
Forensic Science International: Digital Investigation 53 (2025) 301922

2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA

If at first you don’t succeed, trie, trie again: Correcting TLSH scalability
claims for large-dataset malware forensics

Jordi Gonzalez
The MITRE Corporation, 7525 Colshire Drive, McLean, 22102, VA, USA

A R T I C L E I N F O

Keywords:
Locality-sensitive hashing
Malware analysis

A B S T R A C T

Malware analysts use Trend Micro Locality-Sensitive Hashing (TLSH) for malware similarity computation,
nearest-neighbor search, and related tasks like clustering and family classification. Although TLSH scales better
than many alternatives, technical limitations have limited its application to larger datasets. Using the Lean 4
proof assistant, I formalized bounds on the properties of TLSH most relevant to its scalability and identified flaws
in prior TLSH nearest-neighbor search algorithms. I leveraged these formal results to design correct acceleration
structures for TLSH nearest-neighbor queries. On typical analyst workloads, these structures performed one to
two orders of magnitude faster than the prior state-of-the-art, allowing analysts to use datasets at least an order of
magnitude larger than what was previously feasible with the same computational resources. I make all code and
data publicly available.

1. Introduction

The growing volume of both malicious and benign software presents
a growing burden to malware analysts and security vendors. They must
accurately identify connections between malware samples while
avoiding false associations between innocuous files and malware, and
between unrelated malware families.

Locality-sensitive hashing (LSH) (Indyk andMotwani, 1998; Haq and
Caballero, 2021) helps analysts solve this problem by providing a pre-
cise (Oliver et al., 2013) dimensionality reduction technique, whereby
more similar pieces of software have higher spatial proximity. This
capability enables at-scale approximate nearest-neighbor searches
(Breitinger et al., 2014) and, in turn, clustering (Oliver et al., 2021; Bak
et al., 2020), antivirus whitelisting (Smart Whitelisting Using Locality
Sensitive, 2017), detection (Intelligence, 2021; Naik et al., 2019a),
malware campaign tracking (Naik et al., 2019b), and threat information
sharing (Almahmoud et al., 2022; Jordan et al.).

Trend Micro Locality-Sensitive Hashing (Oliver et al., 2013; Oliver,
2024a) (TLSH) emerged as a standard locality-sensitive hash function
for malware analysis. However, efficiently searching for similar hashes

in large TLSH datasets remains a challenge: even though it is possible to
compute TLSH hashes rapidly for a set of inputs, and even though it is
possible to compare different pairs of hashes rapidly, finding
nearest-neighbors is computationally demanding and scales poorly with
corpora size. The root of this issue is in TLSH’s distance function, which
violates the triangle inequality and, therefore, limits the use of metric
data structures for nearest-neighbor searches. No correct,
non-approximate, publicly available algorithm was found that
addressed this gap. This work makes several contributions toward
closing it.

First, this work uses the Lean 4 theorem prover (de Moura and Ull-
rich, 2021) to provide formal, tight bounds on the triangle inequality
violations for the TLSH distance function and its various sub-
components. This exposes an error in prior research that underestimated
the bounds by a factor of over 20 (see Table 1).

Second, based on those theoretical results, this work presents two
TLSH-specific nearest-neighbor acceleration structures: one, based on
tries (Fredkin, 1960), and another, based on vantage-point (VP) trees
(Yianilos, 1993; Uhlmann, 1991).

Third, this work evaluates the performance of these structures on

E-mail address: jgonzalez@mitre.org.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301922

Forensic Science International: Digital Investigation 53 (2025) 301922

2

real-world and synthetic data, demonstrating >10x throughput on
common workloads compared to corrected versions of the prior state-of-
the-art.

Finally, all code is made available at https://github.com/mitre/f
ast-search-for-tlsh.

2. Background

2.1. Design of TLSH

The TLSH whitepaper (Oliver et al., 2013) accurately describes TLSH
behavior. This subsection summarizes the aspects of the whitepaper
most relevant to this work.

TLSH maps arbitrary byte streams to fixed-length hashes. The hashes
are split into a “header” component and a “body” component. As illus-
trated in Fig. 1, these two components have several subcomponents, or
“features.” The precise semantics of these features are unimportant to
this work, but their layout is illustrated by Fig. 1.

Computing the distance between two samples using TLSH is a three-
step process:

First, TLSH hashes are computed for both files. Second, each feature
in one TLSH hash is compared against the corresponding feature in the
other TLSH hash, and the feature distances are recorded. Finally, these
distances are summed to produce the final TLSH distance. Fig. 2 presents
this visually.

The formulae used to compute feature distances are specific to the
features being compared. For example, the formula for checksum (the
first feature in Fig. 1) distance can only output distances of zero or one.

Not mentioned in the whitepaper, but deeply relevant to this work, is
that most of these formulae are not metrics in the mathematical sense
because they do not all obey the triangle inequality. However, they are
semi-metrics because they are all symmetric, non-negative, and only
yield distances of zero when two features are the same.

The proofs of these claims are omitted for reasons of triviality: for

example, all TLSH formulae accumulate distance by either adding
modular distances (a counting-based distance metric (Oliver et al.,
2013)), positive constants, or absolute values of expressions (Oliver
et al., 2013). As these all constitute natural numbers, and as the naturals
are closed under addition, TLSH distances must also be naturals; and
proof that TLSH distance violates the triangle inequality follows trivially
from the proof that TLSH can violate the triangle inequality by 430
distance units, which I include in Appendix A, complete with
constructive examples. Others have also made constructive (if not
maximal) proofs available (Baggett, 2023).

2.1.1. TLSH for malware forensics
TLSH offers several practical attributes for malware forensics and

analysis: TLSH is open and permissively licensed (Oliver, 2024a), so
unlike proprietary LSH schemes, there are no limitations or costs asso-
ciated with its access or usage. TLSH also performs competitively in
comparative evaluations, particularly in terms of accuracy and robust-
ness to adversarial attacks (Oliver and Hagen, 2021). Finally, as a cor-
ollary of doing well amongst high-uptake LSH schemes, TLSH benefits
from strong network effects, having been adopted by platforms like
VirusTotal.

These features are of value to analysts as they facilitate the sharing
and broader use of TLSH hashes. For example, because VirusTotal
adopted TLSH, analysts can conduct TLSH-similarity queries on the
entire VirusTotal corpus (VirusTotal, 2024).

2.1.2. TLSH limitation
Unfortunately, a TLSH technical limitation disrupts the viability of

large-corpora TLSH nearest-neighbor queries. Indeed, “due to perfor-
mance reasons”, VirusTotal throttles TLSH queries to a rate of 15 per
minute for paying users and prohibits their use entirely for non-paying
users. Moreover, VirusTotal’s TLSH indexing and querying algorithms
are private, and a review of the literature found no public alternatives.
This leaves no straightforward way for those in the industry to bear the
cost of self-hosting a similar service. The lack of such tooling necessarily
constrains analysts’ ability to use TLSH with large malware datasets.

This limitation stems from the fact that TLSH is only a semi-metric,
not a metric: it violates the triangle inequality.

In a metric space, the triangle inequality suggests that if Alice and
Bob are close, and if Bob and Eve are close, then one can use their
closeness to bound the distance between Alice and Eve. If TLSH were a
metric, VP trees (Yianilos, 1993) could enable efficient nearest-neighbor
searches, because TLSH hashes could be laid out in such a way that these
bounds can direct a search, and, in turn, enable pruning of large areas of
the search space.

Because TLSH does not obey the triangle inequality, the use of
metric-based techniques for nearest-neighbor searches is limited. Ana-
lysts ostensibly must either conduct exhaustive linear scans of the entirety
of a dataset, every time that a query is conducted; or analysts must use
approximate nearest-neighbor search and sacrifice precision, recall, or
both.

2.2. Related work

2.2.1. Research into TLSH scalability
The official TLSH documentation contradicts the claims of this paper,

noting that “TLSH is very fast at nearest-neighbor search at scale […]
being a distance metric (as per the mathematical definition) and hence
has logarithmic search times […] and in particular [obeys] the triangle
inequality” (Oliver, 2021a). However, this is misleading, as the authors
now publicly acknowledge that “the [TLSH] distance function does not
obey the triangle inequality” (Oliver, 2024b) and is only “an approxi-
mate distance metric” (Oliver et al., 2020).

Prior work to improve TLSH’s scalability has had varying degrees of
applicability. For instance, Trend Micro Research documented one
improvement to the use of TLSH for clustering, centered around the

Table 1
TLSH triangle inequality distance violations.

Component Violation

Header Distance Violations
Checksum-distance 0
L-distance 22
q1-distance 12
q2-distance 12
Total Header Distance 46
Body Distance Violations
Per-bucket body distance 3
Total Body Distance (128 buckets) 384
Overall Violation 430

Fig. 1. Structure of a TLSH hash.

Fig. 2. TLSH file comparison pipeline.

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

3

parallelization of a clustering algorithm (Ali et al., 2020). While this can
improve throughput on a system in (at best) direct proportion to the
amount of available system parallelism, it does not solve the high
computational costs of TLSH queries themselves; rather, it just allows
that cost to be distributed across more CPU cores.

Other Trend Micro Research work presented two different acceler-
ation structures for TLSH nearest-neighbor search: a random forest and a
VP tree (Oliver et al., 2021). This work avoids the former because it only
gives approximate results, as noted in the prior work. The latter, as was
also noted, is a path toward an exact algorithm, making it highly rele-
vant. This work builds off their VP tree concept.

A careful reader may note that VP trees were previously implied to be
incompatible with non-metric distance functions. The prior work at-
tempts to address this based on the premise that because TLSH is still
“within a constant of a metric” (Oliver et al., 2020), and because “dis-
tance functions that are within a constant [factor] of a metric” can still
be accelerated, a special VP tree can still work (Oliver et al., 2020, 2021)
if it considers additional nodes. The flaw with that work is in the
implementation: the authors assume that the constant factor is 20
(Oliver, 2021b), which is incorrect. To be correct, the authors should
have used 430 (see Table 1). Unfortunately, applying this correction
reduces the performance of their implementation to that of unaccel-
erated, linear scanning (see Fig. 3).

2.2.2. Non-TLSH alternatives
Several mainstream LSH schemes, like ssdeep (Kornblum, 2006) and

sdhash (Roussev, 2010), can be used as TLSH alternatives; however,
these do not solve the underlying scalability problem and, in compara-
tive evaluations, often fail to outperform TLSH (Oliver et al., 2013;
Pagani et al., 2018; Azab et al., 2014).

Other LSH schemes map to proper metric spaces (Gu et al., 2013;
Oprişa et al., 2014), theoretically enabling efficient nearest-neighbor
search. In spite of this advantage, and in spite of other potential ad-
vantages held by competing algorithms, they haven’t yet displaced
TLSH; accordingly, TLSH still enjoys an ecosystem size advantage.

Within digital malware forensics specifically, several LSH schemes
exist as specialized algorithms, like PermHash for Chromium extensions
(Wilson, 2023), or peHash for PE files (Wicherski, 2009). These spe-
cializations can be highly constraining: peHash, for example, will never
identify relationships in code similarity between Mac, Windows, and
Linux payloads, as ELF files are not PE files, and neither are Mach-O files.

While many non-LSH techniques exist (Haq and Caballero, 2021),
none were identified in the literature with the compactness (Oliver et al.,
2013), throughput (Oliver et al., 2013; Haq and Caballero, 2021; Li
et al., 2019), generality (Oliver et al., 2013), and wide uptake of LSH
schemes.

3. Methods

This research is divided into three sections: theoretical analysis to
formalize TLSH’s triangle inequality violations, algorithm design to
exploit the theoretical results, and comparison of the devised algorithms
to alternatives.

3.1. Theory

I first proved bounds on the degree to which TLSH subcomponents
could violate the triangle inequality, formalizing the proof using the
Lean v4.14.0 (de Moura and Ullrich, 2021) proof-assistant and mathe-
matical library (The mathlib community, 2020).

Specifically, lettingH1,H2,H3 be any three distinct TLSH hashes, and
letting d(x, y) represent the contribution of a feature of TLSH to the total
TLSH distance, I solved for the tightest bounds on c in the triangle
inequality, d(H1, H3) ≤ d(H1, H2) + d(H2, H3) + c.

Building on those results, I showed bounds for the TLSH distance
function and its constituent header and body components. For the proof

itself, see Appendix A.

3.2. Algorithm design

I implemented and tested the following algorithms. For each,
Appendix B includes pseudocode.

3.2.1. VP tree
I implemented a VP tree (Yianilos, 1993; Uhlmann, 1991), inspired

by prior work (Oliver et al., 2020).
Unlike existing methods, this VP tree exclusively indexes the TLSH

header component, which, in theory, confers two advantages over
indexing the entirety of a TLSH hash: faster VP tree index construction
because body feature distance never needs to be computed; and faster
VP tree queries because header component distance violates the triangle
equality to a much lesser degree than body component distance, which
allows for more aggressive pruning during searches.

Because body component distance still matters, it is checked before a
candidate is added to the resulting nearest-neighbor list; if the sum of
header and body distance for two hashes is outside the “cutoff” for what
defines a nearby-neighbor, it is pruned.

3.2.2. Trie with schema-learning
I implemented a novel, trie-based (Fredkin, 1960) approach to

nearest-neighbor queries. Rather than search for nearby neighbors in the
order that TLSH features are laid out in a hash, it uses a greedy, ran-
domized algorithm to find an ordering, or “schema,” that maximizes the
number of nodes pruned at shallow levels of the search tree.

Trie search follows the ordering laid out in the schema. Helpfully,
schemas can be saved and reused on different datasets. In trie search, the
proofs of each TLSH feature’s contributions to the total triangle
inequality violation are used to constrain the search radius.

3.2.3. Replication of prior work
I implemented and evaluated the VP tree design described by Trend

Micro Research (Oliver, 2021b) in Rust in order to evaluate performance
relative to prior work.

Concerning the correctness issue outlined in Section 2.2.1, I tested
“corrected” and “uncorrected” versions of their algorithm.

3.2.4. Linear scanning
Linear scanning served as a control.
Though largely outside the scope of the paper, the source code for

this work includes a parallel, Tensorflow-accelerated (Abadi et al.,
2015) Python library for working with TLSH on large datasets.
Appendix C covers the performance of its linear scanning routine.

3.3. Empirical evaluation

3.3.1. Datasets
I evaluated performance on two datasets: randomly generated syn-

thetic TLSH hashes, and a convenience sample of 1,263,016 TLSH
hashes sourced from the VirusTotal metadata for a local repository of
VirusShare (VirusShare.com, 2024) data.

The latter dataset represents the entirety of an employer-maintained
collection of data. Data was not filtered prior to or during the evaluation.
Furthermore, and in the interest of transparency, the data is provided in
the source code associated with the paper (see Appendix A).

3.3.2. Workloads
This work examined three groups of nearest-neighbor search work-

loads, based on common analytical tasks.
“Near” neighbors were defined as those with a TLSH distance of at

most 30, as this is a standard industry and academic choice (Hutelmyer
and Borre, 2024; Joyce et al., 2023) with TLSH. Larger cutoffs trade
precision for recall (Oliver et al., 2013).

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

4

1. All-to-all workloads:
An analyst may receive a set of samples to triage and want to

cluster them.
To approximate inefficient clustering algorithms, I do pairwise

comparisons of every sample in corpora of sizes 5000 and 10,000.
2. Fixed-query-size, variable-corpora-size workloads:

An analyst may receive a set of samples to triage and want to check
which are novel.
To approximate this task, I measured the time it took to conduct

1000 queries on various-sized subsets of a larger corpus. The queries
were chosen randomly from the larger corpus rather than its subset.

3. Variable-query-size, variable-corpora-size workloads:
An analyst may use TLSH and a specialized clustering algorithm

requiring very few comparisons.
To approximate more efficient clustering algorithms, I measured

the time it took to query a random 10 % of corpora of various sizes.
The sampling procedure is the same as for the fixed-query-size,
variable-corpora-size workload.

To assess whether the choice of 30 as a distance cutoff biased the
results and to capture alternative workloads, I evaluated cutoffs from 1
to 1000. Note that at cutoffs above 200, TLSH may exceed a false-
positive rate of 50 % (Oliver et al., 2013), so measurements past that

Fig. 3. Assorted performance metrics for the various algorithms with cutoff of 30.

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

5

point are of questionable utility.
To assess whether aspects of these workloads were “shifted” from

query-time to preprocessing-time in a way that might prove too
computationally demanding or wasteful for specific tasks, I also evalu-
ated the time spent building the acceleration structures.

Note that because a single schema may be reused with different
corpora, the choice to do schema-learning (rather than reuse a single
schema) represents a trade-off between data structure efficiency and
preprocessing time. Although this has little influence on results, I show
measurements of trie preprocessing with and without schema-learning.

3.3.3. Benchmark environment
I ran all benchmarks 11 times on a 12-core M2 Max MacBook Pro

using high-performance mode on macOS 15.2. Reported results repre-
sent median execution times. The testing harness and associated algo-
rithms were built with Rust 1.83.0. The benchmark suite recorded CPU
clock speeds using the sysinfo crate (Sysinfo, 2024). The records showed
no indications of throttling.

4. Results

4.1. Theory

I quantified the contribution of different TLSH features to the total
violation of the triangle inequality. For information regarding the proof,
please see Appendix A.

Fig. 4. Effect of different cutoff levels on algorithm performance.

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

6

Note the precise semantics of these features is of low direct relevance
to this work.

4.2. Scaling by workload and data source

Fig. 3 shows algorithm performance when the cutoff for similarity is
30 and corpora sizes are varied. Fig. 4 shows the performance of the
algorithms when only the cutoff for similarity is varied.

4.3. Fixed-workload results

Both indices outperformed linear scanning on the 10,000-to-10,000,
cutoff-of-30, clustering-like workloads. The VP tree was strictly faster
than the trie on real-world data.

Results were similar on 1000-to-1,000,000 workloads.

5. Discussion

The results make for several substantial contributions to the TLSH
scalability literature.

The analysis of TLSH’s triangle inequality violations was the most
relevant to prior literature because it demonstrated errors in prior work.
Table 1 showed that the triangle inequality could be violated by a
constant factor of 430, far exceeding the prior estimate of 20 (Oliver,
2021b). After correcting this error in the prior work, its performance
degraded to that of linear scanning (see Fig. 3b).

The results on synthetic data were much better for the acceleration
structures than the results on real-world data. This discrepancy likely
stems from the tighter distribution of TLSH features in real-world data.
For example, file length–a key TLSH feature–has much lower variance in
real-world datasets than in randomly generated data. This tighter clus-
tering means hashes have more plausibly nearby neighbors, reducing
opportunities for pruning during queries. This analysis focuses on real-
world data to avoid drawing biased conclusions.

5.1. VP tree

Compared to the corrected prior work and linear scanning, I see
much better performance–over an order of magnitude greater
throughput at the standard cutoff of 30–with the presented VP tree. The
uplift was in both index construction (Fig. 3f) and querying (Fig. 3d),
due to reduced computational overhead during construction (as body
distance does not get used) and more aggressive pruning during
searches, respectively.

The VP tree demonstrated performance advantages during index
construction at all cutoff levels and against all tested data structures (see
Fig. 4f).

Although the VP tree underperformed linear scanning at extremely
wide similarity cutoffs, at every cutoff below 200–when ≥50 % false
positive rates are known to occur (Oliver et al., 2013) and broader
cutoffs are likely to be impractical–the VP tree was the fastest technique
(see Fig. 4d).

The advantage was particularly pronounced in Fig. 4b, which rep-
resents cases where index construction times amortize away; here, the
VP tree was the best performing up to cutoffs of approximately 400.

5.2. Trie

I diverged from prior work by introducing a novel, trie-based VP tree
alternative for TLSH nearest-neighbor search. At very strict cutoffs, the
trie outperforms the VP tree and the prior work by an order of magni-
tude, but this advantage quickly vanishes at higher cutoff values. At
cutoffs above 10, the VP tree shows a consistent performance advantage,
and at cutoffs above 100, the trie underperforms linear scanning. This
stark regression is likely because, with each query, the trie performs an
exhaustive breadth-first search. It is only because of aggressive pruning,

which requires tight cutoffs, that trie search is performant.

5.3. Linear scanning

Because linear scanning performance is unaffected by cutoff (see
Fig. 4d), linear scanning may be advantageous in certain ultra-high-
cutoff use cases. On smaller corpora, even when linear scanning is
slower than querying indexed structures, highly demanding workloads
like all-to-all queries can still be completed in seconds (see Fig. 5).
Consequently, there may be cases where linear scanning is preferable to
indexed searches for speed or convenience.

Nevertheless, linear scanning performance degrades quickly with
larger corpora and more queries. Fig. 6 demonstrates this limitation,
showing a large performance gap between the index-based algorithms
and linear scanning.

5.4. Implications

The results were highly pronounced on clustering workloads, where
the best algorithm–the VP tree–delivered a 10 × performance uplift
compared to the state-of-the-art (see Fig. 3b). Though difficult to see on
a log scale, performance scaling was also much better with the VP tree

Fig. 5. Median profile of an all-to-all workload involving a 10,000-hash corpus,
by data source.

Fig. 6. Median profile of a 1000-to-1,000,000 workload, by data source.

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

7

than with the prior work.
Unlike clustering workloads, where the number of nearest-neighbor

queries grows with the size of the dataset, malware corpus search APIs
like VirusTotal’s “Advanced Corpus Search” (VirusTotal, 2024) repre-
sent workloads that consist entirely of a single nearest-neighbor query.
For these APIs and workloads, performance improvements for queries
directly translate to increased API or analyst capacity: at a cutoff of 30,
compared to the prior state-of-the-art, a nearest-neighbor search API
using the VP tree can either dispatch ten times as many queries or query
a dataset ten times the size, with the same compute budget.

6. Conclusion

I’ve shown, using a formal proof assistant, fundamental limitations
in TLSH and their impact on prior TLSH nearest-neighbor search
implementations. Building on the formal results, I’ve presented two data
structures that could overcome these limitations: one based on a
vantage-point tree, and another based on a trie-like structure.

Experimental results show that on real-world data, for nearest-
neighbor queries and associated clustering workloads, these data
structures provide one to two orders of magnitude greater throughput
relative to the state of the art. Except at the most stringent cutoffs for
what constitutes a “near neighbor,” the vantage-point tree was the
fastest of the two new data structures. These performance improvements

allow analysts to process datasets an order of magnitude larger than
what was previously feasible with the same resources.

It is hoped that–given the large design space for this particular
problem–the formal results, benchmarking tools, and code for working
with TLSH may serve as a foundation for further improvements.

Acknowledgments

I want to acknowledge Corvus Forensics for maintaining the Virus-
Share dataset, which made it viable to test on real-world data. I would
also like to thank MITRE and MITRE’s sponsors for sponsoring this
research, particularly Brian Shaw, Christopher Andersen, Dan Perret,
Dr. Justin Brunelle, Frank Posluszny, Laurence Hunter, Morgan Keiser,
and Tim McNevin.

I want to give additional thanks to Brian Shaw, Christopher Ander-
sen, Dr. Justin Brunelle, and Tim McNevin for their invaluable
constructive criticism; Frank Posluszny, for his feedback and for
providing me with the malware metadata from which the real-world
TLSH digests were extracted; and Laurence Hunter, for his mentor-
ship, generosity, and feedback, without which this could not have been
written.

This software (or technical data) was produced for the U.S. Gov-
ernment and is subject to the Rights in Data-General Clause 52.227–14,
Alt. IV (May 2014) – Alternative IV (Dec 2007).

Appendix A. Supplemental Material

All supplemental material can be found at https://github.com/mitre/fast-search-for-tlsh.

Appendix B. Pseudocode

All algorithms take in a data structure holding a corpus, a query, and a radius used as the cutoff for similarity search.
The VP tree is constructed as any other: assume every node in the tree is a vantage-point with radius of size node.threshold. Little improvement

was observed with different vantage-point selection strategies. The approach described as “prior literature” differs only in 430 being used as
MAX_HEADER_VIOLATION, and with the total distance being used instead of header distance.

Algorithm 1. Query logic for VP tree

function RANGE_QUERY(tree, query, radius)
results ← []
stack ← [tree.root]
new_radius ← radius + MAX_HEADER_VIOLATION
while stack not empty do
node ← stack.pop
header_dist ← HEADER_DIST(node.point, query)
body_dist ← BODY_DIST(node.point, query)
if header_dist + body_dist ≤ radius then
append node.point to results
end if
if header_dist - new_radius ≤ node.threshold then
append node.left to stack
end if
if header_dist + new_radius ≥ node.threshold then
append node.right to stack
end if
end while
return results

end function

The trie has both a searching component and a schema-learning component.

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

8

Algorithm 2. Trie schema-learning logic

function LEARN_SCHEMA(data, cutoff)
sample_n ← MIN(64, |data|)
sampled_data ← randomly sample sample_n from data
schema ← []
max_cutoffs ← 0
loop
best_feature ← null
best_num_cutoffs ← max_cutoffs
best_feature_by_sum ← null
best_sum ← 0
feature_range ← 0.36 ⊳ 36 = # TLSH features
for each i in feature_range do
if schema contains i then
continue
end if
trial ← schema + [i]
num_cutoffs ← 0
total_sum ← 0
for each v in sampled_data do
pair_cutoffs ← 0
pair_sum ← 0
for each u in sampled_data do
diff ← FEATURE_DIST(u, v, trial)
if diff ≥ cutoff then
pair_cutoffs ← pair_cutoffs + 1
end if
pair_sum ← pair_sum + diff
end for
num_cutoffs ← num_cutoffs + pair_cutoffs
total_sum ← total_sum + pair_sum
end for
if total_sum > best_sum then
best_sum ← total_sum
best_feature_by_sum ← i
end if
if num_cutoffs > best_num_cutoffs then
best_num_cutoffs ← num_cutoffs
best_feature ← i
end if
end for
if best_feature not null then
append best_feature to schema
else if best_feature_by_sum not null then
append best_feature_by_sum to schema
else
break
end if
max_cutoffs ← best_num_cutoffs
end loop
return schema

end function

Algorithm 3. Trie query logic

function TRIE_SEARCH(node, query, radius, schema)
if node is a leaf then
return FILTER(node.points, query, radius, schema) ⊳ Filter out would-be false-positives using remaining features
end if
results ← []
feature ← first feature in schema
value ← GET_FEATURE_VALUE(query, feature)
max_diff ← COMPUTE_MAX_DIFF(feature, radius)
for all possible candidate value s.t. candidate diff ∈ [0,max_diff] do ⊳ diff > max_diff → dist > radius
dist ← FEATURE_DIFF(value, candidate, feature)
if dist ≤ radius then
child ← node[candidate]
radius_budget ← radius - dist
schema’ ← TAIL(schema)
sub_results ← TRIE_SEARCH(child, query, radius_budget, schema’)

(continued on next page)

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

9

(continued)

for each sub_result in sub_results do append sub_result to results
end for
end if
end for
return results

end function

For completeness, linear_scan is as follows:

Algorithm 4. Linear scan

function LINEAR_SCAN(corpus, query, radius)
results ← []
for digest in corpus do
header_dist ← HEADER_DIST(digest, query)
body_dist ← BODY_DIST(digest, query)
if header_dist + body_dist ≤ radius then
append digest to results
end if
end for
return results

end function

Appendix C. Tensorflow-accelerated scanner

I authored a Tensorflow-accelerated linear scanning routine to facilitate using TLSH on large datasets, within Python notebooks. I benchmarked it
against a linear scanning routine powered by py-tlsh (Py-tlsh, 2024), the official C++ Python extension for fast TLSH operations.

The benchmarks used Rust 1.83.0, Python 3.12.7, Tensorflow 2.18.0 (Abadi et al., 2015), numpy 2.0.1 (Harris et al., 2020), and py-tlsh 4.7.2
(Py-tlsh, 2024).

I included Rust linear scanner performance for illustrative purposes only, as the Rust and Python benchmark harnesses differ, limiting result
comparability.

The benchmark results were as follows:

Fig. C.7. Performance of linear-scan implementations.

The Tensorflow-enhanced Python library outperformed the py-tlsh-based scanner across all measured workloads.
I attribute a roughly 10x performance uplift, relative to the py-tlsh-based scanner, to parallelism; and the residual performance uplifts to two

factors: that Tensorflow optimizes memory access patterns, particularly on all-to-all tasks; and that Tensorflow batches queries, which reduces the
time spent in the Python interpreter.

The benchmark code is available in Appendix A.

J. Gonzalez

Forensic Science International: Digital Investigation 53 (2025) 301922

10

References

Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng,
Craig, Citro, Corrado, Greg S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu,
Ghemawat, Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael,
Jia, Y., Jozefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Levenberg, Josh,
Mané, Dandelion, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah, Chris,
Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya, Talwar, Kunal,
Tucker, Paul, Vincent, Vanhoucke, Vasudevan, Vijay, Viégas, Fernanda,
Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yuan, Yu,
Zheng, Xiaoqiang, 2015. TensorFlow: large-scale machine learning on
heterogeneous systems. https://www.tensorflow.org/.

Ali, M., Hagen, J., Oliver, J., 2020. Scalable malware clustering using multi-stage tree
parallelization. In: 2020 IEEE International Conference on Intelligence and Security
Informatics (ISI). IEEE, Arlington, VA, USA, pp. 1–6. https://doi.org/10.1109/
ISI49825.2020.9280546.

Almahmoud, A., Damiani, E., Otrok, H., 2022. Hash-comb: a hierarchical distance-
preserving multi-hash data representation for collaborative analytics. IEEE Access
10, 34393–34403. https://doi.org/10.1109/ACCESS.2022.3158934.

Azab, A., Layton, R., Alazab, M., Oliver, J., 2014. Mining malware to detect variants. In:
2014 Fifth Cybercrime and Trustworthy Computing Conference, pp. 44–53. https://
doi.org/10.1109/CTC.2014.11.

Baggett, D., 2023. TLSH distance metric appears to violate triangle inequality.
https://github.com/trendmicro/tlsh/issues/130#issue-1623514292.

Bak, M., Papp, D., Tamás, C., Buttyán, L., 2020. Clustering IoT malware based on binary
similarity. In: NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium, pp. 1–6. https://doi.org/10.1109/NOMS47738.2020.9110432.

Breitinger, F., White, D., Guttman, B., McCarrin, M., Roussev, V., 2014. Approximate
matching: definition and terminology. In: Tech. Rep. NIST Special Publication (SP)
800-168. National Institute of Standards and Technology. https://doi.org/10.6028/
NIST.SP.800-168. Jul.

de Moura, L., Ullrich, S., 2021. The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (Eds.), Automated Deduction – CADE 28. Springer
International Publishing, Cham, pp. 625–635. https://doi.org/10.1007/978-3-030-
79876-5_37.

Fredkin, E., 1960. Trie memory, commun. ACM 3 (9), 490–499. https://doi.org/
10.1145/367390.367400.

Gu, X., Zhang, Y., Zhang, L., Zhang, D., Li, J., 2013. An improved method of locality
sensitive hashing for indexing large-scale and high-dimensional features. Signal
Process. 93 (8), 2244–2255. https://doi.org/10.1016/j.sigpro.2012.07.014.

Haq, I.U., Caballero, J., 2021. A survey of binary code similarity. ACM Comput. Surv. 54
(3), 51:1–51:38. https://doi.org/10.1145/3446371.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M.,
Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,
Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with NumPy.
Nature 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2.

Hutelmyer, P., Borre, R., 2024. Implementing TLSH based detection to identify malware
variants. Dec. https://tech.target.com/blog/implementing_TLSH_based_detection.

Indyk, P., Motwani, R., 1998. Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98. Association for Computing Machinery, New York,
NY, USA, pp. 604–613. https://doi.org/10.1145/276698.276876.

Intelligence, M.T., 2021. Combing through the fuzz: using fuzzy hashing and deep
learning to counter malware detection evasion techniques. Jul. https://www.micro
soft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fu
zzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/.

B. Jordan, R. Piazza, T. Darley, Stix version 2.1, Tech. rep., OASIS Standard, latest stage:
https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html. URL https://docs.oasis
-open.org/cti/stix/v2.1/os/stix-v2.1-os.html.

Joyce, R.J., Patel, T., Nicholas, C., Raff, E., 2023. AVScan2Vec: feature learning on
antivirus scan data for production-scale malware corpora. In: Proceedings of the
16th ACM Workshop on Artificial Intelligence and Security, AISec ’23. Association
for Computing Machinery, New York, NY, USA, pp. 185–196. https://doi.org/
10.1145/3605764.3623907.

Kornblum, J., 2006. Identifying Almost Identical Files Using Context Triggered Piecewise
Hashing. https://doi.org/10.1016/j.diin.2006.06.015. Sep.

Li, Y., Jang, J., Ou, X., 2019. Topology-aware hashing for effective control flow graph
similarity analysis. In: Chen, S., Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (Eds.),
Security and Privacy in Communication Networks. Springer International
Publishing, Cham, pp. 278–298. https://doi.org/10.1007/978-3-030-37228-6_14.

Naik, N., Jenkins, P., Savage, N., 2019a. A ransomware detection method using fuzzy
hashing for mitigating the risk of occlusion of information systems. In: 2019
International Symposium on Systems Engineering (ISSE), pp. 1–6. https://doi.org/
10.1109/ISSE46696.2019.8984540.

Naik, N., Jenkins, P., Savage, N., Yang, L., 2019b. Cyberthreat hunting - Part 2: tracking
ransomware threat actors using fuzzy hashing and fuzzy C-means clustering. In:
2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, New
Orleans, LA, USA, pp. 1–6. https://doi.org/10.1109/FUZZ-IEEE.2019.8858825.

Oliver, J., 2021a. TLSH - technical overview. Apr. https://tlsh.org/papers.html.
Oliver, J., 2021b. Tlsh/tlshCluster/pylib/hac_lib.py. Sep. https://github.

com/trendmicro/tlsh/blob/96536e3f5b9b322b44ce88d36126121685e45a77/tlsh
Cluster/pylib/hac_lib.py#L143.

Oliver, J., 2024a. GitHub - trendmicro/tlsh. https://github.com/trendmicro/tlsh.
Oliver, J., 2024b. TLSH distance metric appears to violate triangle inequality. Jan.

https://github.com/trendmicro/tlsh/issues/130#issuecomment-1906886178.
Oliver, J., Hagen, J., 2021. Designing the elements of a fuzzy hashing scheme. In: 2021

IEEE 19th International Conference on Embedded and Ubiquitous Computing (EUC).
IEEE, Shenyang, China, pp. 1–6. https://doi.org/10.1109/EUC53437.2021.00028.

Oliver, J., Cheng, C., Chen, Y., 2013. TLSH – a locality sensitive hash. In: 2013 Fourth
Cybercrime and Trustworthy Computing Workshop, pp. 7–13. https://doi.org/
10.1109/CTC.2013.9.

Oliver, J., Ali, M., Hagen, J., 2020. HAC-T and fast search for similarity in security. In:
2020 International Conference on Omni-Layer Intelligent Systems (COINS), pp. 1–7.
https://doi.org/10.1109/COINS49042.2020.9191381.

Oliver, J., Ali, M., Liu, H., Hagen, J., 2021. Fast clustering of high dimensional data
clustering the malware bazaar dataset. https://tlsh.org/papersDir/n21_opt_cluster.
pdf.

Oprişa, C., Checicheş, M., Năndrean, A., 2014. Locality-sensitive hashing optimizations
for fast malware clustering. In: 2014 IEEE 10th International Conference on
Intelligent Computer Communication and Processing (ICCP), pp. 97–104. https://
doi.org/10.1109/ICCP.2014.6936960.

Pagani, F., Dell’Amico, M., Balzarotti, D., 2018. Beyond precision and recall:
understanding uses (and misuses) of similarity hashes in binary analysis. In:
Proceedings of the Eighth ACM Conference on Data and Application Security and
Privacy, CODASPY ’18. Association for Computing Machinery, New York, NY, USA,
pp. 354–365. https://doi.org/10.1145/3176258.3176306.

Py-tlsh, 2024. TLSH (C++ Python extension). Sep. https://github.com/trendmicro/tlsh.
Roussev, V., 2010. Data fingerprinting with similarity digests. In: Chow, K.-P., Shenoi, S.

(Eds.), Advances in Digital Forensics VI. Springer, Berlin, Heidelberg, pp. 207–226.
https://doi.org/10.1007/978-3-642-15506-2_15.

Smart whitelisting using locality sensitive hashing. Mar. https://www.trendmicro.co
m/en_us/research/17/c/smart-whitelisting-using-locality-sensitive-hashing.html.

Sysinfo, 2024. crates.io: Rust package registry. Dec. https://crates.io/crates/sysinfo.
The mathlib community, 2020. The lean mathematical library. In: Proceedings of the 9th

ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020, pp. 367–381. https://doi.org/10.1145/3372885.3373824. New Orleans, LA,
USA, January 20-21, 2020.

Uhlmann, J.K., 1991. Satisfying general proximity/similarity queries with metric trees,
Information Processing Letters, 40 (4), 175–179. https://doi.org/10.1016/0020-
0190(91)90074-R.

VirusShare.com. Sep. https://virusshare.com/.
VirusTotal, 2024. Advanced corpus search. Jul. https://docs.virustotal.com/reference/in

telligence-search.
Wicherski, G., 2009. peHash: a novel approach to fast malware clustering. In: USENIX

Workshop on Large-Scale Exploits and Emergent Threats. https://www.semanticsch
olar.org/paper/peHashApproach-to-Fast-Malware-Clustering-Wicherski/a52ddc
15377bc9f2ef1f237afa41d324f321bb9b.

Wilson, Jared, 2023. Permhash — No curls necessary. May. https://cloud.google.com/
blog/topics/threat-intelligence/permhash-no-curls-necessary.

Yianilos, P.N., 1993. Data structures and algorithms for nearest neighbor search in
general metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’93. Society for Industrial and Applied Mathematics,
USA, pp. 311–321.

J. Gonzalez

