
Forensic Science International: Digital Investigation 53 (2025) 301920

2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA

Memory Analysis of the Python Runtime Environment

Hala Ali a,*, Andrew Case b, Irfan Ahmed a

a Department of Computer Science, Virginia Commonwealth University, USA
b Volatility Foundation, USA

A R T I C L E I N F O

Keywords:
Memory forensics
Python runtime
Malware
Volatility 3

A B S T R A C T

Memory forensics has become a crucial component of digital investigations, particularly for detecting sophisti-
cated malware that operates solely in system memory without leaving traces on the file system. Although
memory forensics provides a complete view of the system state during acquisition, prior research efforts have
primarily focused on analyzing kernel-level data structures for malware detection. With the propagation of
kernel-level malware, operating system vendors implemented stringent kernel access restrictions, leading the
malware authors to shift their focus to developing userland malware. This evolution in tactics necessitated a
corresponding shift in forensic research toward analyzing userland runtime environments. While significant
memory analysis capabilities have been developed for various runtime environments, including Android,
Objective-C, and.NET, no effort has addressed the analysis of Python despite its growing popularity among
legitimate software developers and malware authors. To address this critical gap, we present a comprehensive
analysis of the Python runtime, encompassing its hierarchical memory management, garbage collection mech-
anism, and thread execution context management. We automated this analysis by developing a suite of new
Volatility 3 plugins that provide detailed visibility into Python applications, including classes and their runtime
instances, modules, functions, dynamically generated values, and execution traces across application threads. We
evaluated our plugins against real-world malware samples, including cryptocurrency hijackers, ransomware
variants, and remote access trojans (RATs). Results demonstrated 100% extraction accuracy of application ob-
jects within practical time constraints. The plugins recovered critical artifacts, including cryptocurrency wallet
addresses, encryption keys, malicious functions, and execution paths. Through these new automated analysis
capabilities, investigators of all levels of experience will be able to detect and analyze Python-based malware.

1. Introduction

In the realm of digital forensics and incident response (DFIR),
memory forensics has emerged as an essential investigative approach,
particularly in combating modern malware that operates solely in sys-
tem memory. Such malware avoids leaving artifacts on disk while also
utilizing encrypted network communications, making traditional
storage-based and network forensic techniques insufficient. The signif-
icance of memory forensics is highlighted by the recent requirement of
the Cybersecurity and Infrastructure Security Agency (CISA) for memory
analysis when responding to incidents. This requirement started after
two severe incidents in 2021, the SolarWinds supply chain attack and
the widespread exploitation of zero-day vulnerabilities in Microsoft
Exchange, both of which relied heavily on memory-only payloads
(Williams, Crowe, CISA, a,b).

Memory forensics enables a comprehensive reconstruction of the

system state at acquisition time. However, prior research has primarily
focused on analyzing kernel-level data structures for malware detection
since kernel-level malware often employs sophisticated evasion tech-
niques to bypass live and disk forensics. The power of this malware
eventually forced major operating system vendors to implement
rigorous security measures restricting kernel access. As a result, mal-
ware authors shifted their focus toward userland processes, exploiting
system APIs to perform various malicious activities, including hardware
monitoring, credential access, and lateral movement. This shift in mal-
ware tactics prompted researchers to expand their investigation into
various userland runtime environments, including Android (Case,
2011), Objective-C and Swift (Manna et al., 2021), .NET (Manna et al.,
2022), and JavaScript (Wang et al., 2022). Despite significant memory
analysis capabilities developed for these environments, current research
lacks analysis of the Python runtime, despite its growing popularity
among legitimate software developers and malware authors.

* Corresponding author.
E-mail addresses: alih16@vcu.edu (H. Ali), andrew@dfir.org (A. Case), iahmed3@vcu.edu (I. Ahmed).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301920



Forensic Science International: Digital Investigation 53 (2025) 301920

2

Python’s versatility, extensive library ecosystem, and cross-platform
compatibility have made it increasingly attractive to malware authors.
Its interpreted nature and dynamic runtime environment facilitate so-
phisticated malware operations, including code injection, obfuscation,
dynamic execution, and runtime modification of system behaviors.
Recent security incidents have demonstrated diverse exploitation of
these capabilities. PyLoose leveraged fileless execution techniques to
deploy cryptominers in cloud environments (News). The Connecio in-
formation stealer masqueraded as a legitimate CrowdStrike Falcon up-
date (CrowdStrike), while PureHVNC remote access trojan exploited
multi-stage Python-based loaders and hidden virtual network
computing to establish covert control of Windows systems while evading
detection (Wan).

The threat landscape has expanded to include supply chain attacks
targeting third-party Python packages (Nguyen et al., 2024; Li et al.,
2023). Notable examples include the PondRAT backdoor, which enabled
unauthorized access to the compromised systems (Nelson, 2024), fshec2
package, which leveraged bytecode compilation to obscure malicious
activities (Nelson, 2023b), and BlazeStealer package, which
masqueraded as legitimate code obfuscation tools, targeting developers
to gain comprehensive control of their systems through Discord-based
command and control (Schwartz). Malware authors have also exploi-
ted packing tools, such as PyInstaller, to generate compiled bytecode
files, effectively evading detection by antivirus engines (Koutsokostas
and Patsakis, 2021). Moreover, specialized malware has emerged tar-
geting specific platforms, such as ransomware designed for Jupyter
Notebook environments (Morag), NodeStealer attacking Facebook Ads
Manager (Aira Marcelo), and Androxgh0st focusing on exfiltrating cre-
dentials from Laravel Framework applications (FBI and CISA).

This paper documents our efforts to address the significant gap in the
current memory forensics literature. We provide the first comprehen-
sive, structured analysis of the Python runtime environment. Our nov-
elty lies in the cross-platform analysis of Python’s hierarchical memory
management, garbage collection mechanism, and thread execution
context management. We conduct this analysis at multiple hierarchical
levels, starting with locating the main Python application class and
extracting its key attributes (i.e., name and file path). Through this entry
point, we access all the other active components of the application,
including classes and their runtime instances, variables, modules, and
functions. For the modules within each class scope, we identify their
name, parent package, file path, and initialization state. Similarly, by
analyzing the data structure of the functions, we determine their name,
parent module, and file location. Further analysis of the function code
reveals the parameter count, names of local variables, and compiled
bytecode. To understand the application runtime behavior, we recon-
struct the execution paths by iterating the function call stacks and their
frame objects, recovering the runtime values of local variables within
their respective execution contexts. We implemented these capabilities
as a suite of new Volatility 3 plugins (The Volatility Foundation, 2017),
which enable automated and reproducible analysis of Python
applications.

We evaluated our plugin suite against a diverse set of real-world
Python-based malware samples executed from source code and when
packaged by PyInstaller in both Linux and Windows environments,
using extraction accuracy, execution efficiency, and recovery of mali-
cious artifacts criteria. The Py_Class plugin demonstrated 100% accuracy
in extracting all application objects (i.e., modules, functions, classes, and
variables), while all plugins exhibited practical execution times of
~3–19 seconds, depending on plugin implementation and application
complexity. The plugins also proved their effectiveness in identifying
malicious classes and the criminal’s wallet address within the BTC-
Clipper, recovering the encryption keys generated dynamically by the
ransomware, reconstructing GonnaCry’s execution traces, and identi-
fying the malicious activities of PythonRAT, such as keylogging and web
camera capturing.

Through these new automated analysis capabilities, we not only

enable investigators to detect and analyze Python-based malware but
also establish a foundation for standardized Python memory forensics
methodology. Our approach aligns with existing methodologies for
other runtime environments while recovering key artifacts essential for
malware analysis that directly reveal malware’s purpose and capabil-
ities. This systematic framework enables investigators to perform in-
depth Python malware analysis without traditional reverse engineer-
ing techniques and can be further extended by the forensic community.

2. Related work

The abuse of userland runtimes by malware led researchers to focus
on a structured analysis of such runtimes to identify malicious behav-
iors. For instance, Android runtime has been a significant target for
malware, resulting in severe consequences, such as accessing call his-
tory, text messages, microphones, and cameras (Smmarwar et al., 2024).
To detect these activities, many researchers worked on analyzing this
runtime (Sylve et al., 2012; Case and Richard III, 2017; Ali-Gombe et al.,
2020, 2019; Tam et al., 2015). Similarly, the Objective-C and Swift
runtimes of macOS have been targeted by malware. Therefore, Case and
Richard (Case and Richard III, 2016) developed Volatility plugins for
analyzing these runtimes and detecting malicious activities, including
keystroke logging, suspicious method sizzling, and runtime manipula-
tion. Manna et al. (2021) created plugins to enumerate loaded classes,
locate class instances, parse instance variables, decode variable types,
and examine class methods to detect suspicious API usage and identify
malicious function calls. The same author also created plugins to analyze
the.NET and.NET Core runtimes (Manna et al., 2022). These plugins
could detect and extract memory-resident assemblies while analyzing
runtime components, including classes, fields, methods, and native code
imports, to identify suspicious behavior. Wang et al. (2022) focused on
analyzing the V8 JavaScript runtime environment within Node. js’s V8
engine by developing plugins to extract and trace V8 objects using the
MetaMap structure. However, our extensive review of existing forensic
tools and literature confirmed that no current approaches provide
comparable capabilities for Python runtime analysis, highlighting the
significant gap our work addresses.

3. Memory analysis methodology

Fig. 1 illustrates our memory analysis methodology of the Python
runtime environment. Unlike simple bit-by-bit parsing, our approach
models Python’s complex memory architecture and implements analysis
capabilities that extract and interpret runtime artifacts. By systemati-
cally mapping relationships between memory components, we enable
the reconstruction of execution traces and behavioral patterns, revealing
malicious activities that would remain hidden to isolated object anal-
ysis. The Python interpreter is primarily implemented through CPython,
the reference implementation written in C that enables direct interfacing
with C code through CPython extension modules written in C/C++. At
the core of this environment, the _PyRuntime structure maintains
critical interpreter state information. As a global variable of type
_PyRuntimeState, it manages essential runtime parameters,
including the main interpreter initialization state, garbage collection
mechanism, thread management mechanism, and global configuration
attributes.

Locating _PyRuntime requires different approaches between
operating systems due to their distinct executable formats. In Linux
environments, the relative virtual address (RVA) of _PyRuntime is
accessed through the dynamic symbol table (.dynsym section) of the
ELF header (Oygenblik et al., 2024). While in Windows environments,
_PyRuntime is located in the Export table of the system-installed Py-
thon module (.dll). After locating _PyRuntime, we use its management
mechanisms to analyze Python applications comprehensively. This
analysis encompasses two main components: Object Retrieval and Frame
Chain Retrieval. These components enable us to extract Python objects

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

3

from memory, iterate through function call stacks and their frames to
reconstruct execution paths, and recover runtime values of local vari-
ables within their respective execution contexts.

3.1. Objects retrival

The first step toward extracting Python objects from memory is to
locate the Garbage Collector (GC) of the Python interpreter. It manages
the lifecycle of Python objects within the process scope through a three-
generation scheme, as illustrated in Fig. 2. Generation 0 contains newly
created objects, Generation 1 contains objects that survive Generation
0 collections, and Generation 2 maintains long-lived objects. Each

generation maintains a linked list of PyGC_Head structures, along with
object count tracking and collection thresholds controlling the trigger of
collection cycles (Foundation, b).

The PyGC_Head structure, which varies in size by system architec-
ture (12 bytes for 32-bit and 24 bytes for 64-bit systems), contains
uintptr_t _gc_next and _gc_prev pointers that form a circular
doubly-linked list. This structure precedes every Python object tracked
by the GC, with the actual object data starting 24 bytes after the
PyGC_Head. Each object begins with a PyObject header containing an
ob_type field that points to a PyTypeObject structure, defining the
object’s type.

The traversal of the garbage collector aims to identify the active

Fig. 1. Overview of the memory analysis methodology of the python runtime environment.

Fig. 2. Python garbage collector hierarchy.

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

4

Python objects in the heap memory, fromwhich we extract raw data and
reconstruct each object’s structure through memory layout interpreta-
tion. The process begins with locating the root module (sys) (Sourcerer.
io), a fundamental component that persists throughout the life of the
application and is consequently placed directly in Generation 2 during
the interpreter initialization. Represented as a PyModuleObject

structure, sys stores a comprehensive registry of the application mod-
ules through its md_dict dictionary. This dictionary is particularly
significant as it encompasses references to all active modules, most
notably the __main__ module that encapsulates the main file of the
Python application. From this file, we expand our analysis to cover all
other files used and imported by this file.

Building upon this hierarchical structure, accessing the application
objects requires analysis of the PyModuleObject structure of the main
file, which is leveraged by the following plugins. Py_Class first inspects
the main file (entry point) of the application and all of its classes, while
Py_Module, Py_Function, and Py_Code expand the analysis to its modules,
functions, and code objects, respectively. It is important to note that
while the garbage collector’s fundamental structure remains consistent
across Python versions, its location varies. For example, in Python 3.8,
the garbage collector is directly accessible through the _PyRuntime

structure, whereas Python 3.11 accesses it through the main interpreter,
which is a field within the _PyRuntime structure. Our plugins adapt to
the version present while performing analysis.

3.1.1. Py_Class Plugin
This plugin focuses on analyzing the classes of the Python application

and providing detailed information about their attributes, objects, and
instances. It starts with the main file that represents the main entry of
the application by analyzing its PyModuleObject data structure. This
structure maintains references to all of the main file components,
including built-in attributes (e.g., __name__, __doc__, __file__),
classes, imported modules, functions, variables, namespaces, method
definitions, and decorators.

Python represents the classes as type objects with a PyTypeObject
structure. This structure facilitates class identification through its
tp_name field and contains a tp_dict pointer that references a
PyDictObject structure, which maintains the runtime state of the
class through its attributes and objects. On the other hand, each class
instance has a type name matching its class name and is represented in
memory as a PyDictObject data structure that maintains the in-
stance’s state attributes and values. While these values are accessible
within the class’s visibility scope, local variables within class functions
remain inaccessible as they exist only within the function’s local scope.

For each object within the main file and each of its classes, Py_Class
outputs the process ID along with the object’s type, name, memory
address, and associated value. Given that modules and functions are
analyzed by subsequent plugins, Py_Class provides only their names and
addresses as values. Moreover, due to the lazy loading mechanism of
Python, classes that remain unused or unimported by the main class are
absent frommemory and thus excluded from the plugin’s analysis scope.

3.1.2. Py_Module Plugin
This plugin analyzes the PyModuleObject structure of the modules

imported by the main file and all of its classes. This fundamental
structure encapsulates fields essential for malware analysis, such as
md_name that defines the module’s runtime name, md_dict that points
to the module’s dictionary of attributes, functions, and variables, and
textttmd_def which links to the module’s PyModuleDef structure.
Within PyModuleDef, essential fields encompass m_name for the
original module name, m_doc for documentation strings, and
m_methods, which holds an array of PyMethodDef instances con-
taining all a module’s functions. It is important to note that the
PyModuleDef structure represents the C-level module definition, and it
is primarily associated with built-in modules written in C like sys,
time, and builtins.

Although Python uses the PyModuleObject structure to represent
all the modules, their underlying dictionaries vary in content depending
on each module’s specific purpose. Our plugin examines the core attri-
butes commonly present across these module dictionaries. These
essential attributes reside in md_dict and hold the module’s name
(__name__), parent package (__package__), and file path
(__loader__). Additionally, the __spec__ dictionary, through its
_set_fileattr field, indicates whether the module possesses __file__
and __cached__ attributes, while _initializing reveals whether
the module is currently being imported or has completed initialization.
Given that the built-in modules are compiled directly into the Python
runtime instead of existing as separate files on the file system, their
_set_fileattr attribute is always False. As output, for each module,
Py_Module identifies the name, associated package, file paths, and
initialization status at memory capture time. Through this functionality,
the plugin enables the detection of suspicious modules, particularly
those dynamically loaded during runtime, and identifies their file paths.

3.1.3. Py_Function Plugin
This plugin also extends the capabilities of Py_Class by analyzing

Python functions through their PyFunctionObject data structure.
This structure maintains consistent fields across Python versions, mak-
ing it particularly valuable for malware analysis through its compre-
hensive representation of function attributes and behaviors.

At its core, Py_Function examines four key fields of the PyFunc-

tionObject structure, including func_name to identify the function
name, func_globals to access the dictionary of global objects acces-
sible by the function, including the __file__ attribute that specifies its
source file location, func_module to determine the parent module of
the function, and func_code to point to the function’s associated code
object. This code object contains the function’s implementation details
and is analyzed by the following Py_Code Plugin. Through this analysis,
Py_Function constructs a comprehensive profile of each function,
including its memory address, name, hosting module’s name, and source
file location, which are the essential components for tracking and
investigating suspicious functions within Python applications.

3.1.4. Py_Code Plugin
Py_Code provides detailed insights into the code of a Python function.

While executing, the Python interpreter compiles the source code into
bytecode - a low-level instruction set optimized for execution by the
Python Virtual Machine (PVM). This bytecode comprises a sequence of
instructions. Each instruction consists of a single byte operation
(opcode) potentially accompanied by additional arguments, directing
the PVM to perform specific operations, such as loading values, per-
forming arithmetic, and controlling the program flow.

Py_Code leverages the PyCodeObject structure that encapsulates
the executable code at runtime. This structure contains not only the
bytecode but also its comprehensive metadata, such as the constant
values and variable names. By analyzing the key fields of this structure,
Py_Code facilitates the extraction of critical code information. Such fields
include co_name to identify the associated function name, co_arg-
count to reveal the number of positional arguments, co_nlocals to
indicate the number of local variables, co_varnames to list the names
of local variables, and co_code to extract the actual bytecode in-
structions. As bytecode itself is not human-interpretable, Py_Code per-
forms bytecode disassembly to generate a readable sequence of
operations for each function. This disassembled representation enables a
detailed analysis of execution logic and control flow, facilitating the
detection of malicious code.

It is crucial to note that this plugin provides the static disassembled
instructions of the function’s bytecode, such as LOAD_GLOBAL or
LOAD_METHOD for loading functions, STORE_FAST for storing vari-
ables, and LOAD_FAST for accessing variables. However, these in-
structions provide an abstract view of the code without exposing the
actual values processed during runtime. Therefore, to gain visibility into

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

5

the actual runtime context of functions, including their execution state
and processed values, it is necessary to analyze the function call stack, a
task facilitated by our Py_Stack plugin.

3.2. Frame chain retrival

Python applications leverage multi-threading for parallel execution
paths, with each thread encapsulated by a PyThreadState structure
and maintaining its own function call stack. When a Python application
executes, each function call generates a new frame object added to the
current thread’s frames. Therefore, we call the function call stack as
Frame Stack. The PyThreadState structure maintains a pointer to the
current execution frame, while each frame is represented by the
PyFrameObject structure and contains a back pointer to its prede-
cessor frame, creating a chain of frames, as shown in Fig. 3. These frame
structures serve as runtime representations of function objects, encap-
sulating local and global variable namespaces, execution state infor-
mation, and references to their corresponding code objects
(PyCodeObject) (Foundation, a). Our Py_Stack plugin locates these
frame stacks within threads, traverses them using the back pointers, and
analyzes each frame’s structure to reconstruct the execution paths and
recover their local variables.

3.2.1. Py_Stack plugin
Unlike the above-mentioned GC-based plugins, Py_Stack focuses on

capturing the runtime state of the Python application at the moment of
memory acquisition. It uniquely traces function call sequences and
execution paths, making it particularly valuable for identifying root
causes of malicious behavior and accessing actual values of variables
processed at runtime. The plugin begins by iterating through the
application threads, accessing each thread’s frame stack, and then
analyzing the PyFrameObject structure associated with each of its
frames. This structure contains essential fields such as f_code which
points to the frame’s bytecode, f_globals that represent a dictionary

of the modules and global variables within the frame’s scope, and
f_locals which is a dictionary created only when code explicitly re-
quests local variables (e.g., via locals()) or when debugging tools
introspect the frame. In normal execution, local variables are kept in a
more efficient array field, called f_localsplus. Moreover, PyFra-
meObject also includes a f_back field that points to the previous
frame, linking all active frames into a frame chain.

Python 3.11 introduced architectural changes to this structure to
optimize frame handling. The structure was renamed to _PyInter-

preterFrame while maintaining its core functionalities. Additionally,
the f_back field was renamed to previous while preserving other
field names and purposes. _PyInterpreterFrame now maintains a
separate pointer to PyFrameObject, which is allocated on demand
specifically for introspection, tracing, or debugging operations. This new
PyFrameObject contains only essential fields related to debugging,
such as f_lineno for the code’s location within its source file and
f_trace_lines for enabling line-by-line tracing capabilities. This
architectural separation in Python 3.11 optimizes memory usage by
grouping frequently accessed fields within _PyInterpreterFrame

while isolating specialized introspection fields in PyFrameObject

(Foundation, d). To recover all possible details of code execution, we
implemented Py_Stack as two complementary Volatility plugins, Py_S-
tack_Call and Py_Stack_Var, that leverage PyFrameObject to facilitate
comprehensive runtime analysis of Python applications. Py_Stack_Call.
This plugin reconstructs execution paths by leveraging the metadata
fields of the frames, including f_code to access bytecode information (i.
e., co_code, co_filename, co_name), f_back for frame chain
traversal, and f_lineno for precisely locating the frame’s code within
its source file. Through these fields, Py_Stack_Call provides a detailed
execution timeline for each thread, with chain elements formatted as
”code_name (file_name: line_number)”. Moreover, when executed with
the –dump argument, the plugin generates a separate file for each thread
containing the disassembled bytecode of its frames. Py_Stack_Var. This
plugin complements the functionality of Py_Stack_Call by extracting the

Fig. 3. Python thread states hierarchy.

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

6

runtime values of the frame’s local variables. To achieve this, the plugin
analyzes the localsplus array in the PyFrameObject structure,
which serves as the primary storage mechanism for live values during
execution. The first part of f_localsplus, from index 0 to co_n-

locals-1, stores pointers to the actual values of local variables, where
each slot corresponds to a name defined in co_varnameswith the same
order. In contrast, the subsequent part of this array stores pointers to
temporary values and intermediate results during execution. Thus, the
total size of f_localsplus in bytes equals (co_nlocals + co_s-

tacksize) multiplied by the size of each pointer slot.

4. Experimental evaluation

We evaluated our Volatility 3 plugins against a diverse set of real-
world Python-based malware samples, including BTC-Clipper
(NightfallGT), two distinct ransomware implementations (Python-Ran-
somware (ncorbuk) and GonnaCry (tarcisio marinho)), and a remote
access trojan (PythonRAT) (safesploit). Our evaluation utilized
open-source samples to provide ground truth baselines for accuracy
verification, represent diverse malware categories that employ tech-
niques commonly found in closed-source variants, and finally, using
documented samples enhances reproducibility, allowing other re-
searchers to validate our findings. While closed-source malware may
employ additional obfuscation techniques, the core Python runtime
structures remain consistent regardless of source availability. For
instance, the dictionary associated with the PyTypeObject, PyDic-
tObject, and PyModuleObject structures contains keys representing
the names of their objects and values referencing the implementations,
making our approach equally effective for unknown malware. More-
over, the demonstrated 100% extraction accuracy across diverse sam-
ples, including those packaged with PyInstaller, validates our plugins’
effectiveness for analyzing both open and closed-source malware.

The BTC-Clipper and Python-Ransomware are designed for Windows
systems, while GonnaCry specifically targets Linux environments, and
PythonRAT is compatible with both platforms. For each malware, we
created a separate virtual machine (VM) using VMware Workstation 16
Pro (version 16.2.5). These VMs were configured with either Windows
10 or Ubuntu 20.04.6 LTS as the operating system, 4 GB of RAM, and
Python 3.8.10 (Foundation, c). For installation, we followed the official
GitHub documentation. Moreover, for PythonRAT and GonnaCry, which
require client-server architecture, we deployed their respective server
components within the same virtual machine environment. We ran the
plugins on a VM equipped with Ubuntu 20.04.6 LTS and Volatility 3
(version 2.5.0). While Volatility 3 includes a prebuilt Windows 10
symbol table, we generated kernel debugging symbol tables for Linux
kernels. Analyzing Python objects also requires Python-specific symbol
tables for both operating systems. Therefore, we used the dwarf2json tool
(Volatility Foundation) to generate the debugging symbol tables for the
Linux kernels and Python interpreter.

4.1. Evaluation criteria

We evaluated our plugins using three key criteria:

• Extraction Accuracy: Measures the plugin’s ability to recover Py-
thon objects from memory against a ground truth baseline estab-
lished through static source code analysis using Python’s Abstract

Syntax Tree (AST). It is calculated as: Ext_Acc = min
(

Nfound
Ntotal

, 1.0
)

×

100%; Nfound and Ntotal represent the number of recovered and
baseline objects, respectively.

• Execution Efficiency: Measures the processing time required by
each plugin to extract and analyze objects from memory, which
varies based on plugin implementation complexity and malware
characteristics.

• Recovery of Malicious Artifacts: Evaluates the plugin’s ability to
recover critical forensic artifacts, including encryption keys, cryp-
tocurrency wallet addresses, C2 connections, and malicious execu-
tion traces.

Table 1 shows the Py_Class’s extraction accuracy, providing a
comprehensive visibility into all application objects and establishing the
foundation upon which the other plugins are built. Extracted objects
typically exceed the static analysis baseline because Py_Class captures
explicitly defined components and dynamically loaded objects that
static analysis cannot detect. These include classes and their instances
states, modules used by both the interpreter and application, dynami-
cally generated values, and defined and imported functions by all
modules, providing a complete representation of the Python environ-
ment. Table 2 shows the average execution time of the plugins across the
malware samples. Py_Module shows the highest execution times due to
its recursive traversal of module hierarchies and extensive metadata
extraction, while Py_Code performs most efficiently, focusing on byte-
code analysis. Execution time is influenced by both the plugin
complexity and the memory traversal path—from generation 2 (where
sys module resides) through generations 0 and 1. Object count signifi-
cantly impacts performance, as seen with PythonRAT (7681 objects)
having the longest processing times, while GonnaCry shows that object
structure can be more influential than count, with fewer objects but not
always faster processing.

4.2. BTC-clipper

BTC-Clipper, also known as a ”Bitcoin Clipper”, monitors the clip-
board for cryptocurrency wallet addresses and replaces them with
attacker-controlled addresses to hijack transactions. In this scenario,
recovering the attacker’s wallet address is crucial for tracking trans-
actions and fund movement, thus helping in criminal investigations and
linking to other potential incidents.

The output of the Py_Class plugin, as shown in Fig. 4, highlights key
details of the main module in BTC-Clipper (btcClip.py). The criminal’s
wallet address and the destruct message are stored as global variables
with fixed string values. The output also shows the class attributes,
including __name__, __package__, and __loader__. The None
value of __package__ indicates that the main file does not belong to a
specific package, while __loader__ stores the relative file path of the
class due to executing the class directly from its local directory. The
output further identifies two classes in the main file, Clipboard and
Methods, represented as PyTypeObject types. For each class, the
plugin displays its attributes and associated components, including
functions, static methods, and variables.

4.3. Python-Ransomware

This repository implements a simple ransomware variant that com-
bines asymmetric and symmetric encryption. The RSA_private_public_k-
eys.py class generates the RSA key pair, while RansomWare.py handles
the core encryption using the Fernet module for AES-CBC encryption
with HMAC authentication. A Fernet symmetric key is first generated
and used to encrypt files in the ”localRoot” directory through a crypter
object. This key is then encrypted with the RSA public key, and the
crypter reference is set to None. The malware architecture comprises
three key components: the main file, an instance of Ransomware class
executing core functions, and an instance of Fernet class managing
cryptographic operations. The Py_Class plugin successfully recovered the
16-byte HMAC authentication key and 16-byte AES encryption key from
the Fernet instance, along with other sensitive data such as filesystem
paths and the victim’s public IP. Detailed output of this analysis is
provided in Appendix A.

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

7

4.4. GonnaCry ransomware

GonnaCry implements more sophisticated key protection mecha-
nisms that present unique forensic challenges. The ransomware employs
a multi-layered encryption strategy that generates a victim-specific RSA
key pair and encrypts each target file in the victim’s home directory and
desktop with a unique AES key, which is subsequently encrypted using
the public RSA key. To prevent decryption of these AES keys, GonnaCry
encrypts the RSA private key with the server-side public key, which is
stored in the variables. py module. Thus, only the attacker with access to
the server-side private key can decrypt the victim’s private RSA key and
subsequently recover the file-specific AES keys. Furthermore, this ran-
somware implements memory cleanup by immediately nullifying the
private key, explicitly deleting it, and forcing garbage collection to
prevent forensic recovery. In addition to this challenge, all keys are
generated locally within the class’s functions, making Py_Stack the only
plugin capable of key recovery.

Our experiment was carried out with two targeted files, file1. txt and
file2. txt, containing ”Hello from file1 !!!” and ”H. from file2 !!!”, respec-
tively. Memory was acquired at three critical points: during the

encryption of the first file (Snapshot1), during the encryption of the
second file (Snapshot2), and after completing the encryption process by
the main function, menu(), (Snapshot3). Due to the arbitrariness of os.
walk() used by the malware, file2. txt was encrypted before file1. txt.
Table 3 illustrates the output of Py_Stack_Call with these three snapshots.
It revealed a single-threaded execution path with three frames during
file encryption. However, when start_encryption() completes and
returns its encoded keys and filenames, its frame is removed from the
stack, leaving only the menu() frame and the main frame of the module
as shown with Snapshot3. This multi-snapshot analysis demonstrates our
framework’s ability to track malware behavior over time, revealing how
encryption keys and artifacts evolve throughout the malware’s life-
cycle—a capability essential for comprehensive forensic investigation.

Fig. 5 demonstrates the output of Py_Stack_Var against the star-

t_encryption frame during encryption of the second file, which in-
cludes the recovery of the AES key used for this file and its original
plaintext content. Since ransomware typically targets numerous files on
the system, the complete encryption process takes a significant execu-
tion time. This time window provides investigators with a crucial
forensic opportunity, as memory acquisition during the encryption

Table 1
Extraction accuracy of the Py_Class plugin across the malware samples.

Malware Ground Truth Objects Extracted Objects Ext_Acc

Module Func. Class Var. Module Func. Class Var.

BTC-Clipper 8 10 2 4 11 10 2 4 100%
Python-Ransomware 15 13 1 1 15 22 2 1 100%
GonnaCry 19 5 0 0 21 6 0 0 100%
PythonRAT 14 13 0 1 14 14 0 1 100%

Table 2
Extraction time of the Plugins across the Malware Samples.

Malware Avg. Extraction Time (Second)

Py_Class Py_Module Py_Function Py_Code

BTCClipper (Windows) 4.8605 7.0493 4.1129 2.6000
Python-Ransomware
(Windows)

4.9797 12.1914 6.5897 4.2669

GonnaCry (Linux) 3.2376 16.0314 5.2902 3.2136
PythonRAT (Linux) 8.4064 19.5843 15.3146 8.0046

Fig. 4. Output of the Py_Class plugin against BTC-Clipper.

Table 3
Output of the Py_Stack_Call plugin during the GonnaCry’s lifecycle.

Mem.
Capture Point

No.
Thread

No.
Frames

Frame Chain

Snapshot1 1 3 <module >(main.py:1) → menu (main.
py:75) → start_encryption (main.py:48)

Snapshot2 1 3 <module >(main.py:1) → menu (main.
py:75) → start_encryption (main.py:48)

Snapshot3 1 2 <module >(main.py:1) → menu (main.
py:75)

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

8

process of any file, including the final one, facilitates the recovery of all
previously generated encryption keys. Analysis of the second memory
snapshot validates this finding, as shown by the Py_Stack_Var output.
Specifically, the AES_and_base64_path list maintains the encryption
keys for both target files, along with their new base64-encoded fil-
enames that have the ”. GNNCRY” extension.

Fig. 6 illustrates the output of Py_Stack_Varwith the menu frame from
Snapshot3. We observe that the values of aes_keys_and_base64_-
path, enc_aes_key_and_base64_path, rsa_object, and Cli-

ent_private_key variables appear as None due to forced garbage
collection by the ransomware. However, we can still recover the most
recent AES key and the content of the final file. Furthermore, by base64-
decoding the line variable, we can extract both the encryption key and
the file path of the most recently encrypted file. The results of this
experiment clearly show the value of our plugins while analyzing ran-
somware written in Python.

4.5. PythonRAT

PythonRAT implements a botnet architecture in which multiple
compromised systems are controlled through a centralized Command
and Control (C2) server. Its repository comprises the server-side
controller (c2. py) and two client-side classes (backdoor.py and key-
logger. py). The backdoor. py class serves as the primary client-side agent,
establishing a connection with the C2 server and executing various
commands, including file system navigation, file transfer, screenshot
generation, webcam capture, and keystroke logging.

To analyze the behavior of this malware, we used the capabilities of
the Py_Module, Py_Function, and Py_Code plugins. Fig. 7 shows the

Py_Module output, revealing the imported modules by backdoor. py.
Although the individual modules might appear legitimate, their com-
bination strongly indicates malicious intent due to the presence of
socket, SSL, and requests, which enable encrypted remote communica-
tions, cv2 which supports screen capture and webcam monitoring, and
subprocess which facilitates external process creation and system com-
mand execution.

Fig. 8 illustrates the suspicious functions used by both backdoor. py,
and keylogger. py, including those from the pynput.keyboard._xorg
submodule for keystroke logging. Notably, due to executing the main
class (backdoor.py) directly from its local directory, its relative file path
appears with its functions. In contrast, the full absolute path is associ-
ated with the functions of keylogger. py, as it is an imported module.
Furthermore, libraries installed via pip, such as pynput, are typically
located within the site-packages directory using their complete module
hierarchy.

For each function, Py_Code displays its number of arguments and
local variables besides the variable names and disassembled code. As the
disassembled code is lengthy, Fig. 9 shows only the code of the start
function while truncating the code of the on_press function. This
output shows malicious keylogging activity. When a key is pressed,
pynput’s Listener automatically calls the on_press function with the
pressed key as an argument. This function, in turn, writes the collected
keys to a file to be sent to the server.

PyInstaller allows Python applications to be packaged into stand-
alone executables that can run without requiring Python to be installed
on the target system. During packaging, it compiles all Python de-
pendencies and modules into bytecode and bundles them with the Py-
thon interpreter into a single executable. The resulting executable’s

Fig. 5. Output of the Py_Stack_Var Plugin against the GonnaCry’s start_encryption Frame (Snapshot2).

Fig. 6. Output of the Py_Stack_Var Plugin against the GonnaCry’s menu Frame (Snapshot3).

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

9

structure complicates analysis by antivirus engines, making PyInstaller
an attractive tool for distributing Python-based malware, particularly on
Windows systems. When the packaged application is executed,
PyInstaller creates a parent bootloader process that extracts the Python
interpreter and dependencies into a temporary directory (_MEI*) and
sets up the execution environment. A child runtime process then handles
the actual execution of the application code. To evaluate the effective-
ness of our analysis capabilities against PyInstaller-packaged malware,
we present the ability of Py_Class to extract the components of a
PyInstaller-packaged PythonRAT executable running on Windows.

As shown in Fig. 10, the __loader__ attribute is set to Pyi-

FrozenEntryPointLoader rather than SourceFileLoader (con-
trasting with Figs. 4 and 11). This loader enables PyInstaller to bootstrap
and import compiled modules at runtime. The output also shows
_pyi_main_co, a PyInstaller-generated component representing the
compiled main application entry point, VIRTENV indicating PyInstal-
ler’s isolated environment, which manages dependencies, and the tem-
porary directory path (_MEI19882) where the compiled modules are
extracted. However, for a deeper analysis of this packed variant, other
plugins can be leveraged, showing the same output of Figs. 8 and 9
besides the components of PyInstaller.

Limitations. As demonstrated with GonnaCry, malware can actively

counter memory forensics by forcing garbage collection immediately
after using sensitive objects, minimizing their memory residence time.
Advanced malware might also implement targeted anti-forensics tech-
niques that corrupt Python objects or manipulate memory structures to
thwart analysis. Additionally, while our plugins successfully analyzed
PyInstaller-packed malware, alternative packaging methods such as
Py2exe, Nuitka, or Cython compilation, especially when combined with
custom packers or encryptors, may pose more analysis challenges.

5. Conclusion and future work

This paper presented our efforts to analyze the memory of the Python
runtime environment. We automated this analysis by developing a set of
novel Volatility 3 plugins. These plugins leverage the internal structures
of Python, such as traversing the garbage collector to recover the Python
application objects (e.g., modules, functions, variables, and class in-
stances) and analyzing the frame chain to reconstruct execution paths,
providing unprecedented visibility into the application behavior. We
demonstrated the effectiveness of our plugins through a detailed anal-
ysis of real-world Python-based malware samples, including a crypto-
currency clipper, ransomware variants, and a remote access trojan. The
Py_Class plugin achieved 100% accuracy in extracting all application

Fig. 7. Output of the Py_Module plugin against PythonRAT.

Fig. 8. Output of the Py_Function plugin against PythonRAT.

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

10

objects, while all plugins exhibited practical execution times of ~3–19
seconds, recovering critical artifacts, including internal malicious clas-
ses and suspicious combinations of modules and functions. The plugins
could also recover dynamically generated encryption keys from ran-
somware samples while tracking their execution paths. In the future, we

plan to develop advanced countermeasures against sophisticated
Python-based malware techniques, extend our plugins to support
various Python packaging methods, and introduce analysis methods to
detect supply chain attacks in Python packages.

Appendix A

A Detailed Analysis of Python-Ransomware

Fig. 11 demonstrates the ability of Py_Class to inspect the class instances and provide their variable values. The memory was acquired immediately
after calling the ransom_note() function of Python-Ransomware, the last function in the malware’s execution sequence. The analysis reveals the
critical components of a Fernet class instance, including a 16-byte _signing_key for HMAC authentication and a 16-byte _encryption_key for
AES encryption. These keys are combined and base64-encoded to create the symmetric key. Despite the malware’s attempt to conceal cryptographic
material by nullifying the crypter object reference, the absence of forced garbage collection preserved it in memory besides other variables of the

Fig. 9. Output of the Py_Code plugin against PythonRAT.

Fig. 10. Output of the Py_Class plugin against PythonRAT.exe packed by PyInstaller

H. Ali et al.



Forensic Science International: Digital Investigation 53 (2025) 301920

11

RansomWare instance. Such variables include the RSA public key, filesystem paths (sysRoot and localRoot), and the victim’s publicIP obtained
from https://api.ipify.org. Note that we partially redacted our IP address to prevent information disclosure.

Fig. 11. Output of the Py_Class Plugin against Python-Ransomware

References

Ali-Gombe, A., Sudhakaran, S., Case, A., Richard III, G.G., 2019. {DroidScraper}: a tool
for android {In-Memory} object recovery and reconstruction. In: 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019),
pp. 547–559.

Ali-Gombe, A., Tambaoan, A., Gurfolino, A., Richard III, G.G., 2020. App-agnostic post-
execution semantic analysis of android in-memory forensics artifacts. In:
Proceedings of the 36th Annual Computer Security Applications Conference,
pp. 28–41.

Case, A., 2011. Forensic memory analysis of android’s dalvik vm. Source Seattle.
Case, A., Richard III, G.G., 2016. Detecting objective-c malware through memory

forensics. Digit. Invest. 18, S3–S10.
Case, A., Richard III, G.G., 2017. Memory forensics: the path forward. Digit. Invest. 20,

23–33.
CISA, a, 2021. Ed 21-01: Mitigate SolarWinds Orion Code Compromise. https://www.cis

a.gov/news-events/directives/ed-21-01-mitigate-solarwinds-orion-code-compr
omise, 2025-01-02.

CISA, b, 2021. Remediating Microsoft Exchange Vulnerabilities. https://www.cisa.go
v/news-events/news/remediating-microsoft-exchange-vulnerabilities?utm_source
=chatgpt.com, 2025-01-02.

CrowdStrike, 2024. Threat Actor Distributes Python-Based Information Stealer Using a
Fake Falcon Sensor Update Lure. https://www.crowdstrike.com/en-us/blog/th
reat-actor-distributes-python-based-information-stealer/, 2025-01-05.

Crowe, J., 2021. Microsoft Exchange 0-day Vulnerabilities Mitigation Guide: what to
Know & Do Now. https://www.ninjaone.com/blog/microsoft-exchange-0-day-vuln
erabilities-mitigation/, 2025-01-02.

FBI, CISA, 2024. Known Indicators of Compromise Associated with Androxgh0st
Malware. https://www.cisa.gov/news-events/alerts/2024/01/16/cisa-and-fbi-
release-known-iocs-associated-androxgh0st-malware, 2025-01-15.

Foundation, P.S., a. CPython Internal Documentation: Frames. https://github.com/pytho
n/cpython/blob/main/InternalDocs/frames.md. Accessed: 2024-10-09.

Foundation, P.S., b. Garbage Collector Documentation. https://github.com/python/cp
ython/blob/main/InternalDocs/garbage_collector.md. Accessed: 2024-10-09.

Foundation, P.S., c. Python 3.8 Documentation. https://docs.python.org/3.8/. Accessed:
2024-10-10.

Foundation, P.S., d. What’s New In Python 3.11. https://docs.python.org/3/whatsnew/3
.11.html. Accessed: 2024-10-15.

Koutsokostas, V., Patsakis, C., 2021. Python and malware: developing stealth and evasive
malware without obfuscation. arXiv preprint arXiv:2105.00565.

Li, N., Wang, S., Feng, M., Wang, K., Wang, M., Wang, H., 2023. Malwukong: towards
fast, accurate, and multilingual detection of malicious code poisoning in oss supply
chains. In: 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, pp. 1993–2005.

Manna, M., Case, A., Ali-Gombe, A., Richard III, G.G., 2021. Modern macos userland
runtime analysis. Forensic Sci. Int.: Digit. Invest. 38, 301221.

Manna, M., Case, A., Ali-Gombe, A., Richard III, G.G., 2022. Memory analysis of. net and.
net core applications. Forensic Sci. Int.: Digit. Invest. 42, 301404.

Marcelo, Aira, Bren Matthew Ebriega, A.R., 2024. Python-based nodestealer version
targets facebook ads manager. https://www.trendmicro.com/en_us/research/24/l/
python-based-nodestealer.html, 2025-01-02.

Morag, A., 2022. Threat Alert: First python Ransomware Attack Targeting Jupyter
Notebooks. https://www.aquasec.com/blog/python-ransomware-jupyter-noteb
ook/, 2025-01-07.

ncorbuk, 2019. Python-Ransomware. https://github.com/ncorbuk/Python-Ransomwar
e/tree/master, 2024-12-14.

Nelson, N., 2023b. Novel Pypi Malware Uses Compiled python Bytecode to Evade
Detection. https://www.darkreading.com/application-security/novel-pypi-malwa
re-compiled-python-bytecode-evade-detection, 2025-01-06.

Nelson, N., 2024. Citrine Sleet Poisons Pypi Packages with Mac and Linux Malware. htt
ps://www.darkreading.com/threat-intelligence/citrine-sleet-poisons-pypi-packages-
mac-linux-malware, 2025-01-02.

News, T.H., 2023. Python-based Pyloose Fileless Attack Targets Cloud Workloads for
Cryptocurrency Mining. https://thehackernews.com/2023/07/python-based-py
loose-fileless-attack.html, 2025-01-05.

Nguyen, T.C., Vu, D.L., C. Debnath, N., 2024. An analysis of malicious behaviors of open-
source packages using dynamic analysis. In: International Conference on Computer
Applications in Industry and Engineering. Springer, pp. 102–114.

NightfallGT, 2021. BTC-clipper. https://github.com/NightfallGT/BTC-Clipper, 2024-12-
14.

Oygenblik, D., Yagemann, C., Zhang, J., Mastali, A., Park, J., Saltaformaggio, B., 2024.
{AI} psychiatry: forensic investigation of deep learning networks in memory images.
In: 33rd USENIX Security Symposium (USENIX Security 24), pp. 1687–1704.

safesploit, 2023. Python Remote Administration Access (RAT). https://github.com/safes
ploit/PythonRAT/tree/main, 2024-012-14.

Schwartz, J., 2023. ’BlazeStealer’ Python Malware Allows Complete Takeover of
Developer Machines. https://www.darkreading.com/application-security/-blazeste
aler-python-malware-complete-takeover-developer, 2025-01-16.

Smmarwar, S.K., Gupta, G.P., Kumar, S., 2024. Android malware detection and
identification frameworks by leveraging the machine and deep learning techniques:
a comprehensive review. Telematics and Informatics Reports, 100130.

Sourcerer.io, . Python Internals: An Introduction. https://blog.sourcerer.io/python-int
ernals-an-introduction-d14f9f70e583. Accessed: 2024-11-12.

Sylve, J., Case, A., Marziale, L., Richard, G.G., 2012. Acquisition and analysis of volatile
memory from android devices. Digit. Invest. 8, 175–184.

Tam, K., Edwards, N., Cavallaro, L., 2015. Detecting android malware using memory
image forensics. In: Engineering Secure Software and Systems (ESSoS) Doctoral
Symposium.

tarcisio marinho, 2017. GonnaCry Ransomware. https://github.com/tarcisio-mar
inho/GonnaCry/tree/master, 2024-12-14.

The Volatility Foundation, 2017. The Volatility Framework: Volatile Memory Artifact
Extraction Utility Framework. https://github.com/volatilityfoundation/volatility,
2024-12-01.

Volatility Foundation, . dwarf2json Repository. https://github.com/volatilityfoundatio
n/dwarf2json. Accessed: 2025-01-2.

Wan, Y., 2024. PureHVNC Deployed via Python Multi-Stage Loade. https://www.fortine
t.com/blog/threat-research/purehvnc-deployed-via-python-multi-stage-loader,
2025-01-16.

Wang, E., Zurowski, S., Duffy, O., Thomas, T., Baggili, I., 2022. Juicing v8: a primary
account for the memory forensics of the v8 javascript engine. Forensic Sci. Int.: Digit.
Invest. 42, 301400.

Williams, J., 2020. What You Need to Know about the SolarWinds Supply-Chain Attack.
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-
chain-attack/, 2025-01-02.

H. Ali et al.


