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Cryptocurrency-related crimes are on the rise and have a wide-ranging impact across various areas. To effectively
combat and prevent such crimes, cryptocurrency forensics, which relies on blockchain analysis, is essential.
Despite advancements in Bitcoin de-anonymization techniques, several challenges persist. The absence of
authentic data labels introduces uncertainty in de-anonymization results, especially in the context of address
clustering. This issue is further compounded by the development of privacy-enhancing technologies that obscure
address linkages, thus undermining the reliability of outcomes as forensic evidence. To address these limitations,
this study focuses on Bitcoin blockchain analysis and the improvement of address clustering. Specifically, the
work presents an enhanced simulation model designed to accurately simulate real Bitcoin transactions, offering a
stable platform for evaluating address clustering algorithms that utilize transaction details, thereby facilitating
the assessment of the admissibility of clustering results. Meanwhile, we introduce a new heuristic algorithm
aimed at identifying one-time change addresses, with experimental results demonstrating that it achieves more
precise clustering outcomes than existing heuristic methods. Furthermore, our blockchain analysis reveals
overarching patterns and recent changes in the Bitcoin blockchain, particularly following the introduction of the

BRC-20 token.

1. Introduction

Bitcoin, as a decentralized digital currency, provides a greater degree
of pseudonymity compared to traditional payment systems. However,
this enhanced pseudonymity has also contributed to an increase in
cryptocurrency-related cybercrimes. According to the 2024 Crypto
Crime Trends report by Chainalysis, approximately $24.2 billion was
funneled to illicit addresses, encompassing both stolen and illegal funds
(Chainalysis Team, 2024). Cryptocurrency forensics (shortened as
crypto forensics) plays a crucial role in investigating and mitigating
crypto-related criminal activities. At the core of this field is the inves-
tigation and analysis of blockchain data. Specifically, Bitcoin blockchain
analysis involves the systematic examination and interpretation of data
recorded on the Bitcoin blockchain.

Address collection and validation are vital for blockchain forensics
like fund tracing and de-anonymization. To manage the complexity of
single users controlling numerous Bitcoin addresses, heuristic address
clustering groups related addresses using transaction patterns. While
this user behavior creates ambiguity, clustering also aids law enforce-
ment (Reynolds and Irwin, 2017) by uncovering significant addresses
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and linking those belonging to the same entity, boosting investigative
effectiveness. Bitcoin address clustering heuristics, which are
assumption-based rules often focusing on specific transaction types, can
yield inaccuracies, such as falsely grouping unrelated addresses
belonging to different entities. Despite this potential for error, clustering
remains an essential technique. In crypto forensics, clustering results
serve primarily as guidance or supporting tools rather than standalone
evidence and are typically supplemented with additional intelligence
like transaction behaviors and off-chain data to improve reliability. For
example, many de-anonymization studies employ this combined
approach to map addresses to users for identifying real-world owners
(Ermilov et al., 2017; Zhu et al., 2017; Kang et al., 2020).

Address clustering is foundational to crypto forensics, but its heu-
ristic nature introduces risks of inaccuracies. Such errors, including
misattributing addresses to incorrect entities or misdiagnosing fund
flows, can compromise investigative direction, efficiency, and the
overall credibility of findings. Consequently, demonstrating the validity
of clustering techniques is paramount for ensuring the admissibility of
resulting forensic evidence in legal proceedings. Failure to meet these
standards risks the exclusion of crucial evidence, potentially hindering
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justice. While metrics like cluster size or address reduction rates are used
for evaluation in some studies (Zhang et al., 2020; Chang and Svetinovic,
2018), it remains uncertain whether these indices reliably reflect true
performance or merely capture side effects (like excluding relevant
data), particularly given the absence of ground truth data for validation.
Certain laws and regulations impose compliance constraints on the
admissibility of digital evidence (Frye; Daubert; R. v. Mohan). A key
factor within the Daubert criteria (Daubert) is the assessment of a
method’s “known or potential rate of error,” offering a measure for
establishing validity and reliability. This error rate serves as a measure
of the limitations and potential inaccuracies of the technology, facili-
tating an assessment of its reliability for forensic purposes.

Due to the inherent pseudonymity of Bitcoin, definitively identifying
the real user behind each address is currently infeasible, presenting a
significant challenge for forensic investigators. Some public data sources
that provide address labels often have limitations, such as incomplete-
ness, lack of specific entity details, or lack of owner confirmation. This
absence of ground truth data introduces uncertainty into the results of
existing address clustering techniques, hindering the reliability of
forensic findings. Specifically, the true owner of each address remains
unknown, and a precise error rate for each heuristic address clustering
method cannot currently be established, limiting the defensibility of
results in court. Moreover, the increasing adoption of privacy-enhancing
technologies and evolving blockchain dynamics, like new network fea-
tures, have further complicated address relationship analysis, height-
ening existing uncertainty and presenting new challenges for crypto
forensic analysis. Therefore, advancing address clustering methodolo-
gies to keep pace with these technological and behavioral shifts is crucial
for achieving more accurate and dependable forensic results.

To address the challenge of unknown error rates in Bitcoin address
clustering due to the lack of ground-truth data, this study introduces an
enhanced simulation model tailored for Bitcoin transactions. By
recording the true owner of each address, this simulator enables the
verification of clustering error rates, a critical step for ensuring the
reliability of forensic findings. Unlike existing models, this simulator
focuses on the data layer, intentionally excluding some network-focused
factors to optimize computational efficiency, given that heuristic
address clustering relies primarily on transaction details. The model’s
enhancements are grounded in a comprehensive analysis of the struc-
tural characteristics of real-world Bitcoin blockchain transactions,
ensuring its relevance to practical forensic scenarios. Furthermore, to
mitigate the uncertainties caused by factors like privacy-enhancing
technologies, we propose a novel heuristic algorithm for identifying
one-time change addresses. This algorithm is informed by empirical
analysis of real blockchain investigations, enhancing its practical
applicability. Finally, this study discusses recent changes in the patterns
of blockchain data following the introduction of the BRC-20 token
standard.

This work offers three primary contributions:

We develop an enhanced transaction-level simulator that accurately
models Bitcoin transactions, providing a robust, controlled envi-
ronment for evaluating address clustering techniques based on in-
ternal transaction details. Its capability to quantify clustering error
rates facilitates assessing the reliability and limitations of these al-
gorithms, thus supporting the admissibility of clustering results as
forensic evidence.

e We propose a novel heuristic algorithm for classifying one-time
change addresses, incorporating multiple qualifying criteria to bet-
ter capture transaction patterns and reduce misclassifications critical
in forensic analysis. Experimental results demonstrate lower error
rates compared to three existing heuristics, indicating its potential to
improve clustering accuracy.

e We present a comprehensive analysis of data patterns within the

entire Bitcoin blockchain and compare blockchain datasets from

different periods. The findings reveal changes in on-chain data
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characteristics and emerging trends observed in data generated
following the introduction of the BRC-20 token standard. This
analysis may offer reference information for the development of
more effective forensic tools.

2. Related work

This section reviews relevant background work, first introducing
prior research on Bitcoin analysis and then discussing existing simula-
tion models for the Bitcoin blockchain.

2.1. Blockchain analysis

On-chain data analysis is fundamental for crypto forensics, enabling
the detection of anomalies, transaction tracking, and identification of
illicit activities. Early research explored foundational aspects like Bit-
coin’s statistical characteristics (Ron and Shamir, 2013), initial usage
patterns (Badev and Chen, 2014), and methods for entity classification
(Jourdan et al., 2018) and entity-level analysis (Kinkeldey et al., 2021).
Additionally, the utility of on-chain data is significantly enhanced by
integrating off-chain information from external sources. Examples
include combining on-chain data with public off-chain records (Ermilov
etal., 2017; Fleder et al., 2015) and correlating Bitcoin addresses with IP
data (Koshy et al., 2014; Biryukov et al., 2014; Kang et al., 2020).

Address collection and validation are indispensable processes in
blockchain analysis. Heuristic address clustering, which infers re-
lationships between addresses based on transaction patterns, is a widely
adopted approach. Commonly used heuristics include the multi-input
heuristic (also known as the common spending heuristic (Ermilov
et al., 2017)), utilized in numerous studies (Androulaki et al., 2013; Ron
and Shamir, 2013; Meiklejohn et al., 2013), which operates on the
assumption that multiple input addresses in one transaction belong to
the same entity. Additionally, change address heuristics, such as the
shadow heuristic (Androulaki et al., 2013) and one-time change address
heuristics (Meiklejohn et al., 2013; Zhang et al., 2020; Liu et al., 2023),
aim to identify change addresses among transaction outputs. However,
established clustering methods are increasingly challenged as evolving
blockchain transaction patterns, driven by technology and user
behavior, often invalidate their underlying assumptions. This leads to
diminished performance, particularly with newer, complex transactions.

2.2. Bitcoin simulation

Conducting comprehensive experiments directly on the real Bitcoin
network is impractical due to its inherent complexity, time re-
quirements, and associated costs. Consequently, researchers often
employ low-cost, scalable simulation tools to explore network activities,
evaluate the performance of proposed techniques, and develop novel
solutions. Neudecker et al. (2015) develop a discrete-event simulation,
derived from the Bitcoin application code, to assess the feasibility of
network partitioning attacks. This model simplifies all cryptographic
functions to achieve a balance between performance and simulation.
Miller and Jansen (2015) present Shadow-Bitcoin, a framework based
on the Shadow platform, which runs multi-threaded Bitcoin software
within a parallel discrete-event network simulator. While this model
implements a denial-of-service attack to validate its effectiveness, it has
limitations that prevent it from capturing certain salient aspects of the
Bitcoin network. Fadhil et al. (2016) design an event-based simulation
framework to evaluate the Bitcoin Clustering Based Super Node
(BCBSN) protocol. The model abstracts cryptography operations to
streamline the simulation process, focusing primarily on information
propagation delays within the Bitcoin network. Visualizations of Inter-
active, Blockchain, Extended Simulations (VIBES) (Stoykov et al., 2017)
is a configurable emulator designed for massively peer-to-peer net-
works. This simulation tool can bypass most computationally intensive
processes to enhance simulation speed. However, the model has limited
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scalability and does not model specific details of blocks or transactions
(Alharby and van Moorsel, 2020).

Aoki et al. (2019) demonstrate SimBlock, an event-driven simulator
containing block, node, and network parameters. The simulator’s con-
struction, evaluation, and application examples primarily focus on
network-level aspects, such as block propagation time and relay network
participation rates. Chin et al. (2020) improve SimBlock by incorpo-
rating block mining difficulty adjustments and flexible hash rate to
better model the real-world blockchain network. There is no incentive
mechanism in the original SimBlock implementation. It includes a
network layer and a consensus layer. Therefore, Basile et al. (2021)
extend SimBlock by integrating block mining functionality, allowing it
to simulate the contemporary Bitcoin blockchain network more accu-
rately. The original SimBlock cannot recognize how Proof of Work
(PoW) organizes blockchain consensus and provides actual hash
computation. To address this, Mardiansyah and Sari (2022) upgrade the
difficulty level based on the PoW consensus, modifying multiple ele-
ments and processes in the block mining process and visualizing the
block mining process.

Alharby and van Moorsel (2020) construct BlockSim, a scalable
discrete-event dynamic blockchain framework that covers network,
consensus, and incentive layers. In response to the limitations of
BlockSim as a local simulation on a single CPU, Agrawal et al. (2020)
propose BlockSim-Net, a strengthened version of the network-based
blockchain simulator. Basile et al. (2022) address limitations in Block-
Sim that impact blockchain performance metrics. A flexible and basic
discrete-event simulator designed for multiple blockchains, also named
BlockSim, is presented by Faria and Correia (2019). Fattahi et al. (2020)
introduce the Merkle tree feature to BlockSim, called SIMulator for
Blockchain Applications (SIMBA), aiming to reduce block verification
time and improve overall simulation performance. BlockPerf, an
enhanced form of BlockSim, is demonstrated by Polge et al. (2021). This
updated model incorporates an incentive layer and optimizes adjust-
ments across the existing layers. Although it excludes the contract layer,
BlockPerf comprehensively covers all other layers of the blockchain
system and includes the relevant metric parameters.

3. Methodology

To address previously identified research gaps, this section outlines
the methodological framework for our study. Our approach consists of
three stages. First, we perform an empirical analysis of the Bitcoin
blockchain, examining its data to understand operational characteris-
tics. Second, informed by these empirical findings, we describe the
refinement and implementation of our simulation model. Finally, we
propose a novel heuristic algorithm designed specifically to identify one-
time change addresses.

3.1. Blockchain investigation

Prior knowledge of the real system is essential for the development of
arobust model and its corresponding modeling methods (Murray-Smith,
2015). Before improving the simulator, this study analyzes real-world
Bitcoin transactions. Existing heuristic clustering relies on filtering pa-
rameters related to transaction structure. Therefore, the blockchain
investigation involves transaction and address analysis. Specifically, the
transaction analysis focuses on inputs and outputs, transaction types,
block transaction volume, and various fields within the transaction
structure. The address analysis investigates address types and address
reuse patterns. To parse the blockchain data, this study utilizes the
BlockSci blockchain analysis tool (Kalodner et al., 2020) and a supple-
mentary Bitcoin blockchain parser (Calvez). Due to the discontinuation
of BlockSci support in November 2020, any blockchain data that could
not be parsed by BlockSci is re-parsed using the supplementary parser.
This study analyzes the first 823,786 blocks (block height 0-823,785)
from the inception of Bitcoin through the end of 2023 (UTC).
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3.1.1. Transaction type

The distribution of inputs and outputs across all Bitcoin transactions
is first examined. As illustrated in Fig. 1-(a), transactions with a single
input are the most frequent, while transactions with two outputs account
for the highest proportion, followed by those with a single output.
Transactions containing one to five inputs or outputs constitute over 95
% of the total, indicating that the majority of transactions fall within this
range.

Based on the input and output counts, all Bitcoin transactions are
categorized into four classes: consolidation, transfer, complex, and
multiple payments (Cotten, 2018). Consolidation transactions aggregate
Bitcoin from multiple inputs to a single output. Transfer transactions
involve a single input and output. Complex transactions have multiple
inputs and multiple outputs, while multiple payment transactions
consist of a single input and multiple outputs. Fig. 2 displays the dis-
tribution of these transaction types. Consolidation transactions repre-
sent the smallest proportion at 5.27 %. Complex and transfer
transactions are similar in proportion, constituting 19.98 % and 16.01 %
of the total, respectively. Multiple payment transactions are the most
prevalent, representing 58.74 % of all transactions. The transaction
volume per block is also analyzed, revealing an average of 1,148
transactions per block and a clear trend of increasing transaction vol-
umes per block over time.

3.1.2. Transaction structure

Bitcoin transactions comprise diverse fields, each with specific
meanings and functions. A typical non-coinbase transaction includes
inputs, outputs, a version number, and a lock time (Bitcoin.orga). This
statistical analysis of transaction structure parameters excludes coinbase
transactions. Each transaction is assigned a version number, indicating
the corresponding authentication rule, with values typically being 1 or 2
(Bitcoin.orgb). Among the analyzed transactions, six exhibited version
numbers other than 1 or 2; for example, the transaction with hash
64147d3d27268778c9d27aa434e8f270f96b2be859658950acc-
de95a2f0ce79d has a version number of 0. After removing these
anomalous transactions, transactions with version number 1 constitute
70.71 % of the total, with the remaining proportion attributed to
transactions with version 2.

Each transaction input includes a sequence number field (Chowa;
Bitcoin.orgb), which can indicate different functions. The default value,
OxFFFFFFFF, carries no special meaning. However, a sequence number
of OxFFFFFFFE implies that the lock time is enabled, allowing users to
specify when a transaction should be mined. The lock time field can be
set to a non-zero value representing either a specific time or a block
height (Bitcoin.orgb). Transactions without lock time are more common,
constituting 83.38 % of the total. A sequence number less than
OxXFFFFFFFE indicates the activation of Opt-in Replace-by-Fee (RBF)
(Bitcoin Core), which allows users to prioritize confirmation by
increasing the transaction fee. Generally, the sequence numbers in all
inputs of a transaction are identical. The probability of differing
sequence numbers within a single transaction on the blockchain is less
than 1 %, making it statistically insignificant. Therefore, this study
considers only transactions with identical sequence numbers in all in-
puts. The sequence number field is categorized into three types:
OxFFFFFFFF, OxFFFFFFFE, and values lower than OXFFFFFFFE, with
71.90 %, 11.64 %, and 16.46 % of transactions, respectively. Segregated
Witness (SegWit), related to transaction malleability (Chowb), is also
analyzed. Wallets supporting SegWit can generate SegWit addresses. A
flag indicating the presence of SegWit is assigned to each transaction,
with the flag being true for transactions that include witness data.
Notably, even coinbase transactions can incorporate SegWit. In
non-coinbase transactions, the amount of SegWit-flagged transactions is
44.36 %.

3.1.3. Bitcoin address
This section investigates address type distribution and reuse patterns
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within the Bitcoin blockchain. BlockSci is employed to identify various
address types. The study focuses exclusively on address types for out-
puts, including those from coinbase transactions. This is because trans-
action inputs are derived from unspent transaction outputs (UTXOs),
and newly generated output addresses may subsequently serve as inputs
in future transactions.

The analysis initially identifies nine address types, including Pay-to-
Public-Key (P2PK), an obsolete type superseded by the more secure Pay-
to-Public-Key-Hash (P2PKH) (Chowc). Null data outputs, also known as
OP_RETURN, which lack a valid address string but allow for the
embedding of arbitrary data on the blockchain (Chowd), are also
included. Additionally, Pay-to-Witness-Unknown (P2WU) is a
non-standard witness version (Bitcoin Forum). Multi-signature (Multi-
sig) addresses constitute less than 0.05 % of the total. Non-standard
addresses will be excluded from further analysis.

As illustrated in Fig. 3, the aforementioned five less prevalent
address types (P2PK, Null Data, P2WU, Multisig, and Non-standard)
collectively account for only 6.34 % of all output addresses, with Null
Data comprising 2.04 %. User behavior is a crucial factor contributing to
the low prevalence of these address types, as most users prefer the se-
curity and ease of use of the dominant address types and avoid the
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Fig. 3. Distribution of address types on the Bitcoin blockchain.

complexity or specialized nature of these less common types. Further-
more, the minimal proportion means its contribution to the overall
dataset’s characteristics is limited. Consequently, these address types
were excluded from further analysis, allowing the study to focus on the
dominant patterns of address usage. The study focuses on the four
dominant address types: Pay-to-Witness-Public-Key-Hash (P2WPKH),
P2PKH, Pay-to-Witness-Script-Hash (P2WSH), and Pay-to-Script-Hash
(P2SH). Among these, P2PKH exhibits the highest prevalence, fol-
lowed by P2SH, P2WPKH, and P2WSH, respectively.

To analyze address reuse, the blockchain data was segmented into
annual intervals based on Coordinated Universal Time (UTC). Within
each interval, a “new address” was defined as an address appearing for
the first time in the blockchain, while an “old address” was defined as
one appearing more than once in transaction outputs. The annual
address reuse rate, presented in Fig. 4, demonstrates an upward trend
during the initial four years of the study period. From 2014 onwards, the
reuse rate stabilized at approximately 10 %, reaching its lowest value in
2023. Fig. 4 also presents the total number of addresses and the number
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of reused addresses for each year. In particular, while 2023 saw the
generation of the highest number of new addresses, the corresponding
reuse rate was comparatively low.

3.2. Simulator construction

Building upon the model proposed in (Gong et al., 2022), we have
introduced modifications specifically to enable the evaluation and
development of more clustering methods that leverage internal trans-
action details. The purpose of the aforementioned blockchain survey is
to offer an in-depth understanding of the transaction structure. There-
fore, the simulator’s design will be adjusted based on observations from
this blockchain data analysis and our specific research objectives.
Within the simulator, each node operates as a full node, incorporating
the essential functions of wallet management, data storage, message
routing, and participation in the consensus mechanism. The underlying
encryption algorithms remain unchanged from the original specifica-
tion. The simulation environment is implemented using the Python
programming language, and the resulting simulation data is stored upon
completion for subsequent heuristic evaluation.

3.2.1. Model improvement

The transaction structure generated by the original model included a
basic framework in which each transaction contained the input vector
(Vin), input size (vin_sz), output vector (Vout), output size
(vout_sz), used UTXOs (list of UTXO items), and transaction ID (Txid).
The enhanced model includes additional functions and details in the
simulated transaction structure to achieve a more realistic simulation
and facilitate the evaluation of clustering techniques. These enhance-
ments cover the fields discussed in the blockchain investigation
mentioned above. As a result, the transaction structure produced by the
improved simulator comprises a more comprehensive set of parameters,
including transaction ID (Tx1id), version number (version), lock time
field (Locktime), the transaction fee (fee), input size (vin_sz), input
vector (Vin), output size (vout_sz), output vector (Vout), timestamp
(timestamp), and UTXOs used (list of UTXO items). Information
regarding the nodes participating in the transaction and their respective
sender-receiver relationships is preserved. In the input, each vin con-
tains a pointer to the relevant UTXO, a signature, a public key, a
sequence number, and a witness data field. Similarly, each vout in the
output includes the output address, the Bitcoin amount, and the address
type. Furthermore, the model incorporates adjustable settings for these
newly added parameters because of the dynamic nature of the block-
chain environment and changed user behavior patterns. The flexible

parameter settings allow experimenters to modify these parameters in
accordance with research needs and emerging blockchain patterns to
create the desired simulation environment.

The original model included one-to-one and one-to-many settings. In
the improved version, the one-to-one configuration is more strictly
defined, ensuring that all inputs or outputs in a single transaction come
from the same node. For instance, when user A sends a transaction to
user B, one address in the output receives the change for user A.
Although user A is the sender and user B is the receiver, each party
contains only one user. However, not all output addresses necessarily
belong to user B, which is the same node. This situation is classified as a
one-to-many setting. Additionally, in complex transaction types
involving multiple inputs and outputs, when order constraints are not
applied, the one-to-many setting may also represent a many-to-one
configuration. In such cases, the inputs in the transaction originate
from different nodes, and all outputs belong to the same node, or all
inputs belong to the same node, and the outputs originate from different
nodes. These scenarios are both referred to as a one-to-many setting.

The modifications and enhancements described above are intended
to increase the completeness and complexity of the simulated trans-
actions. By achieving a more realistic simulation, the new model can be
employed to evaluate address clustering techniques based on trans-
action structure details. The code of the simulator is available on a
publicly accessible GitHub repository.’

3.2.2. Simulation implementation

The model allows for the configuration of the number of nodes
within the simulated network and the total volume of transactions
generated. During the simulation, the environment remains isolated
from external interference until the simulation is completed. For internal
transaction parameters, the transaction version and sequence numbers
are generated according to their empirical distributions observed in the
real blockchain. The lock time value is derived from the sequence
number. Specifically, for transactions with the default sequence number,
the lock time is disabled, and the lock time value is set to 0. When the
sequence number is OXFFFFFFFE, lock time is enabled. When the
sequence number is lower than OXFFFFFFFE, the lock time may be non-
zero. The witness data field for each address is generated according to
the transaction type associated with that address. For instance, Legacy
addresses do not support SegWit, while P2ZWPKH and P2WSH addresses
are classified as SegWit addresses. The transaction version and sequence

! Link to our GitHub Repository.
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numbers are generated directly according to their empirical distribu-
tions observed in the real network.

The simulator stores all blockchain data generated during the
simulation. Following the simulation, the results are saved in the
following five files, which can be used for further research and verifi-
cation. Instructions for each generated file can be found in the GitHub
Repository.

e Simulation.log: The log records all activity information of the
simulator during the entire simulation process.

e Wallet.log: It contains the wallet-related information for each node,
including the confirmed UTXOs, address list, and balance. Each
UTXO includes the Bitcoin amount, relevant pointer, address,
address type, and index position in the original transaction.

o Transaction.log: This file stores transactions from all blocks,

recording each transaction structure. The transaction format follows

the JavaScript Object Notation (JSON) structure of real Bitcoin
transactions. A simulated transaction is shown in Fig. 5, where nodes

(66, 85) sent a Bitcoin transaction to nodes (46, 87) and (70,

56). The transaction hash is 87a73ac2afcl5fad770£3b542-

cebelff55103d34e25cad6508714bb5ef124fde, containing

one input and two outputs. This transaction is classified as a multi-
payment transaction type. The input amount of the transaction is

8.91492563948338 BTC, with no change output. The receiving

address 186PXbffPQaWB5gfDWwGiUgdzxGvutnt5t received

2.6408770022232257 BTC. Verification of which address belongs to

which recipient will require double-checking the wallet information

in Wallet.log.

Block.csv: The file saves all generated block information within the

simulated network, including block hash, timestamp, transaction

hash included in the block, and details related to coinbase trans-
actions. The genesis block is located at the beginning of this file.

e Addr_type.csv: It keeps all Bitcoin addresses and corresponding
address types within the simulated network. Address type labels can
also be extracted by parsing the transaction structure in Transaction.
log. This file is generated to facilitate any query needs.

3.3. Proposed heuristic

The dynamism of the blockchain landscape necessitates a corre-
sponding evolution in the tools and methods used for analysis. This
section introduces a novel heuristic algorithm designed to identify one-
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time change addresses. This algorithm utilizes a series of filtering con-
ditions to enhance the accuracy of one-time change address
identification.

Based on empirical observations and analysis of the Bitcoin block-
chain, the heuristic algorithm is defined as follows for multi-output
transactions with no more than six outputs:

o The transaction is not a coinbase transaction.

e The transaction does not contain a self-change address.

o All input addresses within the transaction share the same address
type.

o All output addresses within the transaction are new addresses.

e Only one output address shares the same address type as the input.

The output address that satisfies all of these conditions is identified
as the one-time change address for the transaction.

The rationale for these heuristic conditions is as follows. Coinbase
transactions, which are used to distribute mining rewards, are excluded
from this analysis. The proposed heuristic focuses on multi-output
transactions with no more than six outputs, as transactions with more
than five outputs constitute less than 5 % of the overall transaction
volume on the Bitcoin blockchain. In a transaction, typically one output
address is used to receive the sender’s change. The presence of both a
self-change address and a one-time change address within a single
transaction is considered contradictory. Furthermore, as demonstrated
by the analysis of peeling chain behavior in (Gong et al., 2023), trans-
actions with identical input address types are more likely to originate
from the same entity. The heuristic also prioritizes transactions where
all output addresses are new. As shown in Fig. 4, the use of new ad-
dresses is more prevalent, and a significant number of transactions
generate new addresses. Finally, if a wallet supports SegWit, it can
generate SegWit addresses. Based on wallet characteristics and user
habits, addresses originating from the same wallet are likely to share the
same address type. Consequently, the single output address that satisfies
all of the aforementioned conditions is identified as the one-time change
address.

4. Experiment and analysis
This section details the experimental setup and validation proced-

ures of the constructed simulator. Additionally, the effectiveness of the
proposed heuristic algorithm is evaluated using the constructed model.

peer(4, 15) sent a transaction to peer(52, 42) with 8.806088147105565e-06 BTC

timestamp: 1723406851

Txid: 8da3fc189de3bf776d16102370e2e98bf1c5a02bd9fd73e6c2bcb91c1107f5a2

: [1s9ueplx6vqs6b9jnily23emlzci73])]
vin_sz: 1

[Vout(

vout_sz: 2
ipthash),pointer:Pointer(

version: 2

locktime: 798033711

fee: 0.000891492563948338

timestamp: 1723406851

[Vin(to_spend:Pointer(tx_id:8a4532a8b1fff0fade0e0486f61c36c41c04b7095a4d6efaf79221ad235efc81,n:15),5
ignature:b'9~\xb1\xb4\xa4Cu>\xb9\x87\x18\xd5\x0cc2\x94-MNI\xa2)\xe8\xb4\x0c\xed\xd5\xab8\xf6\xcc>w\ X
1f1\xe9m\x85g<$- | I\xe3g\xd f\xff\xb4\xad\nI\x89\xF8\x99 (#" \x1d\xdf\x1de\xa2q", pubkey:b"'\x18\xdb\x05L"
\x11\xbd@\xf7\xc1<9\xfa\xca\xcd\x1b\xb2T\xb7xZ\x88\xf69\xdb\x83n\xb4\x83\xc3, ] \x16\x81~\x80\xba@\xch
\xd5\xb9\x07\x157, \xc9\xc2\xaf\xed\x15\xb6\xde\xcb !39a\t\xf1, \xa5D<\x8d',sequence:4294967294,witnesq

to_addr:186PXbffPQaWB5gfDWwGiUgJlzxGvutnt5t, value:2.6408770022232257,addr_type:Paytoscripthash), Vout
(to_addr:1KGujSFACwkN2NrFBgoys613DuREkxE6aK, value:6.2731571446962064,addr_type:Paytoscripthash)]

[UTXO(vout:Vout(to_addr:1CqFR8Lsmqz9GeYSVgcS8kBQT556yTPdDm, value: 8.91492563948338,addr_type: PaytoscH

tx_id:8a4532a8b1fff0fa0e0e0486f61c36c41c04b7095a4d6efaf79221ad235efc81,n:15))]

[peer(66, 85)] sent a transaction to [peer(46, 87), peer(70, 56)] with 8.914034146919432 BTC

Txid: 87a73ac2afcl5fad770f3b542cebelff55103d34e25cad6508714bb5ef124fdc

[Vin(to_spend:Pointer(tx_id:740e6b9dfe629c04a86ce@eb93436fb7a3a780c26611418379e87a5590a87323,n:1),si
gnature:b"B7x\xe0X\x1led\xcc\x8alL\xclv+6\xcdE\xdd\xda " \xa8}\xal\x124
\t\x83\xa9'\xd6\x0bx\xe2\xb1l0\xaa r\xcd\x19A\xa7\n[\xca\x83\xc2\x05\xf1\xb4\xf5\xa4\x80c\xc3S?m}r\x8
f\xa9\x1cI", pubkey:b'\xeaV\x80\xfa\xaa\xb9w\xe5\xb8\x13\x85\xb8\x19Z\x12\xfa" t\xelX_m0\xe4\xf6\n\xe8
\x86\xcfS_\x02\xde\xa5k\x0e\x1d\xecy\x95\xbc\xd2\x8d\xdb8\xcf+\xd5\xbf\xd6UR\x17 " \x1fo\xb
e\x84™M\xb4\xc2\x16\xf8\xdf ', sequence:4294967295,witness: [])]

Fig. 5. The Transaction.log file generated by the simulator.
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Finally, this section examines the changes in blockchain data following
the introduction of the BRC-20 token standard.

4.1. Experiment setting

The simulation allows users to set the predetermined total trans-
action volume and node count. The total number of generated trans-
actions will match this preset volume. Each participating node begins
with a 1,000 BTC balance. To enhance realism, key parameters like
input/output counts, transaction types, and block transaction volumes
are based on observed network data. Address reuse is set at 10 %. In-
ternal transaction details like version and sequence numbers follow real-
world distributions, determining the lock time. Witness data is gener-
ated according to the input’s address type. A random subset of nodes
performs mining, with the winner receiving the reward directly into
their wallet. To verify the stability and validity of the model, the
experiment comprises two simulation groups:

Simulation Group 1: This group is designed to assess the stability of
multiple simulation runs under consistent conditions. The node count is
set to 100, and each simulation generates 15,000 transactions. The
simulation is repeated six times to generate six distinct outputs.

Simulation Group 2: This group is designed to ensure that a suffi-
cient number of transactions are generated in the simulation to accu-
rately reflect the characteristics of the real blockchain. This group
employs varying node counts and transaction volumes. First, with 100
nodes, total transaction volumes of 10,000 and 20,000 are generated,
with each simulation run repeated three times (resulting in six outputs).
Second, with 50 nodes, transaction volumes of 5,000, 10,000, and
15,000 are generated, with each simulation run repeated twice (result-
ing in six outputs). In total, 12 distinct outputs are generated from this
simulation group.

4.2. Model validation

The validity of the model in simulating Bitcoin transaction behavior
is verified through the validation process. This validation focuses on
assessing whether the model can be considered a reasonable represen-
tation of the real-world system, given the specific research objectives
(Murray-Smith, 2015). The data from two groups of experimental sim-
ulations were analyzed to generate relevant results. Due to space limi-
tations, a random sample of simulation outputs is presented for
illustrative purposes. This section presents the simulation environment
with 100 nodes and 20,000 transactions. In order to evaluate the
model’s capacity to simulate real-world Bitcoin transactions accurately,
the simulation outcomes are compared with the pattern distribution
from the blockchain investigation.

4.2.1. Simulated transaction

Initially, the number of inputs and outputs in transactions is
analyzed. Excluding the genesis block, the simulation generates 14
blocks, with the largest transaction volume reaching 3,802. Fig. 1-(b)
illustrates the distribution ratio for inputs and outputs, revealing that
74.81 % of transactions contain one input. The trends in the simulation
network are consistent with patterns observed in the real blockchain.
The proportions of the four transaction types generated by the simula-
tion are as follows: consolidation transactions account for 5.23 %,
complex transactions for 15.91 %, transfer transactions for 19.96 %, and
multiple payments constitute the largest proportion at 58.90 %.
Regarding the distribution of address types for all outputs in the simu-
lated network, P2PKH addresses represent more than half of the total at
58.18 %, P2SH accounts for 28.74 %, P2WPKH for 11.99 %, and P2WSH
constitutes the smallest proportion at 1.09 %.

Based on observations from Simulation Group 2, an insufficient
number of nodes increases the probability of transaction failure within
the simulated network. Specifically, when the node count is too low, the
simulation may pause during the initial phase due to the inability of a
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small number of nodes to generate a sufficient number of UTXOs in a
timely manner. Moreover, when a sufficiently large number of nodes are
configured in the simulation environment, enough transactions must be
generated to serve as a representative proxy for the real blockchain.
Given the substantial volume of transactions on the real blockchain, an
inadequate sample size will not accurately reflect the characteristic
trends observed in the real-world system.

4.2.2. Transaction details

The results of internal transaction parameters, including the trans-
action version number, sequence number, lock time, and SegWit flag,
are presented in Table 1. A SegWit flag is assigned to each transaction
based on the transaction inputs, with transactions involving SegWit
addresses having the SegWit flag set to true. It is important to note that
coinbase transactions are excluded from this analysis, as prior in-
vestigations of transaction structure in blockchains typically do not
consider these transactions. Transactions with a version number of 1
constitute 70.63 % of the total. The portions of the three sequence
number categories, default value, OXFFFFFFFE, and values less than
OxFFFFFFFE, are 71.90 %, 11.57 %, and 16.53 %, respectively. The ratio
of transactions with lock time enabled is 16.37 %. The rate of trans-
actions with a true SegWit flag is 35.74 %. Based on these observations
and comparative results, the data distribution in the simulation results
closely approximates that of the real Bitcoin network, demonstrating a
high level of consistency with the real-world Bitcoin system.

4.3. Heuristic algorithm evaluation

Multi-input (MI) and one-time change address (OTC) clustering are
two commonly employed heuristic algorithms. In our experiments, we
first establish a baseline by applying MI clustering followed by OTC
clustering (represented as MI + OTC). We then evaluate the performance
of our proposed new heuristic (NH) and another published heuristic
(H1) (Zhang et al., 2020) by applying them subsequently to the results of
this baseline MI + OTC clustering. The H1 and NH algorithms are both
designed to classify all input addresses and any identified change ad-
dresses within the same transaction into a single cluster. The objective is
to evaluate whether applying NH after the initial MI + OTC clustering
can further refine the results, specifically by reducing the error rate and
achieving more accurate identification of one-time change addresses
compared to both the baseline MI + OTC results and the outcome of
applying H1.

The evaluation results, obtained through six simulation runs from
two experimental groups with varying combinations of node counts and
transaction volumes, will be presented. These simulations include en-
vironments with 50 nodes and transaction volumes of 5,000, 10,000,
and 15,000, respectively, as well as environments with 100 nodes and
transaction volumes of 10,000, 15,000, and 20,000, respectively. The
error rate calculation process is detailed in (Gong et al., 2022). The
average error rate of MI + OTC clustering across the six datasets is
64.6805 %. This value differs from that reported in (Gong et al., 2022). A
primary factor contributing to this difference is the evolution of user
behavior patterns. The blockchain is a dynamic system, and user
behavior is not static. The study in (Gong et al., 2022) examined the first
716,548 blocks on the Bitcoin blockchain. In that dataset, consolidation

Table 1
Distribution of internal transaction parameters in the simulated blockchain.

Parameter Value Percentage (%)
Transaction Version 1 70.63
Sequence Number Default (OxFFFFFFFF) 71.90
OxFFFFFFFE 11.57
Less than OxFFFFFFFE 16.53
Lock Time Enabled 16.37
SegWit Flag True 35.74
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transactions constituted the smallest proportion, followed by transfer
transactions, then complex transactions, with multi-pay transactions
constituting the largest proportion. Compared with the blockchain data
from the first 823,786 blocks, it is observed that multi-pay transactions,
while still representing the largest proportion, have decreased in relative
frequency. Conversely, the proportion of transfer transactions has
increased.

The overall clustering results are visualized in Fig. 6. These results
indicate that adding H1 to the MI + OTC baseline improved clustering
performance by 4.8798 %. Furthermore, the MI + OTC + NH configu-
ration (incorporating our proposed heuristic) showed a 6.1274 %
improvement in performance compared to the MI + OTC + H1 result.
Combining all methods (MI + OTC + H1+NH) increased overall clus-
tering performance by a substantial 14.3249 % compared to the original
MI + OTC baseline. The comparison demonstrates the synergistic
effectiveness of the combined approach and highlights the contribution
of our proposed heuristic (NH) in achieving more accurate clustering. To
illustrate the impact from each cluster level, Fig. 7 presents detailed
clustering results for a specific simulated network (100 nodes, 20,000
transactions). This figure depicts the error percentages for each true
cluster compared to the clusters identified using the heuristic methods.
Notably, after applying the proposed enhancements (specifically NH),
the error rate for each individual cluster decreased.

Furthermore, given that these six simulations have different node
counts and transaction volumes, the blockchain data generated by each
simulation network varies. Therefore, slight fluctuations in the error rate
are observed across different simulation results. Even in two simulations
conducted under identical conditions, the generated blockchain details
are not identical across different runs, resulting in fluctuations.
Although the error rate fluctuates slightly, the overall value remains
within a reasonable range, with no large deviations, and the outcomes
demonstrate a degree of stability. The experimental findings also
demonstrate that the simulator can produce relatively stable results and
exhibits good stability.

4.4. Blockchain analysis

A comparison of transaction types across the two previously
mentioned blockchain datasets suggests potential trends within the
Bitcoin blockchain. To analyze potential changes, the blockchain data is
segmented into five distinct datasets. Two datasets, denoted as D1 and
D2, consist of the first 716,548 blocks (block height: 0-716,547) and
772,163 blocks (block height: 0-772,162), respectively. The blockchain
data utilized in prior investigations within this study is referred to as D3.

100 %
80 %
2 60% \/\A\/
o
S
W 40%
MI4+OTC
20% —a—  MI+OTC+H1
MI+OTC+NH
—o— MI+OTC+H1+NH
0%

Setl Set?2 Set3 Set4 Setb Set6
Dataset

Fig. 6. The overall error rates for the address clustering.
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In March 2023, the Bitcoin blockchain introduced the BRC-20 token
standard (Sharma, 2022). To investigate whether the pattern of the
blockchain differs after the inclusion of this new standard, we categorize
the data based on the activation timeline of the BRC-20 token. Data from
the beginning of the blockchain up to the BRC-20 activation (block
height: 0-778,721) is labeled as N1, with block 778,721 representing the
last block in February 2023 (UTC). Data subsequent to the BRC-20
activation (block height: 778,722-823,785) is labeled as N2. All rele-
vant parameters from previous blockchain investigations are examined
across all datasets. The comparative analysis reveals the following
insights:

e Input and output: Fig. 8-(a) and Fig. 8-(b) illustrate the variations in
input and output counts. These variations are primarily observed in
transactions where the number of inputs or outputs does not exceed
three. During the N2 data period, an increase in transactions with a
single input was observed, while the transaction volume with two or
three inputs decreased. However, this variation had a minimal
impact, as the values for N1 and D3 remained relatively consistent. In
contrast, the differences in outputs are more pronounced. The N2
dataset exhibits an increase in transactions with a single output,
while transactions with two outputs decreased. Consequently, the
proportion of transactions with one output in D3 increased compared
to the earlier datasets, D1, D2, and N1, while the rate of transactions
with two outputs declined. When considering both inputs and out-
puts, the increase in transactions having a single input and a single
output suggests that the prevalence of transfer transactions has risen
in the new blockchain data of N2.

Transaction type: The distribution results for each dataset are pre-
sented in Fig. 8-(c). Prior to the activation of BRC-20 tokens, the four
transaction types exhibited similar proportion results. In the D3
dataset, while the ranking of the four transaction categories
remained unchanged, the proportion of transfer transactions
increased, and the proportion of multi-pay transactions decreased.
The difference between the proportions of complex and transfer
transactions was 3.97 %. The N2 dataset indicates that during the
activation period, transfer transactions were the most frequent, fol-
lowed by multi-pay transactions, complex transactions, and consol-
idation transactions, with the latter still accounting for
approximately 5 %. More new transactions have only one input and
one output.

Address type: Analysis of address types using BlockSci reveals
changes in their distribution. As illustrated in Fig. 8-(d), although the
parsed P2WU addresses constitute a small proportion, not exceeding
5 % of the entire blockchain, their rate is gradually increasing. When
parsed with the supplementary Bitcoin parser, these addresses are
almost entirely identified as Pay-to-Taproot (P2TR) addresses
(Wuille et al., 2020), which offer reduced fees and enhanced privacy.
The increasing adoption rate of P2TR addresses is evident. While
P2PKH addresses continue to dominate the blockchain, the N2
dataset reveals a notable increase in the utilization of P2WPKH and
P2TR output addresses.

o Address reuse: The address reuse rate for 2023 has dropped to the
lowest level since 2014. The data for 2023 is divided into two periods
based on the activation month of BRC-20. The first period, January to
February, shows an address reuse rate of 9.23 %. During the second
period, the address reuse frequency is 7.63 %. This data suggests that
after BRC-20 was enabled, the address reuse rate in newly generated
transactions decreased.

Transaction version: To ensure accuracy in the analysis, transactions
with unconventional version numbers (i.e., those not equal to 1 or 2)
were excluded from each dataset. The analysis then focused on
calculating the proportion of transactions with version numbers 1
and 2. The results, as depicted in Table 2, indicate a growing prev-
alence of transactions with version number 2 in the blockchain. This
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Fig. 8. Statistical distribution of five periods on the Bitcoin blockchain.

trend suggests an increasing adoption of version 2 transactions over
time.

e Sequence number: The statistics in Table 2 suggest that the portion of
sequence numbers in D2 and N1 is relatively consistent. Notably, the
amount of transactions with sequence numbers less than
OxFFFFFFFE does not exceed 10 %. However, when comparing the

data from D3 and N1, a significant difference is observed in the
distribution results, particularly in the default value category and
those less than OXFFFFFFFE. There is a marked increase in the
transaction volume with sequence numbers below OXFFFFFFFE. The
results from N2 further corroborate this trend. This increase may be
attributed to the increased adoption of RBF.
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Table 2
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Proportion of transaction parameters (version number, SegWit usage, lock time, and sequence number) on the Bitcoin blockchain over five periods.

Dataset Version (%) SegWit Flag (%) Lock Time (%) Sequence Number (%)
1 2 True False Enabled Disabled OxFFFFFFFF OxFFFFFFFE < OxFFFFFFFE
D1 80.21 19.79 28.64 71.36 17.75 82.25 79.75 13.68 6.57
D2 76.08 23.92 35.34 64.66 17.94 82.06 77.89 13.06 9.05
N1 75.69 24.31 36.17 63.83 17.91 82.09 77.60 12.97 9.43
D3 70.71 29.29 44.36 55.64 16.62 83.38 71.90 11.64 16.46
N2 58.89 41.11 92.97 7.03 8.91 91.09 38.02 3.70 58.28

Lock time: The outcomes presented in Table 2 reveal that the results
for the first three datasets are relatively consistent. However, slight
variations are observed between the D3 and N1. Beginning in March
2023, there is a slight increase in the transaction amount with lock
time disabled, which aligns with the previously mentioned rise in
transactions having the sequence number OxFFFFFFFE.

SegWit: There has been a noticeable shift in the proportion of SegWit
transactions, with a growing number of transactions adopting wit-
ness data for higher efficiency, as illustrated in Table 2.

This analysis of blockchain changes, covering various time periods,
allows for pairwise comparison and clearer identification of trends in
recent blockchain data. Overall, the N2 dataset (blockchain data after
introducing BRC-20) reveals different changes in Bitcoin transaction
patterns. A main variation in input and output volumes is an increase in
the simpler transactions with fewer inputs or outputs, like a rise in
transfer transactions. This period also shows a growing adoption of
P2TR and P2WPKH address types, indicating a trend toward enhanced
privacy and fee efficiency. Additionally, the data reflects a decline in
address reuse and an increased prevalence of SegWit transactions. The
emergence of more transactions with sequence numbers less than
OxFFFFFFFE suggests increased use of the RBF function, while a slight
decrease in lock time-enabled transactions is also observed.

This analysis details the overall changes noted on the blockchain
after BRC-20 was introduced, aiming to capture the dynamic shifts
occurring. It is crucial to emphasize, however, that correlation does not
necessarily imply causation, particularly within the intricate Bitcoin
blockchain ecosystem. Therefore, while these observations point to
evolving blockchain dynamics, attributing them definitively and solely
to BRC-20 requires caution and more granular research to establish
causal links. This information, in turn, can potentially contribute to the
development of more effective blockchain forensic tools.

5. Limitation

Despite the contributions, this study has several limitations. Firstly,
while the simulation model effectively replicates real-world transaction
patterns, it may not entirely cover the variability and complexity of all
potential blockchain scenarios. It is essential to acknowledge that
proving a model works under all possible scenarios is unrealistic
(Murray-Smith, 2015). Secondly, the heuristic clustering algorithms
consist of specific conditions involving observed transaction patterns
and behaviors. The Bitcoin blockchain is dynamic. The evolving
behavior of Bitcoin users represents a limitation. Particularly in the
context of increasingly sophisticated privacy-enhancing techniques,
users may alter their transaction patterns and adopt new privacy prac-
tices. This ongoing evolution makes it challenging to develop static
de-anonymization techniques that remain effective over time. Thirdly,
the blockchain investigation conducted in this study focuses on on-chain
data. The blockchain analysis was limited to observing the behavior
patterns of publicly available data on the chain.

6. Conclusion

To address the challenge of unknown error rates arising from the lack
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of ground-truth data, this study introduces an enhanced simulation
model, specifically designed to replicate Bitcoin blockchain trans-
actions. This model focuses on the data layer to provide a robust envi-
ronment for assessing address clustering methods based on transaction
details and can be modified for specific research objectives. Further-
more, the model demonstrates stability. This model records the true
owner of each address, enabling the verification of clustering error rates,
a critical step for ensuring the reliability of forensic findings. To mitigate
the influence of dynamic factors like privacy-enhancing technologies,
we propose a novel heuristic algorithm for identifying one-time change
addresses. This algorithm is informed by empirical analysis of real
blockchain investigations, enhancing its practical applicability. Finally,
this study discusses recent trends and changes observed in Bitcoin
blockchain patterns. Future research will focus on model scalability and
cross-blockchain analysis.
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