple tables, requiring table joins to recreate complete data records.
While a single table full table scan may return the hidden message, joins
involving multiple full table scans are unlikely to return the hidden
messages. Joins are usually performed based on the foreign keys, and
any record that violates the foreign key constraint will not be returned
by the query. Since HiDR can bypass foreign key constraints, HiDR data

J. Wagner et al.

can be hidden from queries that use joins.

Fig. 4 illustrates how a foreign key violation better hides data. The
added record (NULL, Messagel, -1) violates the referential constraint
because the value for EMPLOYEE.DeptID, —1, is not in the set of
referenced primary key values. Thus, (NULL, Messagel, -1) is not
returned by an inner join.

6.1.5. Indexes

The DBMS maintains indexes as data is added to tables using SQL.
Therefore, the HiDR data will not be indexed at the time of addition.
This keeps the hidden data from being returned by any queries that use
index access. However, it is not uncommon for users (or even the DBMS)
to rebuild indexes for performance considerations. To keep the HiDR
data from being added to the index on rebuild, we propose using the
NULL value for all indexed columns (including the primary key). DBMS
indexes will not include NULL entries, thus permanently keeping the
added record from being indexed. The only way for a DBA to discover
such hidden record would be to re-create the key constraint (e.g.,
dropping and then re-adding the primary key to the table). However,
there is never a reason to do so in a DBMS because all constraints
(including disallowing NULL in the primary key column) are always
strictly enforced for SQL queries.

Fig. 4 illustrates how NULL can be used for any indexed columns. We
added NULL to the primary key columns for both tables. By default, the
DBMS creates an index to enforce the primary key constraint. Addi-
tionally, we bypassed the primary key constraint since NULL is not
allowed. These records are not returned by any index access queries that
use the ID column for either of the tables. Furthermore, if the indexes
were rebuilt, NULL would still not be added to the index. This data
would only become problematic for the DBMS if the primary key con-
straints were dropped and recreated, which is unlikely.

6.1.6. Message destruction

Once the message is received (or has not been retrieved within an
agreed up time frame), the message creator may want to remove evi-
dence of the message from the DBMS. Just as it is possible to add a record
to the database state, it is also possible to wipe that record. This reverse
process would require the record in row data to be overwritten with
NULL, the corresponding row directory pointer to be overwritten with
NULL, the row count decremented by one, and the page checksum to be
recalculated again. Based on our experience, the free space pointer
within the page does not need to be updated for this operation.

We believe this message destruction feature is one of the major ad-
vantages of using HiDR over other types of steganography message
sending. For example, while sending a file such a JPEG or PDF via email

Employee Table

Forensic Science International: Digital Investigation 53 (2025) 301934

does not require administrative privileges from the message sender, the
sender also loses control over the message once it is sent. The sender of
the message cannot delete a PDF file once it is emailed. While the
recipient of the message might delete the file, any additional OS copies
(e.g., in paging files or in RAM) can still be found, carved using appro-
priate tools, and read by an observer. In case of HiDR, the original
message can be erased, and the copy of a message is harder to find and
interpret unless an investigator knows exactly what she is searching for.

6.2. Hidden data retrieval

We demonstrated how records can be effectively hidden from typical
queries, but it is also important to make the hidden data easy to retrieve.
Since it is possible for the hidden data to be returned with a set of results,
the hidden data must be filtered to distinguish it from regular data. The
approach that we describe relies on known constraint violations to filter
and retrieve hidden data.

We previously discussed primary key and foreign key constraint vi-
olations. Queries could then be written to find all data that violates in-
ternal constraints. Additionally, a third constraint type that can be
violated using record addition is the domain constraint. For example, if a
column is declared as a variable length string of 10 characters, VAR-
CHAR(10), and the hidden message is 11 characters long, then a query
that filters on all values greater than 10 characters will only return the
hidden message.

Fig. 4 illustrates how domain constraint violation can be used to
identify a hidden message. If the domain for EMPLOYEE . Name is VAR-
CHAR(6), then ‘Messagel’ violates the domain constraint since it is 8
characters. With this knowledge, ‘Messagel’ could easily be retrieved
with a query that selects all strings greater than six characters. The
DBMS will reject any INSERT or UPDATE query that violates a domain
constraint. Therefore, the following query only returns ‘Messagel’:

SELECT Name FROM EMPLOYEE
WHERE LEN(Name) > 6;

When retrieving hidden messages through a web portal (e.g., Carl in
Example 1), it may be impossible to formulate the requisite custom SQL
queries. In that case, Alice could add “normal” DBMS records that would
automatically show up in Carl’s web portal (e.g., create an additional
order record or a new user profile entry for Carl’s account).

7. Experiments

The objective of this experiment is to demonstrate that HiDR can be

Department Table

Add the record (NULL, Messagel, -1)

1D Name |DeptiD| No.cons.traint 1D Name Location
1 Alice | 303 violations 101 | Marketing | New York

2 Bob | 101 \E 202 | Accounting | Chicago

3 Carl 202 303 | Research Los Angeles

Add the record (NULL, Message2, Atlantis)

1D Name |DeptID 1D Name Location
1 Alice 303 101 | Marketing | New York
2 Bob 101 \ 202 | Accounting | Chicago
3 Carl 202 303 | Research Los Angeles
NULL | Messagel | -1 NULL | Message2 | Atlantis
) \ \ Constraint f
Primary Key Domain Foreign Key Violations Primary Key

Fig. 4. An example of a record addition to hide a message.

J. Wagner et al.

used in practice. We performed HiDR on three representative DBMSes:
PostgreSQL 9.6, MySQL 5.6, and Oracle 12c¢ to illustrate that our
approach is applicable to all row-store DBMSes that use pages as
described in Section 5. PostgreSQL and MySQL are commonly used
open-source DBMSes and Oracle is the most widely used commercial
DBMS. Table 5 summarizes the three parts to this experiment.

To setup our three DBMS instances, we created the five tables (DATE,
SUPPLIER, CUSTOMER, PART, and LINEORDER) from the Star Schema
Benchmark (SSBM) (Neil et al., 2009; Lenard et al., 2020), and popu-
lated the tables with Scale-4 (~2.5 GB) data. This benchmark is widely
used in the database systems research community. It combines a realistic
distributed data (maintaining data types and cross-column correlations)
with a synthetic data generator. The primary keys for each table,
including (LO_Orderkey, LO_Linenumber) on LINEORDER, created
an index for the respective columns by default. Additionally, the
LINEORDER used the following foreign key columns: LO_Custkey
references CUSTOMER, LO_Partkey references PART, LO_Suppkey
references SUPPLIER, and LO_Orderdate references DATE.

We added the record shown in Fig. 5 to the database files containing
the LINEORDER table. Our hidden message in this record is ‘Hello_-
World’. The composite primary key is underlined (solid line), the foreign
keys are underlined (dashed line), and all values that bypassed a
constraint are highlighted in gray.

Checksum. The checksum for each DBMS required a different
implementation. Since both PostgreSQL and MySQL are open-source
DBMSes, the checksum function was available in the source code.
Oracle does not make the checksum available — however, Oracle
checksum function was described by Stawiarski (2018).

7.1. Foreign key constraint

In this part, we demonstrate that violating referential integrity ex-
cludes a record from typical queries. All SSBM queries (Neil et al., 2009)
perform joins using the foreign key columns in LINEORDER. For
example, Query 1.1 joins LINEORDER and DATE using LO_Orderdate:

SELECT SUM(LO_Extendedprice*L0_Discount)
FROM Lineorder, Date

WHERE LO_Orderdate = D_Datekey

AND D_Year = 1993 AND LO_Quantity < 25
AND LO_Discount BETWEEN 1 AND 3;

The hidden record uses a value of —1 for LO_Orderdate which does
not match any values in the D_Datekey column from DATE table. The
record bypassed referential integrity (normally impossible), and will
never be returned by any query that performs an inner join on DATE.
Similarly, the record bypassed referential integrity for LO_Custkey,
LO_Partkey, and LO_Suppkey setting the value to —1. None of the
SSBM queries returned the record with the hidden message because they
perform at least one join, thus hiding the message from accidental
discovery.

The value NULL could have also been used for the foreign key values.
This would exclude the record from any inner joins, and this would not
have violated referential integrity. However, we used —1 because this is
not an expected value, whereas NULL could be expected by the user.

Table 5
Experiment summary.

§ Summary

7.1 Bypassing the foreign key constraint effectively hides the added records from
the typical user queries.

7.2 Using < preclass = "listings” > NULL < /pre > as the primary key keeps the
record from being discovered by an index accessand any unintentional
conflicts of future inserted data.

7.3 The intentional domain constraint violation simplifies hidden message
retrieval.

Forensic Science International: Digital Investigation 53 (2025) 301934

(Primary Key)

Orderkey,
.—Y (Other 10 Columns)
Linenumber
_
NULL | NULL| -1 | -2 | -1 | -1 1 Hello_World

T
Shipmode
(Hidden Message)

Y
Custkey, Partkey,

(Foreign Keys)

Fig. 5. The record containing a hidden message.

Furthermore, we used —1 because this not only did not match any values
in the referenced columns, but it is not likely to match any future
referenced values. For example, it is unlikely to assign a customer with
an ID of —1 or for an order date to be —1.

7.2. Primary key

The primary key constraint says that all values must be unique and
not NULL. By default, all DBMSes create an index on the primary key
column(s). By using (NULL, NULL) in the key value (again, normally
impossible), we keep the hidden record out of the primary key index and
make it less likely to be unintentionally retrieved. As with other indexes,
a primary key index rebuild will exclude NULL values.

7.3. Domain constraints

The LO_Shipmode column was declared as a variable length string
of 10 characters (VARCHAR(10)). Since ‘Hello_World’ is 11 characters
long, this value violates the domain constraint. The hidden message was
easily retrieved by returning only the values that violated domain con-
straints. All legitimately inserted values for LO_Shipmode must be a
string of no more than 10 characters. For example, following query
returned our message and nothing else:

SELECT LO_Shipmode FROM Lineorder
WHERE LENGTH(LO_Shipmode) > 10;

7.4. Experiment conclusion

We claim that it is unlikely for the hidden record to be accidently
discovered. If a full table scan returned all 24 million records from
LINEORDER, the observer would need to know what to look for to find
the hidden record. While we used values that stand out to demonstrate
HiDR, in practice the message sender/hider would choose less con-
spicuous values that do not stand out from the rest. An auditor is also
unlikely to search for the hidden record because HiDR bypassed all
DBMS logging (as verified in our experiments), leaving no indication
that a message was hidden.

8. Database storage validation

While HiDR is presented as a tool designed for ethical purposes,
nothing is stopping an individual from using it for malicious applica-
tions. This section discusses potential countermeasures and their chal-
lenges for such malicious applications.

8.1. Detecting database file tampering

Wagner et al. previously proposed methods to detect database file
tampering (Wagner, 2018; Rasin et al., 2018). These methods detect
storage inconsistencies by comparing user data in tables and additional
data stored in auxiliary structures (e.g., indexes, materialized views);

J. Wagner et al.

tampering is detected by identifying an unexplained difference in
different data structures (e.g., B-Trees used for indexes, log entries). One
of the major limitations of this work is that it requires auxiliary struc-
tures such as indexes to be built on the user data stored in tables.
Without optional auxiliary structures, there is little information avail-
able for comparison to detect inconsistencies. Another challenge in this
work is the rate at which detection is performed. Over time, data can be
overwritten and data structures could be rebuilt (e.g., B-Tree
reorganization).

8.2. Constraint checking

Recall that the DBMS engine does not retroactively check data con-
straints. Under normal circumstances (i.e., through SQL operations) the
DBMS engine enforces these constraints only as data is inserted or
updated; however, HiDR bypasses DBMS constraint enforcement. We
propose that a database user could run a comprehensive set of queries to
check for constraint violations. For example, the following query finds
all records (i.e., Messagel) that violate referential integrity (i.e., the
foreign key constraint) in Fig. 4:

SELECT *

FROM Employee LEFT OUTER JOIN Department
ON Employee.DeptID = Department.ID
WHERE Department.Name IS NULL

AND Employee.DeptID IS NOT NULL;

Similar queries can be written to validate all standard SQL con-
straints which could be leveraged for message hiding. In regards to the
possible applications of HiDR, the following constraints require valida-
tion: domain (i.e., column data types), row-level check constraints, NOT
NULL (including primary key set to NULL), and referential integrity
constraints. Other types of constraints, such as UNIQUE or multi-table
constraints (i.e., constraints enforced by triggers) can be violated
through direct storage modification, but do not offer the targeted data
retrieval as the HiDR use cases. For example, adding a duplicate value
into a column under a UNIQUE constraint does not help retrieve a
hidden message. There is no query that can quickly find a row with a
duplicate value. Alternatively, setting a column to NULL when a NULL is
not allowed (e.g., in a primary key) allows to quickly identify such row
as an anomaly.

To automate this approach, a list of data constraints and table defi-
nitions can be retrieved from the DBMS system tables. This list of con-
straints can then be iterated over to write queries that check constraints
useful for hidden message passing:

For each datatype constraint, such as VARCHAR(20), a query can be
formulated to quickly identify columns in violation of the constraint:

SELECT [column name]
FROM [table name]
WHERE LENGTH([column name]) > 20;

For each NOT NULL constraint:
SELECT [column name]

FROM [table name]

WHERE [column name] IS NULL;

For each foreign key constraint:
SELECT *
FROM [primary key table name]
RIGHT OUTER JOIN [foreign key table name]
WHERE [primary key] IS NULL
AND [foreign key] IS NOT NULL;

9. Conclusion

In this paper, we presented HiDR, a mechanism for adapting

Forensic Science International: Digital Investigation 53 (2025) 301934

steganography techniques to relational DBMSes. HiDR adds data to the
DBMS state by directly modifying the database files rather than going
through DBMS API by executing SQL commands. HiDR has three sig-
nificant advantages: 1) it bypasses all DBMS access control, logging
mechanisms, and constraints; 2) messages are retrievable using regular
SQL queries; and 3) it is applicable to all row-store DBMSes including
Apache Derby, IBM DB2, Firebird, MySQL, Oracle, PostgreSQL, SQLite,
and Microsoft SQLServer.

We recognize that HiDR can also be used for malicious activity.
Steganography techniques could be used for nefarious purposes, and
DBMS storage tampering can be used for activities such as falsifying or
tampering with bank transactions. Wagner et al. (Wagner, 2018) dis-
cussed general techniques for detecting tampering with database inter-
nal storage. In Section 8, we discuss a simple strategy that can validate
database storage and detect any of the inconsistencies that are useful for
sending steganographic messages via database storage.

Acknowledgments

This work was partially funded by the Louisiana Board of Regents
Grant LEQSF(2022-25)-RD-A-30 and by US National Science Foundation
Grant IIP-2016548.

References

Ansari, A.S., Mohammadi, M.S., Parvez, M.T., 2020. A multiple-format steganography
algorithm for color images. IEEE Access 8, 83926-83939.

Carrier, B., 2011. The Sleuth Kit. URL. http://www.sleuthkit.org.

Conlan, K, et al., 2016. Anti-forensics: Furthering Digital Forensic Science through a
New Extended, Granular Taxonomy.

Cui, W., Liu, S., Jiang, F., Liu, Y., Zhao, D., 2020. Multi-stage residual hiding for image-
into-audio steganography. In: ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 2832-2836.

Dhawan, S., Gupta, R., 2021. Analysis of various data security techniques of
steganography: a survey, Information Security. Journal: Glob. Perspect. 30 (2),
63-87.

Fruhwirt, P., 2015. Using Internal Mysql/innodb B-Tree Index Navigation for Data
Hiding, p. 179 other.

Garber, L., 2001. Encase: a case study in computer-forensic technology. IEEE Comput.
Magaz. Jan.

Garfinkel, S., 2007a. Anti-forensics: Techniques, Detection and Countermeasures. ICIW,
pp. 77-84.

Garfinkel, S.L., 2007b. Carving Contiguous and Fragmented Files with Fast Object
Validation.

Hamid, N., 2012. Image Steganography Techniques: an Overview. Other, pp. 168-187.

Johnson, N.F., Jajodia, S., 1998. Exploring steganography: seeing the unseen. Computer
31 (2).

Kessler, G.C., 2007. Anti-forensics and the digital investigator. In: Australian Digital
Forensics Conference. Citeseer, p. 1.

Kester, M.S., Athanassoulis, M., Idreos, S., 2017. Access Path Selection in Main-Memory
Optimized Data Systems: Should I Scan or Should I Probe? ICDE.

Lenard, B., Wagner, J., Rasin, A., Grier, J., 2020. Sysgen: system state corpus generator.
In: Proceedings of the 15th International Conference on Availability, Reliability and
Security, pp. 1-6.

Lenard, B., Rasin, A., Scope, N., Wagner, J., 2021. What is lurking in your backups?. In:
IFIP International Conference on ICT Systems Security and Privacy Protection.
Springer, pp. 401-415.

Neil, P.O., et al., 2009. The star schema benchmark and augmented fact table indexing.
In: Performance Evaluation and Benchmarking. Springer, pp. 237-252.

OfficeRecovery, 2017. Recovery for Mysql. URL. http://www.officerecovery.com/
mysql/.

Patel, R.F., Pragathi, Y.S., 2022. Steganography of encrypted messages inside valid qr
codes using wavelet transforms. J. Eng. Sci. 13 (11).

Percona, 2018. Percona Data Recovery Tool for Innodb. https://launchpad.net/percona-
data-recovery-tool-for-innodb.

Phoenix, S., 2018. Db2 Recovery Software. URL. http://www.stellarinfo.com/database
-recovery/db2-recovery.php.

Pieterse, H., Olivier, M., 2012. Data Hiding Techniques for Database Environments. IFIP.

Rasin, A., Wagner, J., Heart, K., Grier, J., 2018. Establishing independent audit
mechanisms for database management systems. In: 2018 IEEE International
Symposium on Technologies for Homeland Security (HST). IEEE, pp. 1-7.

Richard III, G.G., Roussev, V., 2005. Scalpel: a frugal, high performance file carver. In:
DFRWS.

Stawiarski, K., 2018. Oracle Database Block Checksum Xor Algorithm Explained. URL.
http://blog.ora-600.pl/2018,/01/28/oracle-database-block-checksum-xor-algorith
m-explained/.

Wagner, J., 2018. Auditing dbmses through forensic analysis. In: 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, pp. 1704-1708.

J. Wagner et al.

Wagner, J., Rasin, A., 2020. A framework to reverse engineer database memory by
abstracting memory areas. In: International Conference on Database and Expert
Systems Applications. Springer, pp. 304-319.

Wagner, J., Rasin, A., 2024. Forget about it: Batched database sanitization. In:
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing,
pp. 1441-1452.

Wagner, J., Rasin, A., Grier, J., 2015. Database forensic analysis through internal
structure carving. Digit. Invest. 14, S106-S115.

Wagner, J., Rasin, A., Grier, J., 2016. Database image content explorer: carving data that
does not officially exist. Digit. Invest. 18, S97-S107.

Forensic Science International: Digital Investigation 53 (2025) 301934

Wagner, J., Rasin, A., Malik, T., Heart, K., Jehle, H., Grier, J., 2017. Database forensic
analysis with dbcarver. In: CIDR 2017, 8th Biennial Conference on Innovative Data
Systems Research.

Wagner, J., Rasin, A., Heart, K., Jacob, R., Grier, J., 2019. Db3f & df-toolkit: the database
forensic file format and the database forensic toolkit. Digit. Invest. 29, S42-S50.

Wagner, J., Rasin, A,, That, D.H.T., Malik, T., Grier, J., 2020a. Odsa: open database
storage access. In: 21st International Conference on Extending Database Technology.

Wagner, J., Rasin, A., Heart, K., Malik, T., Grier, J., 2020b. Df-toolkit: interacting with
low-level database storage. Proc. VLDB Endowment 13 (12), 2845-2848.

Wagner, J., Nissan, M.I., Rasin, A., 2023. Database memory forensics: identifying cache
patterns for log verification. Forensic Sci. Int.: Digit. Invest. 45, 301567.

