
Forensic Science International: Digital Investigation 53 (2025) 301923

2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA

Enhancing DFIR in orchestration Environments: Real-time forensic
framework with eBPF for windows

Philgeun Jin a, Namjun Kim b, Doowon Jeong a,*

a Dept. of Forensic Sciences, Sungkyunkwan University, 25-2 Sungkyunkwan-ro, Jongno-gu, Seoul, 03063, South Korea
b CapeLabs, 16, Heungan-daero 223beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14106, South Korea

A R T I C L E I N F O

Keywords:
Windows eBPF
Container forensics
Kernel-level monitoring
Orchestration environments
Incident response

A B S T R A C T

Digital forensic investigations in Windows orchestration environments face critical challenges, including the
ephemeral nature of containers, dynamic scaling, and limited visibility into low-level system events. Traditional
event log-based approaches often fail to capture essential kernel-level artifacts such as process creation, file I/O,
and registry modifications. To overcome these limitations, this paper introduces a novel DFIR framework that
leverages eBPF to enable real-time kernel-level monitoring in containerized environments. Building on Micro-
soft’s Windows eBPF project, we developed custom eBPF extensions tailored for DFIR. Aligned with NIST SP 800-
61 guidelines, the proposed framework integrates unified workflows for preparation, detection, containment,
and recovery through a centralized management console. Through case studies of cryptocurrency mining, ran-
somware, and blue screen of death attacks, we demonstrate our framework’s ability to identify malicious pro-
cesses that traditional event log-based methods might miss, while confirming minimal system overhead and high
compatibility with existing orchestration platforms.

1. Introduction

With the increasing market share of cloud-native architectures, or-
ganizations have been rapidly adopting various container orchestration
solutions. For instance, the CNCF 2023 annual survey (Cloud Native
Computing Foundation (CNCF), 2023) reports that 66 % of the
responding organizations already use a prominent orchestration plat-
form in production, whereas only 15 % indicated having no plans to
adopt such platforms in the future. This finding suggests that overall
adoption of these technologies will likely continue to rise.

Meanwhile, the short-lived and dynamically scalable nature of con-
tainers poses significant challenges for traditional digital forensics
techniques, such as performing offline analysis after disk imaging. In
these orchestration environments, containers can be created and
destroyed within seconds, leaving only a brief window to capture po-
tential attack artifacts, which in turn increases the complexity of inci-
dent response. Consequently, there is a growing call for new
methodologies and best practices to address these challenges (Sysdig,
2022).

In response to this need, research in Digital Forensics and Incident
Response (DFIR) within orchestration environments has been steadily

advancing. In the Linux ecosystem, tools based on eBPF (extended
Berkeley Packet Filter), such as Falco and Tracee, are widely employed
to monitor kernel-level events in real time, and their adoption for
forensic analysis is growing (Sysdig, 2025; Aqua Security, 2025). By
contrast, research on Windows orchestration environments remains
comparatively underexplored. Current Windows-based logging ap-
proaches predominantly focus on application-level log analysis, making
it challenging to track kernel-level events such as process creation or file
I/O. Recently, Microsoft’s Windows eBPF project (Microsoft. ebpf for
windows) has introduced the potential for monitoring kernel operations
within a secure sandbox environment in Windows. However, unlike
Linux, which provides numerous hook points, the project is currently
limited to collecting network-related information, significantly
restricting its applicability for DFIR.

To address these gaps, this paper develops a novel Windows eBPF
extension and proposes a DFIR framework based on this development.
The proposed framework enables real-time collection and analysis of
kernel events in Windows orchestration environments. Furthermore, the
framework integrates these events with centralized log analysis tools,
such as OpenSearch, to enhance the effectiveness of incident response.
The key contributions of this paper are as follows:

* Corresponding author.
E-mail addresses: philgeun@skku.edu (P. Jin), austin@thecapelabs.com (N. Kim), doowon@skku.edu (D. Jeong).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301923



Forensic Science International: Digital Investigation 53 (2025) 301923

2

• We developed and open-sourced a Windows eBPF extension capable
of collecting critical DFIR artifacts, including process modification
events, file I/O operations, and registry changes. This open-source
project is designed to evolve with contributions from the DFIR
research community.

• We implemented an incident response process aligned with the NIST
SP 800-61 (Cichonski et al., 2012), systematically identifying the
unique requirements for incident response in Windows orchestration
environments, which differ significantly from Linux-based
environments.

• Through case studies, we demonstrate that our framework can detect
kernel-level tampering and low-level attack indicators that tradi-
tional file log–centric forensic techniques often overlook. Addition-
ally, We show that the framework enables rapid attack isolation and
artifact preservation upon detection.

The remainder of this paper is organized as follows. Section 2 re-
views relevant background information, and Section 3 details the
implementation of the Windows eBPF extension. Section 4 introduces
the overall framework and provides in-depth explanations of its com-
ponents. In Section 5, we evaluate the performance and feasibility of the
proposed approach through case studies covering three types of mali-
cious behavior. Finally, Section 6 concludes the paper and discusses
future research directions.

2. Background

2.1. Extended Berkeley Packet Filter (eBPF)

eBPF is a transformative technology that allows user-defined code to
execute securely within the Linux kernel, enabling real-time monitoring
and enforcement of security policies (eBPF.io. ebpf, 2025; Linux Foun-
dation, 2024). Solutions such as Falco, Tracee, and Datadog utilize eBPF
in Linux environments to trace system calls and monitor potential
intrusion vectors. These tools can generate real-time alerts and collect
forensic data upon detecting suspicious activities, facilitating rapid and
context-aware incident response (Sysdig, 2025; Aqua Security, 2025;
Fournier et al., 2021).

2.2. eBPF for windows

Microsoft’s Windows eBPF project, though still in its infancy, seeks
to adapt key concepts from Linux eBPF for the Windows kernel.
Currently, its functionality is limited to network-layer event monitoring
(Microsoft. Progress on making ebpf, 2021).

Simultaneously, there is an industry-wide shift toward tightening
access to the Windows kernel. A notable example is the recent Blue
Screen of Death (BSOD) incident caused by a CrowdStrike Falcon Sensor
update (Microsoft Support, 2025; Warren, 2019), which underscores
Microsoft’s increasing emphasis on stricter control over third-party
drivers and kernel modifications. As these restrictions grow, inte-
grating external security modules or drivers to directly monitor
kernel-level events may become more challenging. Consequently,
eBPF-based event collection within secure sandboxes is likely to gain
prominence as a viable alternative.

However, the early-stage development of Windows eBPF leaves a
significant gap in guidelines or best practices for its use in forensic and
security-monitoring contexts. This limitation highlights the challenges
in capturing and analyzing kernel-level events within Windows
container environments, presenting an open research problem.

2.3. DFIR in orchestration environments

Orchestration environments manage and automate tasks across
distributed systems, applications, and services (Red Hat, 2025). This
paper focuses on Kubernetes as a representative orchestration platform.

As illustrated in Fig. 1, key concepts such as Cluster, Node, Pod, and
Container provide essential context for understanding the framework
proposed in subsequent sections.

In the era of cloud-native computing, containers and orchestration
environments have become foundational components of IT infrastruc-
ture. Due to their ephemeral nature and dynamic scaling under varying
workloads, traditional forensic approaches such as disk imaging are
often infeasible. Once a container is terminated, retrieving events or
artifacts generated within it becomes exceedingly difficult.

In Linux-based Kubernetes environments, eBPF is leveraged to
collect kernel-level events across nodes in real time (Timothy, 2022;
Amin et al., 2023). However, a comparable approach for Windows
orchestration environments remains underexplored, emphasizing the
urgent need for research in this area.

3. Implementation of windows eBPF extension for DFIR

Leveraging eBPF for DFIR in Windows orchestration environments
requires addressing existing limitations and developing practical
deployment strategies. While eBPF in Linux is widely adopted for fo-
rensics and security purposes, its implementation in Windows is still in
its early stages, limiting critical functionalities such as kernel-level event
detection and real-time data collection. These constraints hinder the
efficient collection and analysis of forensic data from Windows nodes,
reducing the overall effectiveness of digital forensics in Windows-based
orchestration setups.

To overcome these challenges, we designed and implemented a novel
eBPF extension capable of detecting four important types of Windows
kernel events, such as process creation, file I/O, registry changes, and
network activities, in real time. This extension was developed with a
focus on extensibility and efficiency, enabling the addition of new
forensic capabilities with minimal modifications as requirements evolve
in various environments. The Windows eBPF extension developed in this
study, referred to as eBPF-for-DFIR, has been released as open-
source,1 allowing professionals and researchers to adopt and enhance it
collaboratively.

3.1. Setting up the windows testing environment for eBPF-for-DFIR
development

Developing kernel-level components such as drivers poses risks to
system stability, making robust isolation a critical consideration. To
mitigate these risks, we configured a Hyper-V virtual machine (VM) as
the primary development and testing environment, ensuring that issues
like kernel panics (e.g., Blue Screen error) would not affect the host
system.

The development environment was established using Microsoft

Fig. 1. Key components of kubernetes.

1 url: https://github.com/capelabs/eBPF-for-DFIR.

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

3

Hyper-V to create a Windows 10–based VM, with the host system
equipped with an AMD Ryzen 7900 processor and 32 GB of RAM. The
VM was allocated 4 cores and 8 GB of RAM, running Windows 10
(version 22H2). Visual Studio 2022 was used as the primary develop-
ment tool.

The eBPF development environment was configured based on
Microsoft’s eBPF for Windows GitHub project (Microsoft. ebpf for win-
dows). This project was installed on a pre-configured virtual environ-
ment to enable the use of eBPF extension. To customize eBPF hooks, we
analyzed Microsoft’s ntosebpfext (Microsofta). Based on the results
of this analysis, we added hook points and modified the system to enable
real-time monitoring of Windows kernel events.

3.2. Development of eBPF-for-DFIR

The development of eBPF-for-DFIR tailored for DFIR demands an
efficient and extensible design to handle the real-time collection of
kernel-level events (e.g., process creation, file I/O, registry modifica-
tions). Fig. 2 illustrates an overview of Windows eBPF integrated with
eBPF-for-DFIR. The section labeled as eBPF-for-DFIR, eBPF Shim
and Collector in the figure represents the component specifically
developed in this study.

3.2.1. Design principles
In this research, the design of eBPF-for-DFIR follows three

principles:

• Modularization: Each data-collection module operates indepen-
dently while sharing common structures and interfaces, enabling
seamless maintenance and future scalability.

• Efficient Data Management: Forensic-relevant events detected via
eBPF hooks are stored in a structured context, ensuring consistency
and preventing redundant data storage.

• Performance Optimization: By filtering unnecessary data at the
kernel level and transmitting only essential information to the user
space, the system enhances efficiency while minimizing CPU and
memory overhead.

3.2.2. eBPF Shim

During the eBPF extension development process, the Microsoft eBPF
for Windows (Microsoft. ebpf for windows) project was utilized to
conduct an in-depth analysis of Windows kernel APIs and identify
suitable hook points. Based on the existing network sample code
(neteventebpfext (Microsofta), we implemented and refined the
Attach, Detach, and Callback functions, enabling the eBPF program
to dynamically attach to or detach from specific events and process
incoming data. Fig. 3 highlights the code responsible for performing the
three key operations of the eBPF Shim.

• Attach Function: Links the eBPF program to specific kernel events
or hook points, enabling real-time monitoring of process creation,
file access, registry changes, and other kernel activities.

• Detach Function: Safely removes the eBPF program when it is no
longer required, freeing system resources and preventing unnec-
essary overhead

• Callback Function: Executes when a kernel event occurs, pro-
cessing the event data, forwarding it to user space, or performing
additional tasks (e.g., logging and alerting).

To enable seamless interaction between eBPF programs and kernel
events, driver development was essential for providing the necessary
interface and real-time event handling capabilities. Driver development
was based on the Kernel Mode Driver (KMDF) template in Visual Studio,
extending the example code provided in the ntosebpfext

(Microsofta).
Compiling the driver code produces three primary files: .sys, .inf,

and.cat. The.sys file contains the key functionality, the.inf file
provides installation guidelines, and the.cat file verifies the integrity
of the driver package. These files ensure that the driver can be safely
installed and operated in a controlled environment. After deployment in
the Hyper-V virtual machine, the driver successfully enables a real-time
eBPF-based data-collection pipeline.

3.2.3. Collector

To effectively capture and process data, the eBPF-for-DFIR was
designed to transfer event information from kernel space to user space.

In the kernel space, an eBPF shim hooks into kernel data to detect
specific events such as process creation/termination, file access, and
registry modifications. When an event is triggered, the eBPF program

Fig. 2. The Diagram of Windows eBPF with eBPF-for-DFIR

Fig. 3. Source Code of the 3 Core Functions of the eBPF Shim

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

4

employs helper functions to store essential details in a eBPF Context,
which then organizes and manages this information.

Listing 1 illustrates an example of the eBPF Context related to the
process.

Listing 1: Example of the eBPF Context Related to Process

The collector interprets the eBPF Context received from the
kernel space, as described earlier, and converts them into an under-
standable format for extracting forensic artifacts. Since the structure of
eBPF Context and the nature of the data they contain vary depending
on the event type, it is essential to define data structures through eBPF

Context analysis and implement specialized parsing modules tailored
to each event type. The processed information for each event type is
transformed into JSON format and forwarded to external systems, such
as log analysis platforms. Section 3.3 provides the detailed explanation
of the data specifications for each event type.

3.3. Data specifications

The eBPF-for-DFIR collects multiple categories of kernel-level
forensic data in a Windows environment, including process, file,
network, registry, and command-line information. This subsection out-
lines the types of data collected and their detailed specifications.

3.3.1. Process creation and termination
The eBPF-for-DFIR collects process-related information as shown

in Table 1. This data can be obtained by parsing the eBPF Context. For
example, referring to Listing 1, the PID is retrieved from PEPROCESS,
while the process creation timestamp is obtained from PPS_CREA-

TE_NOTIFY_INFO. In addition to the PID and creation time, other
critical information is captured for incident investigation, including the
executable path, parent-child relationship, and command-line parame-
ters executed via CMD or PowerShell.

The operation types related to processes are categorized into two
types: creation and termination. These are identified by the enum values
of the operation field, where 0x00 represents creation and 0x01 in-
dicates termination. For each event occurrence, timestamps such as
created_at and destroyed_at can be referenced. In particular, for
process termination events, the exit code can also be captured through

exit_code.

3.3.2. File I/O
In the Windows environment, file operations are handled through

IRP_MJ (Interrupt Request Packet Major Function) codes. Based on the
official Microsoft documentation (Microsoft Corporation, 2024), we
analyzed the key IRP_MJ codes to define and collect crucial file I/O
events. Similar to processes, the operation types of file events can be
identified through the enum value of the operation key (see Tables 2 and
3).

Whenever the file I/O events listed in Table 3 are triggered, related
information such as the file path and timestamps, as shown in Tables 2
and is collected. Notably, the PID of the process that triggered the file
event is also recorded, providing critical data for identifying malicious
activities, such as malware creating infected files or unauthorized
modification of sensitive data.

3.3.3. Network I/O
The network I/O event collection is developed by enhancing the

network collection function provided by Microsoft’s eBPF for Windows.
In the original Microsoft’s implementation, network logs are recorded
only after a session has terminated, due to the duration-based logging
approach. This means that if a malicious process remains active and does
not close its network session, no relevant network logs will be generated,
making it unsuitable for DFIR. To overcome this limitation, we analyzed
the code and removed the duration constraint, enabling continuous
monitoring and real-time recording of network activity.

The eBPF-for-DFIR collects real-time network artifacts, including
IP addresses, port numbers, interfaces, and protocol types (see Table 4).
It captures network activity for protocols, identified by their corre-
sponding enum values: 0x01 for ICMP, 0x06 for TCP, and 0x11 for UDP.
By integrating the collected data with network anomaly traffic detection
system, it can effectively identify malicious communications with
external attacker-controlled servers and attempts at data exfiltration.

3.3.4. Registry change
In the Windows environment, registry modifications are frequently

exploited by malware to establish persistence. To address this, eBPF-
for-DFIR collects forensic artifacts whenever a registry change event
occurs. Specifically, it captures the registry key, value, data type, and the
process ID that triggered the change (see Table 5).

We enumerated the operation types of registry change events based
on the REG_NOTIFY_CLASS value in the Ex_callback_function of
the Windows driver (Microsoft, 2023a), as shown in Table 6. The
REG_NOTIFY_CLASS values provide both pre- and post--

notifications, allowing the system to log registry state information
before and after a change occurs.

3.4. Mapping Processes to pods and containers

In an orchestration environment, it is crucial from a DFIR perspective
to accurately identify the specific Pod or container involved in a threat
incident and take immediate action. In Linux environments, cgroups
provide an easy way to identify container IDs (Hoang et al., 2023), but

Table 1
Data specification for process creation and termination.

Key Type Description

operation unsigned
int32

Types of Process Event Collection (Enum)

pid unsigned int Process PID
ppid unsigned int Parent process PID (available only at creation)
image_file_name unicode

string
Name of the process file

command_line unicode
string

Command-line arguments passed during process
execution

created_at unsigned int Process creation timestamp (available only at
creation)

destroyed_at unsigned int Process termination timestamp (available only
at termination)

exit_code unsigned
int32

Exit code returned when the process terminates
(available only at termination)

Table 2
Data specification for file I/O

Key Type Description

operation unsigned int32 Types of File Event Collection(Enum)
file_name unicode_string File path
create_time long long Create Time
last_access_time long long Last Access Time
last_modified_time long long Last Modified Time
file_size long long File size
pid unsigned long PID of the process that triggered the file

event

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

5

Windows lacks an equivalent feature, making Pod-level forensic analysis
more challenging. To overcome this limitation, we developed a tech-
nique that identifies the specific Pod or container where an event
occurred by analyzing the process hierarchy of Windows nodes and
integrating kernel-level forensic data.

Fig. 4 presents an example of a process hierarchy observed in a
Windows node. The process containerd-shim-runhcs-v1.exe

represents a Pod, while each cmd.exe instance beneath it corresponds
to a container running within that Pod. Below cmd.exe, a power-

shell.exe process indicates that PowerShell is executing inside the
container, which then launches calico-code.exe. Since eBPF Shim
and Collector capture the PID of a process triggering an event such as
a file I/O or a registry change, we can accurately map a process to its
corresponding Pod or container. For instance, if an anomalous activity is

detected in calico-code.exe (PID 5432), identifying the associated
Pod (PID 1468) or container (PID 3468) allows security teams to rapidly
localize the incident and take immediate remediation actions, such as
isolation or further forensic investigation.

4. eBPF-based DFIR framework

This section outlines a comprehensive framework for conducting
DFIR activities in orchestration environments using the custom-
developed eBPF-for-DFIR extension. As depicted in Fig. 5, the pro-
posed architecture aligns with the four major phases of the NIST SP 800-
61 Revision 2 incident response lifecycle: Preparation, Detection &
Analysis, Containment, Eradication & Recovery, and Post-Incident Ac-
tivity. The proposed framework is based on the eBPF-for-DFIR

extension developed in Section 3, and is designed to operate indepen-
dently of any specific container orchestration platform. It is applicable
not only to Kubernetes-based deployments, but also to general
Windows-based container environments, including non-orchestrated
hosts.

• Preparation: Deploy eBPF-for-DFIR and configure a DaemonSet
for Windows nodes, ensuring seamless collection and processing of
kernel-level events.

• Detection & Analysis: Monitor real-time kernel events to identify
indicators of compromise, such as suspicious processes, registry
changes, and anomalous network activity.

• Containment, Eradication & Recovery: Upon detecting malicious
activity, isolate affected containers (Pods), restrict network
communication, and collect memory and volume artifacts to enable
rapid recovery.

• Post-Incident Activity: Analyze collected evidence to reconstruct
the attack chain and improve detection rules, enhancing future
resilience.

4.1. Preparation

The Preparation phase establishes the infrastructure for gathering
and analyzing forensic data from Windows orchestration nodes. Two
critical components of this phase are the DaemonSet-based deployment
of eBPF-for-DFIR and centralized log collection.

4.1.1. Deployment of eBPF-for-DFIR as DaemonSets
In traditional Windows orchestration environments, DFIR prepara-

tions often rely on a sidecar approach, wherein data changes at the

Table 3
Operation types of file event.

Enum Major Function Code Description

0x00 IRP_MJ_CREATE File or directory creation
0x02 IRP_MJ_CLOSE Close file handle
0x03 IRP_MJ_READ Read data from file
0x04 IRP_MJ_WRITE Write data to file
0x06 IRP_MJ_SET_INFORMATION Set file information
0x09 IRP_MJ_FLUSH_BUFFERS Flush file buffers
0x0C IRP_MJ_DIRECTORY_CONTROL Set directory control
0x0D IRP_MJ_FILE_SYSTEM_CONTROL Perform file systemcontrol operations
0x12 IRP_MJ_CLEANUP File cleanup operations

Table 4
Data specification for network I/O

Key Type Description

operation unsigned int32 Types of Network Event Collection(Enum)
src_ip ip_address_t Source IP address
src_port uint16 Source port number
dst_ip ip_address_t Destination IP address
dst_port uint16 Destination port number
interface_name string Interface used during communication

Table 5
Data specification for registry change.

Key Type Description

operation unsigned int32 Types of Registry Event Collection(Enum)
key_path unicode string Path of the registry key
value unicode string Name of the registry value
type ulong Data type
pid unsigned long PID of the process that triggered the registry event

Table 6
Operation types of registry change.

Enum REG_NOTIFY_CLASS value Description

0x01 RegNtPreSetValueKey Set registry value
0x02 RegNtPreDeleteValueKey Delete registry key
0x0F RegNtPostDeleteKey Delete registry key
0x11 RegNtPostDeleteValueKey Delete registry key value
0x10 RegNtPostSetValueKey Set registry key value
0x1A RegNtPreCreateKeyEx Create registry key
0x1B RegNtPostCreateKeyEx Create registry key
0x04 RegNtPreRenameKey Rename registry key
0x13 RegNtPostRenameKey Rename registry key
0x03 RegNtPreSetInformationKey Set registry key information
0x12 RegNtPostSetInformationKey Set registry key information
0x08 RegNtPreQueryValueKey Query registry key value
0x17 RegNtPostQueryValueKey Query registry key value
0x09 RegNtPreQueryMultipleValueKey Query multiple registry key values
0x18 RegNtPostQueryMultipleValueKey Query multiple registry key values

Fig. 4. Example of mapping processes to their corresponding pods and con-
tainers in a windows node.

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

6

application level—such as event logs—are collected by reading log files
within each container. This method requires deploying a dedicated
collector to every container, as well as synchronizing sidecar configu-
rations or versions based on each container’s application version,
creating additional overhead.

In contrast, the DaemonSet approach deploys kernel-level data
collection programs, such as eBPF, on a per-node basis. More specif-
ically, leveraging eBPF in a DaemonSet-based deployment for node-level
log collection offers multiple advantages. First, only one eBPF Pod runs
per node, thereby reducing overall resource overhead. Second, since the
DaemonSet approach operates at the kernel level, compatibility issues
are less pronounced. Given these benefits, deploying eBPF-for-DFIR
as a DaemonSet provides a stable and scalable infrastructure for real-
time log collection.

Furthermore, configuring the system to detect whether a node’s
operating system is Windows or Linux allows eBPF-for-DFIR to be
deployed solely where it is needed, thereby accommodating hybrid
orchestration environments without issue. Specifically, Linux nodes can
continue using their existing eBPF programs, while Windows nodes can
receive separate eBPF-for-DFIR deployments—maintaining consis-
tency in the overall log collection process. This approach enables effi-
cient security monitoring in clusters that host multiple operating
systems.

4.1.2. Centralized log collection
Collected events are transmitted from each node to a central re-

pository for analysis. To evaluate transmission efficiency, three proto-
cols—UDP, TCP, and HTTP—were tested for delivering approximately
28,000 logs to a central Logstash server, which subsequently forwarded
them to OpenSearch.

The experiments revealed no data loss across all protocols; however,
significant differences in transmission time were observed. UDP was the
fastest, completing the transfer in 7.5 s, followed by TCP (203 s) and
HTTP (487 s). Given the high volume of kernel event logs, UDP proved
to be the most suitable for this architecture, balancing speed and
reliability.

4.2. Detection & Analysis

In this section, the focus is on how kernel events collected through
eBPF-for-DFIR can be used to detect threats in real time. Rather than

delving into the detection logic itself, the discussion centers on how
meaningful indicators (e.g., process creation, file I/O) are processed and
correlated to identify abnormal behavior. Specifically, once events from
each node reach the central detection engine, they are evaluated by
predefined rules (e.g., whitelist/blacklist, path monitoring) or an IoC
(Indicator of Compromise) matching engine to determine the likelihood
of a threat.

For instance, when a new process creation event is detected, if the
path or name of the process is not included in a known whitelist (i.e.,
legitimate applications), it is flagged as “suspicious”. At the same time,
any registry modification events are examined to check for evidence of
persistence or auto-run techniques. This rule-based approach is
straightforward yet effective for establishing an initial, rapid detection
layer. Subsequently, if a suspicious event surpasses a certain threshold,
or if it is combined with network connection events that indicate an
excessive number of outbound TCP connections—signaling a potential
attack—the central management console automatically calls the
orchestration API—such as the Kubernetes API—to quarantine the
affected Pod. At that point, additional artifacts associated with the
relevant process or file are gathered. Over time, refining the detection
engine through post-incident analysis ensures alignment with organi-
zational requirements.

4.3. Containment, Eradication & Recovery

Aligned with NIST SP 800-61, this phase involves swiftly neutral-
izing threats while preserving forensic evidence. Key objectives include
isolating compromised Pods, ensuring service continuity across the
cluster, and securing critical artifacts such as volume and memory
dumps for forensic analysis.

4.3.1. Pod Isolation
Pod isolation is a critical step in mitigating attacks while maintaining

service continuity and collecting forensic artifacts. Once the detection
engine identifies a threat, it utilizes the orchestration API—such as the
Kubernetes API—to relabel the compromised Pod and enforce isolation
measures, as illustrated in Fig. 6. This automated workflow ensures an
efficient response through the following steps:

Fig. 5. Proposed eBPF-based DFIR architecture.

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

7

1. Updating Pod Labels Upon Threat Detection: The detection engine
updates the label of the compromised Pod (e.g., to “quarantine”),
distinguishing it from normal Pods labeled as “prod”.

2. Isolating and Blocking Network Traffic: A NetworkPolicy is applied
to prevent any external or internal traffic to the quarantined Pod,
while unaffected Pods continue operating normally to ensure service
continuity.

3. Maintaining Availability via Autoscaling: A new Pod is automatically
created by the replicaset to replace the isolated Pod, ensuring traffic
flow and availability are not disrupted. Simultaneously, volume and
memory dumps of the quarantined Pod are collected for forensic
analysis.

4. Analyzing Quarantined Pods: The isolated Pod is analyzed in detail,
providing crucial insights for the investigation, while unaffected
Pods continue serving incoming traffic.

By isolating the malicious Pod, controlling network access, and col-
lecting vital evidence, the system effectively contains the threat while
preserving service continuity in orchestration environments.

4.3.2. Memory dump analysis
To facilitate more in-depth analysis, it is possible to capture a con-

tainer’s memory dump. As previously discussed, containers can be
classified based on PID, making it feasible to generate a process dump
for any PID associated with malicious activity. Leveraging Microsoft’s
MINIDUMP_TYPE (Microsoft Learn, 2022) with the Mini-

dumpWithFullMemory option allows the complete memory state of
the process to be dumped. This approach employs the MiniDump-

WriteDump API to create a comprehensive memory dump file con-
taining the running process’s code, data, stack, heap, and loaded
modules.

4.3.3. Volume analysis
Volume analysis is essential for determining the extent of an attack

and for safely preserving forensic artifacts.

Step 1: Identify Volume Usage

Establish whether the compromised container relies exclusively on a
container-specific volume or also utilizes shared volumes (e.g., Per-
sistentVolumeClaims (Kubernetes, 2025)). This classification dic-
tates subsequent analysis procedures.

Step 2: Container-Specific Volume Analysis

For containers that use only container-bound volumes, use the con-
tainer’s PID to locate the corresponding container ID within the node’s
metadata.db file (commonly used by containerd). Windows con-
tainers typically maintain a “base snapshot” (.vhdx file) capturing the
initial container state, along with “delta snapshots” generated during
events such as garbage collection, image saving, or container shutdown.
Although specialized tools for parsing these snapshots are limited,
general-purpose utilities like strings can provide partial insights.

Step 3: Shared Volume Analysis

Shared volume can be categorized into three types: volume mounted
at the Pod level, volume mounted at the node level, and persistent
storage volume for Pods (PersistentVolumes). While Pod-specific vol-
umes pose a lower risk of extensive compromise, node-level or Persis-
tentVolumes—accessible by multiple Pods—enable lateral movement.
PersistentVolumes, in particular, persist beyond Pod termination, call-
ing for more comprehensive forensic measures. Because shared volumes
often lack native snapshot capabilities, direct access to the volume path
typically suffices for an initial data examination.

Fig. 6. Procedures for pod isolation and artifact collection.

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

8

4.4. Post-Incident Activity

In the final phase, investigators correlate events stored in a central
repository (e.g., OpenSearch) with memory dumps and volume artifacts
to reconstruct the attack chain and identify its root causes. While this
step aligns closely with traditional incident response methodologies, the
orchestration environment requires special attention to quickly assess
whether the compromise extended to additional services or resources.
Timely containment and strategic improvements to detection rules and
defensive measures are essential to minimizing potential reinfection and
strengthening future resilience.

5. Case studies

To evaluate the practical applicability and effectiveness of the pro-
posed eBPF-based DFIR framework in a real-world Windows environ-
ment, we conducted three case studies involving malicious activities:
cryptocurrency mining, ransomware execution, and blue screen of death
(BSOD) events. The case studies were conducted on a Windows Server
2022 host equipped with 4 CPU cores and 16 GB of RAM. The Windows
container base image used was Windows Server Core LTSC 2019
deployed on an infrastructure composed of kubelet and containerd.
Each case study illustrates a distinct type of malicious behavior, and
Section 5.4 provides a detailed analysis of each scenario.

5.1. Rationale for case selection

These case studies were designed to cover a broad range of kernel-
space event types, including process creation, network connections,
and file or registry modifications. Each case was modeled using well-
known representative programs, selected for their relevance and
impact in real-world attack scenarios.

First, XMRig has been reported to account for approximately 43 % of
cryptocurrency mining attacks, making it one of the most prevalent
threats in this domain (Check Point Software Technologies). Its profit-
ability has motivated attackers to deploy it through various exploits and
vulnerabilities (Labs; Micro; Uptycs).

Second, WannaCry remains one of the most impactful ransomware
strains, reportedly affecting more than 200,000 computers in 150
countries. Major organizations such as FedEx, Honda, and the UK Na-
tional Health Service (NHS) were among the affected (Cloudflare, 2017).

Finally, BSOD represents a critical example of severe system failure
in Windows environments. Identifying the root cause is essential to
determine whether the failure stems from internal errors or external
attacks. Internal causes may include misconfigured infrastructure or
bugs in proprietary code, whereas external causes can result from ma-
licious behavior targeting system components. To simulate and analyze
BSOD conditions, we employed Microsoft’s NotMyFault utility
(Microsoft, 2022a).

5.2. Attack scenario

Company A, a gaming service provider, operates in an orchestration
environment utilizing Windows containers. One day, due to an opera-
tional mistake, the access credentials for a specific Windows container
were leaked, allowing an attacker to infiltrate the container. Exploiting
this vulnerability, the adversary accessed the container and executed
three different malicious behaviors via command-line instructions, each
carried out separately.

Fortunately, Company A’s security team had already deployed the
eBPF-based DFIR framework. It promptly detected the execution of the
malware process. Using an orchestration environment with multiple
Pods, the detection engine efficiently identified the compromised
container by correlating its PID with the active container instance.

5.3. Automated containment workflow

First, the label of the Pod containing the compromised container was
changed from app=prod to app=quarantine, clearly marking its
isolation. Next, network isolation was enforced to block external traffic,
effectively preventing further propagation of the attack. Concurrently,
the orchestration platform’s autoscaling feature launched new Pods as
needed, rerouting traffic to maintain service availability.

Within the isolated Pod, a memory dump was performed, and its
associated storage volume was switched to a read-only mode to preserve
digital evidence for further analysis. These actions ensured both
containment and the safe collection of forensic artifacts.

Finally, the security team conducted an in-depth analysis of the
collected logs and artifacts, thoroughly examining the processes before
and after the incident. Using these findings, they enhanced the organi-
zation’s future incident response and prevention measures.

5.4. Data analysis of case studies

This subsection presents detailed findings from the analysis of
collected eBPF data, OpenSearch logs, and additional insights obtained
from a memory dump.

5.4.1. Cryptocurrency miner - XMRig
The investigation commenced upon detecting the suspicious process

xmrig.exe (PID 9564), leading to further analysis of its command-line
arguments, such as xmrig.exe –cpu-max-threads-hint=1
–threads=1 –cpu-priority=2. These parameters are commonly
associated with cryptomining activities, often involving a wallet
address. If a wallet address can be extracted, blockchain-tracing tech-
niques may facilitate further analysis.

By correlating the execution timeline of xmrig.exe with network
logs, we identified traffic directed to a known cryptomining host
199.247.27.41 over port 3333, reinforcing the hypothesis that
cryptomining activity was occurring. Registry analysis revealed traces
indicating that the RUN key had been queried or inspected, though no
concrete modifications were detected. While this does not confirm the
presence of a persistence mechanism, it suggests potential reconnais-
sance activity or an attempt to verify startup entries.

Further analysis of file creation events allowed us to determine the
exact time when the cryptominer and its associated DLL files were
introduced into the system. Notably, artifacts such as xmrig-6.22.2-
msvc-win64/config.json provided insight into the miner’s config-
uration settings, enabling a more detailed understanding of its opera-
tional parameters.

In parallel, memory dump analysis provided additional forensic in-
sights into the compromised host. Examination of dumped file system
data facilitated the recovery of the original cryptominer executable
along with its configuration details. The analysis further revealed the
DLLs loaded by xmrig.exe, clarifying its cryptomining workflow by
exposing specific functions and library calls utilized during execution.

5.4.2. Ransomware - WannaCry
Ransomware activity was first identified when encrypted files with

the WNCRYT extension, indicative of the WannaCry ransomware family,
were detected. This served as a key indicator of the encryption phase
initiated by the malware.

A suspicious executable file named ed01ebfbc9eb5bbea5
45af4d01bf5f1071661840480439c6e5babe8e080e41aa.exe was traced
to the initial process (PID 9496) responsible for triggering the encryp-
tion. This filename, appearing to be a hash, was submitted to VirusTotal
and was labeled as WannaCry by 68 vendors. This hash-based detection
further strengthened the association to the WannaCry ransomware
variant.

Further investigation revealed that along with the ransomware-
related file @Please_Read_Me@.txt, additional artifacts commonly

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

9

associated with WannaCry were generated, including.eky, .pky,
taskdl.exe, and taskse.exe. These files are typically generated
during ransomware execution.

Registry analysis found evidence that the MachineGuid registry key
had been accessed, suggesting a likely attempt to collect system-specific
identifiers for victim tracking or system fingerprinting. Overall, the
forensic evidence confirms that the system was successfully compro-
mised by WannaCry, resulting in the encryption of files and the presence
of several characteristic IOCs.

5.4.3. Windows BSOD - NotMyFault
When a Blue Screen of Death (BSOD) occurs in a Windows envi-

ronment, it triggers a kernel panic that halts all subsequent logging
activity. Upon confirming that there were no incoming logs, an inves-
tigation was initiated to determine the root cause.

Reviewing the last logged event, analysis revealed that just before
the abrupt halt, the notmyfault.exe /accepteula /crash com-
mand had been executed, and the corresponding process notmyfault.
exe had started, strongly suggesting that an intentional BSOD call
caused the complete suspension of system-level monitoring.

This case highlights the importance of analyzing recent process ac-
tivity when log interruptions are observed, as such behavior may indi-
cate a critical system failure.

5.5. Discussion

These case studies demonstrate that the proposed eBPF-based DFIR
workflow enables rapid incident response in Windows orchestration
environments by capturing critical kernel-level events—such as process
creation, registry modifications, and network connections—even under
high CPU load caused by cryptocurrency mining and ransomware ac-
tivity. While XMRig typically consumes 100 % of CPU resources, eBPF-
based kernel event collection operated seamlessly without performance
degradation. Notably, kernel events were successfully captured up to the
point of a BSOD, enabling postmortem analysis in the event of abrupt
system failures at the node, pod, or container level.

Unlike traditional Windows Event Log-based analysis, which may
experience delays or event loss, this approach collects data directly from
the kernel, ensuring more reliable and timely threat intelligence. In
dynamic containerized environments, where containers are frequently
recreated or scaled, maintaining stable observation points at the kernel
level is crucial for accurate detection and rapid containment.

At present, Windows eBPF provides fewer hook points compared to
its mature Linux counterpart, which may limit the scope of system call
monitoring and internal event tracking. However, the case studies
indicate that eBPF-for-DFIR can effectively detect basic malicious

activities. With continued research and community-driven develop-
ment, the framework has the potential to close the feature gap between
Windows and Linux eBPF implementations. As the Windows eBPF
ecosystem continues to mature, it is expected to offer enhanced support
for large-scale and hybrid orchestration environments through low-
overhead, kernel-level instrumentation.

6. Conclusion

This paper presents an eBPF-based DFIR framework, developed to
address the limitations of real-time kernel-level data collection and
analysis in Windows orchestration environments. The proposed frame-
work is built on eBPF-for-DFIR, a Windows eBPF extension we
developed, which is deployed via DaemonSets and integrated with
centralized log analytics. Aligned with NIST SP 800-61 guidelines, it
enables a systematic approach to incident detection, analysis, contain-
ment, and recovery. Our case studies show how our eBPF-based moni-
toring system enables rapid identification of suspicious processes,
automatic Pod isolation, and reliable forensic artifact preservation, even
under high CPU loads.

Although Windows eBPF remains less mature than its Linux coun-
terpart, this study confirms the feasibility of real-time kernel event
collection for effective incident response. As community contributions
and Windows eBPF hook expansions continue, forensic capabilities will
improve, enhancing system-level visibility. The proposed framework
contributes to strengthening security in cloud-native services and
containerized environments, ultimately enhancing organizational resil-
ience against fast-evolving threats in Windows-based orchestration
environments.

As a priority for future work, we aim to enhance the framework’s
capability to detect critical threats commonly encountered in Windows
environments, such as DLL injection and DLL sideloading. To this end,
we plan to develop eBPF-based extensions capable of identifying the
exact timing, path, and signature status of dynamically loaded DLLs in
real time at the process level. Additionally, we intend to incorporate
mechanisms for monitoring mutex object creation and usage patterns,
thereby improving the detection coverage of stealthy behaviors
frequently associated with advanced persistent threats (APTs).

Acknowledgements

This work was supported by Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIP) (No. 2022-0-00281, Development of digital
evidence analysis technique using artificial intelligence technology).

Appendix A. Extending eBPF-for-DFIR

Extending the functionality of eBPF-for-DFIR can be demonstrated by adding support for capturing process creation events. The first step is to
verify that the target event provides an appropriate callback interface in the Windows Kernel API (Microsoft, 2023b). One such interface is the
PsSetCreateProcessNotifyRoutineEx function, declared in ntddk.h, which provides interfaces used by the Windows NT kernel. The function
declaration is shown in Listing 2.

Listing 2: Registering a callback for process creation

As shown in Fig. 3, the callback is registered in the Attach and must be properly unregistered during Detach to ensure appropriate resource

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

10

cleanup. The registered callback invokes a data transfer routine that forwards event data to the collector. Once the callback is enabled, it is
automatically triggered upon each process creation.

To properly route captured data to the processing module, the eBPF contextmust include a properly defined _ebpf_program_section_info
structure (Microsoftb). Specifically, the bpf_attach_type and bpf_program_type fields must be defined as unique identifiers within the
program_info header definition. The required values for each field are listed in Table A.7.

Table A7
Unique values for data identification in the collector

Type Unique Value

bpf_attach_type guid
bpf_program_type guid, section_name

Appendix B. Performance Evaluation of eBPF-for-DFIR

The eBPF-for-DFIR is designed for collecting real-time forensic data in orchestrated environments. In such environments, high user concurrency
can significantly increase CPU and memory usage, especially when security tools are actively collecting and processing events (Microsoft, 2025).

To evaluate the runtime performance of the eBPF-for-DFIR, we conducted a comparative evaluation with an endpoint detection and response
(EDR) solution, which is widely used for threat detection and incident response in server environments. We selected OpenEDR (Comodo Security,
2022), a representative open-source EDR solution with a data collection scope most comparable to that of eBPF-for-DFIR, as the basis for
comparison.

Both tools (eBPF-for-DFIR and OpenEDR) were evaluated in the same development environment described in Section 3.1. Performance
measurements were collected under three conditions: (1) an idle system, (2) 1,000 concurrent connections simulated using JMeter with Nginx
installed, and (3) 10,000 concurrent connections under the same configuration. Each test was conducted three times for approximately 3 min, and the
results were averaged.

Performance metrics were collected using Windows Performance Recorder (Microsoft, 2022b), Windows Performance Analyzer (Microsoft, 2020),
and Process Explorer (Microsoft, 2024). The primary metrics evaluated were CPU and memory usage. The quantitative comparison is presented in
Table B.8. eBPF-for-DFIR consistently consumed approximately 1.5 MB of memory across all test conditions, whereas OpenEDR used about 31.4
MB.

Table B8
CPU usage (time) & Memory comparison based on experiments

Tool CPU (ms) Memory (MB)

IDLE 1,000 Users 10,000 Users

eBPF-for-DFIR 26.70 36.86 63.78 1.5
OpenEDR 102.27 8,893.71 9,310.93 31.4

Overall, eBPF-for-DFIR exhibited significantly lower CPU and memory consumption than OpenEDR across all load scenarios. However, as an
early-stage framework, eBPF-for-DFIR lacks certain features that OpenEDR supports, such as DLL injection detection, system monitoring, and self-
protection mechanisms. If additional extensions are developed to overcome these limitations, eBPF-for-DFIR could serve as a practical alternative
for resource-constrained environments, given its lightweight architecture and reliable data collection capabilities.

References

Amin, Sadiq, Syed, Hassan Jamil, Ansari, Asad Ahmed, Ibrahim, Ashraf Osman,
Alohaly, Manar, Elsadig, Muna, 2023. Detection of denial of service attack in cloud
based kubernetes using ebpf. Appl. Sci. 13 (8), 4700.

Aqua Security, 2025. Aqua tracee: runtime ebpf threat detection engine. https://www.
aquasec.com/products/tracee/. (Accessed 27 January 2025).

Check Point Software Technologies. Xmrig malware. https://www.checkpoint.com/cyb
er-hub/threat-prevention/what-is-malware/xmrig-malware/. (Accessed 27 January
2025).

Cichonski, P., Millar, T., Grance, T., Scarfone, K., 2012. In: Nist Sp 800-61 Rev. 2
Computer Security Incident Handling Guide, Revision second ed. National Institute
of Standards and Technology, US Department of Commerce, Gaithersburg, MD,
pp. 1–79.

Cloud Native Computing Foundation (CNCF), 2023. Cncf annual survey 2023. http
s://www.cncf.io/reports/cncf-annual-survey-2023/. (Accessed 27 January 2025).

Cloudflare, 2017. What Was the WannaCry Ransomware Attack? (Accessed 11 April
2025).

Comodo Security, 2022. OpenEDR. https://github.com/ComodoSecurity/openedr.
(Accessed 11 April 2025).

eBPF.io. ebpf. https://ebpf.io/, 2025–. (Accessed 27 January 2025).
Fournier, Guillaume, Afchain, Sylvain, Baubeau, Sylvain, 2021. Runtime security

monitoring with ebpf. In: 17th SSTIC Symposium sur la Sécurité des Technologies de
l’Information et de la Communication.

Hoang, Varik, Hung, Ling-Hong, Perez, David, Deng, Huazeng, Schooley, Raymond,
Arumilli, Niharika, Yeung, Ka Yee, Lloyd, Wes, 2023. Container profiler: profiling
resource utilization of containerized big data pipelines. GigaScience 12, giad069.

Kubernetes, 2025. Persistent volumes. https://kubernetes.io/docs/concepts/storage/p
ersistent-volumes/. (Accessed 27 January 2025).

Labs, Huntress. Threat advisory: xmrig cryptomining by way of teamviewer. https://
www.huntress.com/blog/threat-advisory-xmrig-crypto-mining-by-way-of-t
eamviewer. (Accessed 27 January 2025).

Linux Foundation, 2024. Threat model and independent verifier audit examine the
security of ebpf. https://www.linuxfoundation.org/press/threat-model-and-indepen
dent-verifier-audit-examine-the-security-of-ebpf. (Accessed 27 January 2025).

Micro, Trend. Examining water sigbin’s infection routine leading to an xmrig
cryptominer. https://www.trendmicro.com/en_us/research/24/f/water-sigbin-xmr
ig.html. (Accessed 27 January 2025).

Microsoft, 2020. Windows performance analyzer. https://learn.microsoft.com/e
n-us/windows-hardware/test/wpt/windows-performance-analyzer. (Accessed 11
April 2025).

Microsoft, 2022a. NotMyFault. https://learn.microsoft.com/en-us/sysinternals/down
loads/notmyfault. (Accessed 11 April 2025).

Microsoft, 2022b. Windows performance recorder. https://learn.microsoft.com/e
n-us/windows-hardware/test/wpt/windows-performance-recorder. (Accessed 11
April 2025).

Microsoft, 2023a. Ex_callback_function (wdm.h) - windows drivers. https://learn.micros
oft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-ex_callback_function.
(Accessed 27 January 2025).

Microsoft, 2023b. Kernel. https://learn.microsoft.com/en-us/windows-hardware/driver
s/ddi/_kernel/. (Accessed 11 April 2025).

P. Jin et al.



Forensic Science International: Digital Investigation 53 (2025) 301923

11

Microsoft, 2024. Process explorer. In: https://learn.microsoft.com/sr-latn-rs/sys
internals/downloads/process-explorer. (Accessed 11 April 2025).

Microsoft, 2025. Troubleshoot performance issues related to real-time protection. http
s://learn.microsoft.com/en-us/defender-endpoint/troubleshoot-performance-issues.
(Accessed 11 April 2025).

Microsoft Corporation, 2024. !irp. https://learn.microsoft.com/ko-kr/windows-hardwar
e/drivers/debuggercmds/-irp. (Accessed 27 January 2025).

Microsoft. ebpf for windows. https://github.com/microsoft/ebpf-for-windows. (Accessed
27 January 2025).

Microsoft Learn. Minidump_type enumeration. https://learn.microsoft.com/en-us/windo
ws/win32/api/minidumpapiset/ne-minidumpapiset-minidump_type, 2022–.
(Accessed 27 January 2025).

Microsoft. Progress on making ebpf work on windows. https://opensource.microsoft.com
/blog/2021/11/29/progress-on-making-ebpf-work-on-windows/, 2021–. (Accessed
27 January 2025).

Microsoft Support, 2025. Kb5042421: Crowdstrike issue impacting windows endpoints
causing an 0x50 or 0x7e error message on a blue screen. https://support.microsoft.
com/en-us/topic/kb5042421-crowdstrike-issue-impacting-windows-endpoints-cau
sing-an-0x50-or-0x7e-error-message-on-a-blue-screen-b1c700e0-7317-4e95-aeee-
5d67dd35b92f. (Accessed 27 January 2025).

Microsoft. Ntos ebpf extensions. https://github.com/microsoft/ntosebpfext. (Accessed
27 January 2025).

Microsoft. _ebpf_program_section_info struct reference. https://microsoft.github.io/
ebpf-for-windows/struct__ebpf__program__section__info.html. (Accessed 11 April
2025).

Red Hat, 2025. What is orchestration? https://www.redhat.com/en/topics/automation/
what-is-orchestration. (Accessed 27 January 2025).

Sysdig, 2022. Practical guide for dfir kubernetes. https://sysdig.com/blog/guide-kube
rnetes-forensics-dfir/. (Accessed 27 January 2025).

Sysdig, 2025. Falco. https://falco.org/. (Accessed 27 January 2025).
Timothy, D Zavarella, 2022. A Methodology for Using eBPF to Efficiently Monitor

Network Behavior in Linux Kubernetes Clusters. Massachusetts Institute of
Technology. PhD thesis.

Uptycs. New threat detected: inside our discovery of the log4j campaign and its xmrig
malware. https://www.uptycs.com/blog/threat-research-report-team/log4j-campai
gn-xmrig-malware. (Accessed 27 January 2025).

Warren, Jeff, 2019. Falcon update for windows hosts – technical details. https://www.cr
owdstrike.com/en-us/blog/falcon-update-for-windows-hosts-technical-details/.
(Accessed 27 January 2025).

P. Jin et al.


