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A B S T R A C T

As 3D printing is widely adopted across critical sectors, malicious users exploit this technology to produce illegal
tools for criminal activities. The increasing availability of affordable 3D printers and the limitations of current
regulations highlight the urgent need for robust forensic capabilities. While existing research focuses on the
physical forensics of printed objects, the digital aspects of 3D printing forensics remain underexplored, resulting
in a significant investigative gap. This paper introduces SliceSnap, a novel memory forensics framework that
analyzes the volatile memory of slicing software, which is essential for converting 3D models into printer-
executable G-code instructions. Our investigation focuses on Ultimaker Cura, the most popular Python-based
slicing tool. By leveraging the Python garbage collector and conducting structural analysis of its objects, Sli-
ceSnap can extract the mesh data of 3D models, G-code instructions, slicing settings, detailed 3D printer meta-
data, and logging information. Given the potential for slicing software compromises, our framework extends
beyond artifact extraction to include the complementary analysis tool, G-parser. This tool detects malicious G-
code manipulations by finding the discrepancies between the original settings and those extracted from the G-
code. Evaluation results demonstrated the effectiveness of SliceSnap in recovering design files and G-code of
various criminal tools, such as firearms and TSA master keys, with 100% accuracy, in addition to providing
detailed information about the slicing software and 3D printer. The evaluation also analyzed the temporal
persistence of memory artifacts across critical stages of Cura’s lifecycle. Moreover, through G-parser, the
framework successfully detected the G-code manipulations conducted by our novel attack vector that targets G-
code during inter-process communication within the software. Implemented as Volatility 3 plugins, SliceSnap
provides investigators with automated capabilities to detect 3D printing-related criminal activities.

1. Introduction

3D printing, also known as additive manufacturing (AM), is widely
used in various critical sectors, such as healthcare and energy supply
(Budzik et al., 2022). This technology enables the manufacture of
complex geometries with high precision through a layer-by-layer con-
struction process using a wide range of materials, including plastics,
ceramics, metals, and composites (Hasanov et al., 2021). Due to the
widespread availability of cost-effective 3D printers, malicious users
exploit this technology to produce illegal tools that cannot be traced,
such as firearms (Stilgherrian, 2017) and keys (Moon, 2016).

Despite efforts by the U.S. Department of State through the Inter-
national Traffic in Arms Regulations (ITAR) to restrict the proliferation
of unauthorized 3D-printed tools (Li et al., 2018) and state-level

initiatives requiring background checks for 3D printer purchases
(Piltch, 2023), numerous incidents continue to be reported. In 2023,
three young people were arrested for producing a 3D-printed ghost gun
at an East Harlem daycare in New York City (Miller, 2023). In the same
year, a student was also arrested for bringing a 3D-printed gun to Chavez
High School in Houston, Texas (Carpenter, 2023). More recently, in
2024, a 26-year-old man was arrested for killing the United Healthcare
CEO using a 3D-printed ghost gun and silencer in New York City
(Sundby et al., 2024).

The rise in incidents of illicit 3D-printed items and the ineffectiveness
of current regulations (Bryans, 2015) highlight the urgent need for
advanced forensic techniques in 3D printing investigations. While
existing research has focused primarily on physical forensics, such as
analyzing surface features of the printed object to identify source 3D
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printers (Li et al., 2018; Shim et al., 2023; Shim and Hou, 2023), digital
forensics remains underexplored. Current approaches are limited to
recovering design and log files from the filesystem of 3D printer control
systems (Garland et al., 2024a; Rais et al., 2023) or recognizing printed
objects through the analysis of design files that are assumed to be
available (Ma et al., 2020; Pham et al., 2018).

To address these limitations in digital forensic capabilities, our ef-
forts focus on analyzing the slicing software, a critical component in the
3D printing workflow that runs on the 3D printer controller PC to
convert design files into printer-executable G-code instructions. These
instructions control the operations of the 3D printer, including the print
head movements and heating settings to produce the objects (Ali et al.,
2025). However, malicious users can hide their activities on the fil-
esystem, such as securely wiping the design and generated G-code files
after successful prints, clearing software logs, and using private
browsing to obtain 3D models. Therefore, we introduce SliceSnap, a
memory forensics framework that analyzes the volatile memory of
slicing software. Our investigation focuses on Ultimaker Cura, one of the
most popular slicing applications (Bricknell, 2025, Bricknell, 2023).

Since Ultimaker Cura is written in Python, SliceSnap investigates the
Python garbage collector to access and analyze the object structures,
allowing extensive data extraction. The framework’s capabilities
encompass the extraction and processing of 3D model mesh data to
reconstruct design files (.stl), as well as the recovery of G-code in-
structions for external file generation (.gcode). The presence of G-code
in memory serves as crucial digital evidence, indicating the execution of
the printing job (Garland et al., 2024a). Furthermore, SliceSnap recovers
the complete set of slicing settings utilized in G-code generation and
extracts detailed printer metadata, including device identification,
network configuration, and hardware specifications. These forensic ca-
pabilities are implemented as Volatility 3 plugins (Volatility Foundation,
2017), facilitating automated evidence extraction and analysis
processes.

Prior research demonstrated various security vulnerabilities in
slicing software. Through static and dynamic analysis, Moore et al.
(2016) identified critical security flaws in popular slicing software,
including Ultimaker Cura, that enabled unauthorized G-code modifica-
tions. Kurkowski et al. (2022) illustrated how malware targeting slicing
software memory could access and change G-code instructions, while
Belikovetsky et al. (2017) demonstrated attackers’ ability to compro-
mise victim systems for 3D models manipulations and developed worms
targeting G-code files in memory. Our analysis of Ultimaker Cura
revealed an additional vulnerability1 that enables stealthy G-code
manipulation during the slicing process. Unlike mesh data, which is
stored and transmitted as binary-encoded arrays, Cura transmits G-code
in plaintext over unencrypted inter-process communication (IPC) be-
tween the Cura and CuraEngine processes. This vulnerability allows
malicious actors to intercept and modify G-code before it reaches the
application GUI. In criminal investigations, suspects could leverage
knowledge of these vulnerabilities as part of their defense strategy (i.e.,
Trojan horse defense), claiming their systems were compromised and
the illegal G-code was generated without their knowledge. In such cases,
SliceSnap allows investigators to extract both the design files and G-code
from memory, compare them with those generated from a clean refer-
ence system, and definitively prove or disprove the suspect’s claims.

Moreover, such vulnerabilities allow malicious manipulations of G-
code settings, leading to visual deformities and altered physical prop-
erties of printed objects (Rais et al., 2021b, 2021a), thus causing
weapons that appear normal but fail catastrophically when fired. From a
digital forensics perspective, determining whether defects were acci-
dental or deliberate is crucial for establishing criminal intent. Therefore,
our framework extends beyond artifact extraction to include malicious
G-code manipulation detection through the proposed complementary

analysis tool, G-parser. This tool analyzes the recovered G-code to
identify the critical instructions that control the heating, cooling, and
layer height parameters of the printing process. By comparing these
parameters with the baseline settings extracted by the framework,
G-parser can detect discrepancies and flag them as malicious modifica-
tions, thus confirming the criminal intent.

As discussed in the evaluation, SliceSnap demonstrated 100% accu-
racy in recovering design files and G-code for a diverse set of 3D weapon
models (PX4, Beretta Prop Gun, Grenade Container, Magazine,
Revolver, Bullets, AK_47 Part, and Revolver Cylinder) and security-
critical items (TSA Master Key and Handcuff Key). The results were
validated using Jaccard similarity and Levenshtein distance metrics
(Garland et al., 2024a; Haldar and Mukhopadhyay, 2011). Additionally,
SliceSnap proved its cross-version adaptability by working with different
versions of Ultimaker Cura, each running with a different Python version
and operating system. Furthermore, it outperformed the traditional
signature-based search approach using strings and regular expressions.
Expanding its forensic capabilities, SliceSnap successfully extracted all
581 settings used in G-code generation while retrieving detailed meta-
data, including software version information, printer specifications (e.
g., device ID, name, IP address, connection mode, and firmware), and
slicing timestamp (e.g., date and time). Further evaluation analyzed
residual artifacts extracted at critical stages of Cura’s lifecycle. Finally,
SliceSnap, through G-parser, proved its effectiveness in detecting the
disabled cooling fan during drone propeller printing and subtle setting
modifications conducted by exploiting the IPC vulnerability. The impact
of these manipulations was validated through mechanical testing of the
printed samples. Based on these evaluation results, SliceSnap provides
investigators with automated tools for efficient recovery and analysis of
digital evidence in 3D printing-related investigations. We summarize the
contributions of this paper as follows.

• Propose SliceSnap, a novel memory forensics framework that ana-
lyzes the Ultimaker Cura software to recover critical digital evidence
of illegal printing activities.

• Implement novel Volatility 3 plugins to automate the extraction and
analysis processes.

• Propose G-parser, a complementary analysis tool that detects mali-
cious G-code manipulations to confirm whether defects are acci-
dental or deliberate.

• Evaluate both the SliceSnap’s effectiveness with multiple criminal
test scenarios, using diverse 3D models and the ability of G-parser to
detect G-code manipulation conducted by our novel G-code attack
vector.

2. Related work

Prior research in 3D printing forensics spans both physical and dig-
ital approaches. For physical forensics, Li et al. (2018) developed Prin-
Tracker, extracting distinctive texture patterns via GLCM modeling to
fingerprint source printers. Shim et al. (Shim et al., 2023; Shim and Hou,
2023) analyzed surface features using transformer-based models to
identify printer models, materials, and slicing software using the
SI3DP++ dataset (Shim et al., 2021). Digital forensics approaches have
focused on object recognition and filesystem analysis to detect illegal
prints and malicious activities. Ma et al. (2020) developed an object
recognition system using G-code projections and images of the object
during the printing process as input to a CNN model. Pham et al. (2018)
focused on converting the mesh data of the 3D model into shape char-
acteristic distributions to be analyzed by a CNN model. Garland et al.
(2024b) investigated file-based artifacts from slicing software by
analyzing system Registry, logs, and network captures, later developing
Autopsy modules for G-code recovery (Garland et al., 2024a). Rais et al.
(2023) proposed FRoMEPP, a forensic readiness framework integrating
physical and digital artifact collection, including printer logs, slicing
software logs, and network captures.1 This vulnerability has been assigned CVE-2024-51330.
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Unlike existing digital forensics methods, SliceSnap analyzes the
volatile memory of slicing software to recover evidence even when no
disk traces exist. It provides comprehensive artifacts of the printing
activities by extracting design files, G-code, slicing settings, printer
metadata, and process logs. This memory-based framework offers
several key advantages as it employs automated data structure analysis
rather than simple string pattern matching, reconstructs complete
forensic timelines of the slicing process, provides hardware attribution
through detailed printer specifications, and detects deliberate G-code
manipulations through G-parser that helps in establishing the criminal
intent of the user.

3. SliceSnap framework

Fig. 1 illustrates the SliceSnap framework that begins with traversing
the linked list of the active processes in kernel memory to identify the
Cura process. Since Cura is implemented in Python, the first step toward
extracting its objects is accessing the executable header of the Python
process to locate the _PyRuntime global variable. For instance, in a
Linux environment, this variable is located in the dynamic symbol table
(.dynsym section) of the ELF header. _PyRuntime points to the
Garbage Collector (GC) of Python, which represents the entry point to
access the objects in memory. The garbage collector maintains three
generations of objects based on their allocation time. The first genera-
tion contains recently created objects, while the third holds persistent
objects. A PyGC_Head header structure precedes each object, contain-
ing bidirectional pointers to form a doubly linked list of objects for each
generation. Moreover, Python implements distinct structures for
different object types. For example, it uses the PyDictObject structure
to represent the dictionaries, while the PyListObject and PyModu-

leObject structures to represent the lists and modules, respectively.
Upon accessing Cura objects, SliceSnap performs automated extrac-

tion and analysis through four specialized plugins. The Mem_Design
plugin handles the extraction of mesh data and G-code. Moreover, it
implements additional processing to reconstruct the design file from its
mesh data. The Mem_Setting plugin extracts the slicing settings used to
generate the G-code. The Mem_Metadata plugin retrieves information
about the slicing software in addition to the specifications, capabilities,
and network connectivity parameters of the 3D printer. Finally, the
Mem_Log plugin recovers operational logs and timestamps. SliceSnap also
includes the G-parser tool that analyzes recovered G-code to detect

potential manipulations in slicing settings.

3.1. Ultimaker Cura architecture

We analyze the internal architecture of Ultimaker Cura software that
consists of three main components, Cura (Ultimaker, a), Uranium
(Ultimaker, c), and CuraEngine (Ultimaker, b), as illustrated in Fig. 2.
Cura represents the front-end GUI of the application, where the 3D
models are processed and visualized. Upon loading a 3D model (STL
design file), Cura establishes a local socket connection with CuraEngine
on port 49674. This connection is managed by the libArcus protocol,
which is implemented in the ArcusCommunication class. Through
both the CuraEngineBackend and StartSliceJob classes, Cura
manages the slicing settings in a top-down approach across the global,
extruder, and per-object stacks.

Uranium generates the mesh data of the 3D model, consisting of
vertices (3D points marking the corners of each surface’s triangle),
normals (vectors perpendicular to the triangle surfaces), and indices
(link the vertices to form triangles). It organizes the printing scene hi-
erarchically, beginning with a Scene node that maintains the G-code.
For each 3D model loaded by the user, Uranium creates two SceneNode
nodes as children of the root node. Each node encapsulates mesh data,
per-object slicing settings, and transformation matrices for translation,
scaling, rotation, and shearing operations. The first node represents the
original state of the model, while the second node stores a copy of the
model with any applied modifications to its transformation matrices. It
is important to note that the root node includes additional persistent
child nodes, such as the camera (3D viewing) and the build volume, to
maintain the global configurations of the scene. Fig. 3 demonstrates this
hierarchy using a Beretta Prop Gunmodel. The second node contains the
scaled version of the model, while the last node preserves its original
state. Both maintain a per-object stack that encapsulates the slicing
settings used with the model. The persistent nodes hold 3D models
representing the printing view and contain the global container stack to
store the global configurations.

During the slicing process, Cura transmits both the settings and mesh
data associated with the final state of the model to the CuraEngine pro-
cess. CuraEngine then generates the corresponding G-code through the
FffGcodeProcessor and FffGcodeWriter classes and sends it back
as a sequence of G-code layers encapsulated in GCodeLayer messages.
The received G-code is then forwarded to Uranium to be stored as a

Fig. 1. Overview of the proposed SliceSnap framework.
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gcode_dict attribute for the entire scene.

3.2. Design files reconstruction

For G-code extraction, theMem_Design plugin starts with locating the
Scene.py class in memory. In Python, each class is represented as a
module with an associated dictionary containing its components. Given
that gcode_dict is an attribute of the Scene.py class, it is located
within the class dictionary by its matching key name. This dictionary
utilizes a single empty string key to store G-code layers as a list, where
each element represents one layer with sequential ordering maintained
through list indices. Upon extracting, the plugin stores the G-code data
into an external file (.gcode).

Mem_Design then traverses the imported classes by Scene.py to
identify all the SceneNode.py instances. For each node, it leverages
the _name attribute that helps recognize the models loaded by the user
while using the _mesh_data and _world_transformation attri-
butes to locate the mesh data and transformation information, respec-
tively. For each vertex (v_x, v_y, v_z) within the mesh data, the plugin
applies a 4 × 4 transformation matrix incorporating scaling, rotation,
and shearing. The translation vector derived from the fourth column of
the matrix is then added to these transformed vertices to position the
model on the build plate. The normals, on the other hand, are affected
only by rotation and scaling. They are padded to 4D vectors (n_x, n_y,
n_z, 0) to nullify translation effects. After transformation, normals are
normalized to preserve direction and accuracy. At the final step,
Mem_Design swaps Y and Z axes to convert from Cura’s Y-up system

(where Y indicates vertical direction and Z represents horizontal depth)
to the standard Z-up system. Note that the STL format uses inter-
connected triangles with shared vertices to represent object surfaces.
However, user-loaded models contain only vertices and normals.
Consequently, the plugin processes vertices sequentially in groups of
three as the application handles this internally. The final design files are
then written in binary format (.stl) to align Cura’s binary-encoded array
structure for mesh data storage.

3.3. Slicing settings extraction

Ultimaker Cura maintains slicing settings through three distinct
stacks: global, extruder, and per-object. It employs a top-down evalua-
tion approach, where extruder and per-object settings override global
settings. Therefore, the global stack contains the final setting values used
for G-code generation. This stack comprises eight containers, the ‘user’
container for the current changes, the ‘custom’ container for user pref-
erences, the ‘intent’ container for optimization goals, the ‘quality’
container for predefined setting groups, the ‘material’ container for
material property settings, the ‘variant’ container for hardware settings,
the ‘definition changes’ container for printer modifications, and finally,
at the bottom, the ‘definition’ container for official setting definitions.

For settings retrieval, the Mem_Setting plugin accesses the global
stack through the persistent SceneNode instance in the hierarchy. It
accesses the _global_container_stack dictionary, which main-
tains references to all containers. The plugin specifically targets the
‘user’ container, extracting settings from the _SettingDefini-

tion__property_values entry within the _definition_cache

dictionary. Each setting encompasses multiple attributes, including its
current and default values, valid range boundaries, unit, descriptive
label, and detailed description. Current values are present only for
modified settings; consequently, the plugin references default values for
unmodified settings.

3.4. Metadata extraction

The metadata is located in the global stack. The stack itself maintains
a top-level metadata dictionary about the entire stack. Meanwhile, each
of its containers maintains its metadata dictionary with specific attri-
butes relevant to its role. For metadata extraction, the Mem_Metadata
plugin focuses on two key sources of information from the stack and its
definition container. This plugin leverages the _metadata field within
the stack structure that includes critical information about the used 3D
printer. Moreover, it iterates the _containers field to access the

Fig. 2. Internal architecture of Ultimaker cura software.

Fig. 3. Hierarchical storage of the 3D models, G-Code, and settings within
the scene.
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definition container and extract its metadata.
The metadata at the stack level includes version information about

Cura settings, unique identifiers such as the group_id (UUID) that
identifies the printer group, specific printer ID, and display name. It also
stores network configuration details, including the printer IP address
settings and connection mode, which can help trace how the printer was
connected and used. On the other hand, the definition container en-
capsulates general specifications about the printer model and opera-
tional capabilities. This encompasses material compatibility matrices,
hardware interface specifications including USB and network connec-
tivity capabilities, print head configurations including nozzle quantity
and specifications, and firmware-related parameters. Mem_Metadata
plugin combines information from both sources to generate compre-
hensive metadata documentation.

3.5. Printing log extraction

Ultimaker Cura logs all activities during the slicing process. The
Mem_Log plugin retrieves this logging data by locating the CuraEngi-
neBackend.py class to access its _backend_log attribute, which
contains UTF-8 encoded strings. However, the log content varies based
on the memory acquisition timing. For instance, after loading a 3D
model, the log includes information on the connection with the Cura-
Engine process and the version of the slicing software. In contrast,
deploying the plugin with a memory dump acquired after slicing the
model will provide information about the slicing settings used to
generate the G-code, the slicing software, the 3D printer, and the
timestamp of the slicing process. This plugin provides crucial forensic
evidence for analyzing potential illicit manufacturing activities, allow-
ing investigators to reconstruct the exact timeline and parameters of
printing operations.

3.6. G-parser

G-parser focuses on analyzing critical printing parameters known to
compromise the quality of the printed objects, such as nozzle and bed
temperatures (Cho et al., 2019), cooling fan speed (Moore et al., 2017;
Gao et al., 2018), and layer height (Rais et al., 2022). This tool processes
both the G-code file extracted by theMem_Design plugin and the settings
provided by theMem_Setting plugin. Since the G-code file is organized as
layers of commands, G-Parser determines the beginning of each layer
through the ‘Z’ parameter of the movement commands. For each layer,
G-Parser locates the M104/M109 commands that adjust the nozzle
temperature, M140/M190 commands that change the bed temperature,
and M106/M107 commands that control the fan speed. It then recovers
the setting values through the ‘S’ parameter of these commands.
Moreover, it calculates the layer height as the difference between the
consecutive ‘Z’ values.

To establish a comparison baseline, this tool leverages the output of
the Mem_Setting plugin. It recovers the values of the materi-

al_print_temperature_layer_0, material_bed_temper-

ature_layer_0, and cool_fan_speed_0 attributes as the nozzle
temperature, bed temperature, and fan speed used with the first layer,
respectively. While, for the subsequent layers, G-Parser extracts the
values of the material_print_temperature, materi-

al_bed_temperature, and cool_fan_speed attributes. Further-
more, it determines the layer height through the value of the
layer_height attribute. In the final step, G-parser compares the
parsed G-code settings with these baseline settings to find the disparities
that indicate potential malicious manipulations. This approach enables
forensic investigators to identify unauthorized modifications to G-code
through compromised slicing software.

4. Experimental evalaution

We conducted our experiments using two virtual machines (VMs)

running on VMware Workstation 16 Pro (version 16.2.5), each config-
ured with Ubuntu 20.04.6 LTS, 4 GB RAM, and Python 3.8.10
(Foundation). The target VM, simulating a criminal’s device, has Ulti-
maker Cura 4.4.1 installed, while the investigation VM is equipped with
the Volatility 3 framework (version 2.5.0) and required packages for
design file reconstruction (numpy 1.17.4 and numpy-stl 3.1.2). To
facilitate memory analysis through Volatility 3, we used the dwarf2json
tool to generate the debugging symbol table files for both the kernel and
Python interpreter (Volatility Foundation).

The extraction accuracy of Mem_Design was evaluated across various
3D models that vary in geometry complexities, parts, and size. This in-
cludes weapons-related models (PX4, Beretta Prop Gun, Grenade,
Magazine, Revolver, Bullets, AK_47 Part, and Revolver Cylinder) and
security-critical items (TSA Master Key and Handcuff Key). Memory
dumps were acquired after slincing each model in a separate session.
The STL files of these models were downloaded from the popular Thin-
giverse repository (Thingiverse)2.

To establish a reference baseline for each of the extracted STL and G-
code files, we exported the 3D model as an STL file after completing the
slicing process to get its final state. We also saved the generated G-code
to an external file. For STL comparison, we focused specifically on
vertices, as normal vectors solely indicate design directionality. With the
G-code files, we considered the commands while excluding the com-
ments to ensure a meaningful comparison. We employed multiple sim-
ilarity metrics to evaluate extraction accuracy. The Jaccard similarity
measures the overlap between recovered and baseline files. The metric is
defined as J(S1, S2) =

|S1∩S2|
|S1∪S2|, where S1 and S2 represent vertex or

command sets. We extended this with sequential Jaccard similarity to
consider the sequence importance. We also implemented Levenshtein
distance analysis, converting vertex coordinates and G-code commands
to strings for comparison (e.g., transforming coordinates (1.234, 5.678,
9.012) to “1.234 5.678 9.012”). This metric provides enhanced sensi-
tivity for detecting subtle modifications. Table 1 demonstrates the
ability ofMem_Design to extract STL and G-code files accurately in terms
of similarity measures, considering the number of vertices and normals,
along with G-code layers and commands. This table displays a repre-
sentative subset of ten 3D models; the complete evaluation dataset is
available in Appendix A.

While our framework achieved 100% extraction accuracy in
controlled scenarios, forensic investigators may encounter transformed
variations of the samemodel in real-world cases. Simple transformations
produce completely different vertex values and G-code, causing low
Jaccard similarity and large Levenshtein distance, even though the 3D
model and functionality remain unchanged. Thus, in these scenarios, we
used appropriate similarity metrics, such as D2 Shape Distribution,
Volume/Surface Area comparisons, and Heat Kernel Signatures. We
evaluated the effectiveness of Mem_Design using these metrics with the
Beretta Prop Gun model after applying different modifications, such as
extended barrel, rotation, and scaling down (See Appendix B). These
metrics reveal the true nature of modifications while maintaining high
shape similarity scores.

We also compared the performance of Mem_Design against a con-
ventional forensic method combining Unix strings utility with Reg-
ular Expressions, named Strings_RE. This method has been proven
effective in various forensic analyses, including data recovery from so-
cial media and messaging platforms (Thantilage and Le Khac, 2019;
Barradas et al., 2019; Davis et al., 2022). However, Ultimaker Cura
stores the STL files as binary-encoded mesh data within NumPy arrays,
making Strings_RE ineffective for STL file extraction. On the other hand,
this method remains viable for G-code extraction, given its plaintext
storage format.

Table 2 presents a comparative analysis between the Mem_Design

2 In this research, no actual illegal items were physically printed.
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plugin and Strings_RE across four G-code files (PX4, Beretta prop gun,
grenade container, and magazine). The performance limitations of
Strings_RE arise from the complex memory architecture of Cura. The
software’s layer-based caching mechanism, while optimizing runtime
performance, creates multiple memory references to identical G-code
segments, leading to layer duplication and sequence disruption during
extraction, and thus reducing the Jarracrd similarity. Additionally,
memory analysis reveals that ASCII-encoded G-code commands are
fragmented and interspersed with corrupted content, resulting in com-
mand sequence disruption and syntax errors, thus causing larger Lev-
enshtein distances. Fig. 4 demonstrates these artifacts by visualizing the
extracted G-code.

In some scenarios, Cura can be used to slice multiple 3D models
together, as shown in Fig. 5. Therefore, we conducted an experiment
that considered processing twomodels, the Beretta Prop Gun (A) and the
Grenade Container (B). This experiment demonstrates the residual data

of each model across critical stages of the software lifecycle. Initially,
after loading model (A), Mem_Design extracts only the STL file as no G-
code is present in memory. During slicing, G-code data accumulates
incrementally in the gcode_dict attribute. Once the slicing process is
complete, the full G-code is available in memory. However, for any
simple change in the scene, such as scaling the model, removing the
model, or even adding a new model, Cura, through its CuraEngine-
Backend.py class, deallocates G-code references by clearing the
gcode_dict attribute. Therefore, both loading model (B) and
removing model (A) lead to deleting the G-code from memory.

To demonstrate the cross-version adaptability of our approach, we
evaluated the effectiveness of the Mem_Design plugin by analyzing
memory dumps of three versions of Ultimaker Cura, each running with a
different Python version and operating system, as detailed in Table 3.
We maintained identical slicing parameters and model dimensions
across all tests to ensure experimental validity. Results show newer Cura
versions generate G-code more efficiently due to the enhancement in
slicing algorithms, with version 5.11.0-alpha.0 producing ~ 31–46%
fewer commands than 4.4.1 while preserving identical layer counts. This
efficiency gain is attributed to the Arachne engine introduced in Cura 5.
x, which implements variable line width technology and sophisticated
path planning algorithms.

Figs. 6–8 demonstrate the artifacts extracted by the Mem_Setting,
Mem_Matadata, and Mem_Log plugins, respectively, from a memory
dump acquired after slicing the Beretta prop gunmodel. Fig. 6 presents a
subset of the 581 settings extracted by theMem_Setting plugin, including
the G-code flavor which defines the machine-specific instruction set
(‘Griffin’ for Ultimaker printers), nozzle and bed temperatures, fan
speed, infill characteristics (i.e., pattern, density, and direction), and
layer height, in addition to the number of top and bottom layers.

The determined section in the Mem_Metadata’s output, as shown in
Fig. 7, represents the metadata extracted from the global stack, while the
following entries are extracted from the definition container. The stack
provides information about the connected 3D printer, including its ID
(‘Ultimaker-008b14 #2’), display name (‘Ultimaker-008b14’), connec-
tion mode (2: network connection), IP address (172.22.123.205), and its
configuration mode (e.g., manual). The definition container provides
general descriptions of the hardware capabilities of the printer, such as

Table 1
Evaluation of Mem_Design plugin extraction accuracy across various STL and G-Code files.

File Baseline STL Extracted STL Baseline G-Code Extracted G-Code Jaccard Seq. Jaccard Levenshtein

Vertices Normals Vertices Normals Layers Commands Layers Commands Similarity Similarity Distance

PX4 11712 22887 11712 22887 417 203703 417 203703 100% 100% 0
Beretta Prop Gun 382704 127568 382704 127568 356 665032 356 665032 100% 100% 0
Grenade Container 84918 28306 84918 28306 284 436442 284 436442 100% 100% 0
Magazine 5886 1962 5886 1962 486 173947 486 173947 100% 100% 0
Revolver 48234 16078 48234 16078 275 89422 275 89422 100% 100% 0
Revolver Cylinder 86670 28890 86670 28890 122 138806 122 138806 100% 100% 0
Nato Bullets 74988 24996 74988 24996 71 65108 71 65108 100% 100% 0
AK_47 Part 4812 1604 4812 1604 398 139724 398 139724 100% 100% 0
TSA Master Key 6588 2196 6588 2196 9 14564 9 14564 100% 100% 0
Handcuff Key 1422 474 1422 474 15 15744 15 15744 100% 100% 0

Table 2
Comparative analysis of G-Code recovery: Mem_Design plugin versus Strings_RE method.

File SliceSnap Strings_RE

#Layers #Commands Jaccard
Similarity

Seq. Jaccard
Similarity

Levenshtein
Distance

#Layers #Commands Jaccard
Similarity

Seq. Jaccard
Similarity

Levenshtein
Distance

PX4 417 203703 100% 100% 0 425 184116 0.250% 0.206% 214033
Beretta Prop
Gun

356 665032 100% 100% 0 365 609383 0.235% 0.208% 569588

Grenade
Continer

284 436442 100% 100% 0 285 414765 0.250% 0.143% 295217

Magazine 486 173947 100% 100% 0 491 160419 0.235% 0.186% 146003

Fig. 4. Comparative visualization of G-Code recovery: Mem_Design plugin
versus Strings_RE method.
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supported material types, as well as information about the firmware and
its downloading URL.

Fig. 8 illustrates the UTF-8 decoded metadata that provides infor-
mation about the connection between the Cura and CuraEngine processes
(127.0.0.1:49674), software version, the date (17-01-2025) and time
(20:43:12) of the slicing process, along with the printer name and the

Fig. 5. Visualization of the extracted stl and G-code files by the Mem_Design plugin during multi-model processing.

Table 3
Evaluation of Mem_Design across differnt cura versions.

Env. & File Cura (V.4.4.1) Cura (V.4.13.0) Cura (V.5.11.0-alpha.0)

Environment Python 3.8.10 3.10.12 3.12.3
​ Ubuntu 20.04.4 LTS 22.04.2 LTS 24.04.2 LTS
PX4 # Layers 417 417 417
​ # Commands 203703 184471 123015
Beretta Prop Gun # Layers 356 356 356
​ # Commands 665032 578567 402091
Grenade Continer # Layers 284 284 284
​ # Commands 436442 425399 236641
Magazine # Layers 486 486 486
​ # Commands 173947 169700 120005

Fig. 6. The output of the Mem_Setting plugin showing the settings used for G-Code generation.
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settings that are represented as ‘-s name = “value” format.
Finally, Table 4 illustrates the persistence of the artifacts extracted

by the plugins at critical points of Cura’s lifecycle, including post-
application launch, after establishing a network connection with the
3D printer, after loading the 3D model, during slicing the model, upon
completion of slicing, after saving the G-code to disk, following the G-
code transmission to the printer, and after removing the 3D model from
the scene. Initially, only the setting definitions that are located in the
‘definition’ container of the global stack are present in memory. The
printer specifications start to appear in the metadata after establishing
the connection with the printer. Loading the 3D model leads to pre-
senting its mesh data, transformation matrix, and settings that are stored
in the ‘user’ container of the global stack. During the slicing process, the

Fig. 7. The output of the Mem_Metadata plugin showing the metadata (i.e., 3D printer characteristics).

Fig. 8. The Output of the Mem_Log Plugin Showing the Log data after Slicing the 3D Model.

Table 4
Artifacts extracted by the plugins during Cura’s lifecycle.

Memory Capture Point Memory Artifacts (Cura)

Mesh Data G-Code Metadata Settings

Post-Application Launch × × × ×

After Printer Connection × × ✓ ×

After 3D Model Loading ✓ × ✓ ✓
During Slicing ✓ Partial ✓ ✓
After Slicing Completion ✓ ✓ ✓ ✓
After G-code Saving ✓ ✓ ✓ ✓
After G-code Transmission ✓ ✓ ✓ ✓
After 3D Model Removal Original Model × ✓ ✓
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G-code is present partially, while it completely appears in memory after
finishing the slicing and even after saving or sending it to the 3D printer.
At the final stage, when the model is removed, only the original node
data is present, whereas its copy node and G-code are deleted. Moreover,
since the main persistent SceneNode nodes exist in memory as long as
the software is active, the settings in both the definition and user con-
tainers are still available. With all the stages before the slicing, the
logging data contains the slicing version and information about the
connection between Cura and CuraEngine processes, while after slicing,
it includes the slicing timestamp and setting values.

Fig. 9 illustrates the unencrypted G-code transmission between the
Cura and CuraEngine when the user clicks on the ‘Slice’ Button in the
Cura GUI. The security flaw resides in the local network communication
between these processes, targeting traffic on localhost (127.0.0.1) to and
from port 49674 (Cura’s port). To demonstrate the severity of this
vulnerability, we developed an attack script that runs with root privi-
leges on Cura’s local machine. The script leverages Linux’s iptables
and the NetfilterQueue library to intercept and modify network
packets in real-time. These intercepted packets contain critical data,
including printing settings and mesh data sent to CuraEngine, as well as
G-code layers returned to Cura.

Fig. 10 demonstrates the impacts of the G-code manipulations

conducted by our attack that exploit this IPC vulnerability during the
slicing process. It shows how disabling the cooling fan through the in-
jection of ‘M107’ commands at the beginning of each G-code layer leads
to material melting in the drone propeller during printing. This
manipulation is detected automatically by the G-parser tool, as shown in
Fig. 11. It illustrates that while the nozzle temperature, bed tempera-
ture, and layer height of all the layers match their corresponding base-
lines, the fan speed differs from its baseline, indicating potential
manipulations.

To evaluate the G-parser’s ability to detect the minor setting ad-
justments that can affect the mechanical properties of the printed object,
we sliced a rectangular bar (60 mm × 40 mm × 4 mm) multiple times
using the slicing parameters mentioned in (Rais et al., 2021a). For each
generated G-code, we manipulated specific settings by exploiting the
found vulnerability. The nozzle temperature was changed by ± 12◦ at
the beginning of each layer and reset to its normal value in the middle of
the layers. Similarly, the fan speed was changed by ± 4%, while the
layer height was decreased by 0.2 mm for even layers and reduced by the
same magnitude for odd layers (Rais et al., 2022). We printed the
manipulated G-code files and a benign variant, each five times, using an
Ultimaker 3 3D printer. We then measured the average peak stress and
strain of the five prints of each G-code file by conducting Tensile testing
using the MTS Insight 30 machine.

Table 5 illustrates how these subtle changes can impact the me-
chanical properties of the printed objects. The benign specimens
establish baseline properties with an average peak stress of 23.63 MPa
and strain of 0.026 mm/mm. Raising the nozzle temperature increases
the peak stress to 28.2 MPa due to enhanced layer fusion while main-
taining a similar strain (0.0256 mm/mm). Conversely, reducing the
temperature causes lower peak stress at 20.633 MPa with comparable
strain (0.025 mm/mm). Fan speed modifications also produce notable
changes. Increasing the fan speed results in 24.033 MPa peak stress with
0.029 mm/mm strain, while reducing it leads to increased stress of 28.1
MPa, attributable to slower cooling, enabling better layer fusion.

Fig. 9. Wireshark capture of unencrypted G-Code transmission between Cura
and CuraEngine processes.

Fig. 10. Capability assessment of G-Parser in detecting G-Code manipulations.

Fig. 11. Fan speed manipulation detected by G-Parser.

Table 5
Evaluation of G-Parser against the tensile test results.

Attack Measure

Peak Stress
(MPa)

Strain at Break (mm/
mm)

G-Parser

Benign 23.630 0.0260 No Change
High Temp.
(+12◦)

28.200 0.0256 Temp.
Changed

Low Temp. (− 12◦) 20.633 0.0250 Temp.
Changed

High Fan (+4%) 24.033 0.0290 Fan Changed
Low Fan (− 4%) 28.100 0.0250 Fan Changed
Layer Height
(±0.2)

22.300 0.0506 Layer
Changed

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301925

10

Finally, changing the layer height produces the most distinctive me-
chanical behavior. While peak stress decreases slightly to 22.3 MPa,
strain increases substantially to 0.0506 mm/mm. Compared to these
results, G-parser could flag all the manipulations and specify their type.

5. Conclusion and future work

This paper presented SliceSnap, a novel memory forensics framework
to detect the production of illegal tools using 3D printing technology.
SliceSnap focused on analyzing the volatile memory of slicing software,
specifically Ultimaker Cura, the most popular Python-based slicing tool.
Implemented as Volatility 3 plugins, SliceSnap provides automated
forensic capabilities to reconstruct 3D models, extract printer-
executable G-code and the entire set of settings used to generate it,

provide detailed information about the used slicing software and 3D
printer, and recover the logging data of the slicing software. This paper
also presented the complementary analysis tool of the framework, G-
parser, to detect malicious manipulations in the recovered G-code. The
evaluation results demonstrated the 100% accuracy of SliceSnap in
extracting the design and G-code files for diverse 3D models (e.g., fire-
arms and keys), while successfully identifying the slicing software (e.g.,
version), 3D printer (e.g., name, IP), and slicing process timestamp. G-
parser also proved its effectiveness in detecting the G-code setting
changes, such as fan speed, and nozzle temperature, that were con-
ducted by exploiting the IPC vulnerability of Cura. In the future, we plan
to extend our analysis to other popular slicing software, such as Pru-
saSlicer and Simplify3D, and support memory samples from different
operating systems.

A. Full Experimental Dataset for 3D Model Recovery

Table 6 presents the complete set of 3D models used to evaluate the extraction accuracy of the Mem_Design Plugin compared to their original STL
and G-code files. This comprehensive dataset includes various firearm models with different geometric complexities, parts, and sizes, as well as
security-critical items such as TSA Master Keys and Handcuff Keys.

Table 6
Evaluation of Mem_Design Plugin Extraction Accuracy across Various STL and G-Code Files

File Baseline STL Extracted STL Baseline G-Code Extracted G-Code Jaccard Seq. Jaccard Levenshtein

Vertices Normals Vertices Normals Layers Commands Layers Commands Similarity Similarity Distance

PX4 11712 22887 11712 22887 417 203703 417 203703 100% 100% 0
Beretta Prop Gun 382704 127568 382704 127568 356 665032 356 665032 100% 100% 0
Gun Frame 32064 10688 32064 10688 422 243433 422 243433 100% 100% 0
Lasgun 79146 26382 79146 26382 339 276048 339 276048 100% 100% 0
Colt Gun 7311 2437 7311 2437 283 233384 283 233384 100% 100% 0
XDM 61626 20542 61626 20542 731 573114 731 573114 100% 100% 0
M&P 22 1600020 533340 1600020 533340 653 1438145 653 1438145 100% 100% 0
Revolver 48234 16078 48234 16078 275 89422 275 89422 100% 100% 0
Revolver Cylinder 86670 28890 86670 28890 122 138806 122 138806 100% 100% 0
Grenade Container 84918 28306 84918 28306 284 436442 284 436442 100% 100% 0
M67 Grenade (All Parts) 45954 15318 45954 15318 336 629175 336 629175 100% 100% 0
Magazine 5886 1962 5886 1962 486 173947 486 173947 100% 100% 0
AK_47 Part 4812 1604 4812 1604 398 139724 398 139724 100% 100% 0
Glock Carbine Body (front) 48378 16126 48378 16126 397 711544 397 711544 100% 100% 0
Glock Carbine Body (Rear) 31272 10424 31272 10424 397 498383 397 498383 100% 100% 0
Single Shot Rifle (Barrel) 326424 108808 326424 108808 565 426165 565 426165 100% 100% 0
Westar Carbine (Body) 64974 21658 64974 21658 397 189256 397 189256 100% 100% 0
Westar Carbine (Muzzle) 43734 14578 43734 14578 394 123497 394 123497 100% 100% 0
Nato Bullets 74988 24996 74988 24996 71 65108 71 65108 100% 100% 0
BMG bullets 9126 3042 9126 3042 691 209876 391 209876 100% 100% 0
Bullet Belt 146556 48852 146556 48852 261 883393 261 883393 100% 100% 0
Airsoft Pistol Silencer 299256 99752 299256 99752 124 230902 124 230902 100% 100% 0
TSA Master Key 6588 2196 6588 2196 9 14564 9 14564 100% 100% 0
Handcuff Key 1422 474 1422 474 15 15744 15 15744 100% 100% 0
Lock Pick 1020 340 1020 340 9 16915 9 16915 100% 100% 0
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Fig. 12. Customized STL Files Derived from the Original File

B. Similarity Metrics for Transformed 3D Models

Fig. 12 shows the Beretta Prop Gun model with different modifications (extended barrel, rotation, scaling down). Our selected metrics (i.e., D2
Shape Distribution, Volume/Surface Area comparisons, and Heat Kernel Signatures) reveal the true nature of modifications while maintaining high
shape similarity scores. Table 7 demonstrates how these metrics analyze the transformed models extracted byMem_Design. The extended barrel model
maintains high D2 Shape similarity (0.9903) with an 8.87% volume increase (ratio: 1.0887), while the Heat Kernel Signature (0.9992) confirms
topological preservation. Similarly, the scaled-down model maintained shape characteristics despite significant volume reduction to 16.63% of the
original size. These metrics enable investigators to identify functionally equivalent weapons despite transformations.

Table 7
Similarity Measures between Customized STL Files Extracted by the Mem_Design and the Original Files

File Measure

D2 Shape Volume Similarity Volume Ratio Surface Similarity Surface Ratio Heat Kernel

Original 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Extended Barrel 0.9903 0.9948 1.0052 0.9185 1.0887 0.9992
Rotated 0.9873 1.0000 1.0000 1.0000 1.0000 0.9998
Scaled Down 0.9883 0.1663 0.1663 0.3024 0.3024 0.9987
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