
Forensic Science International: Digital Investigation 53 (2025) 301921

2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA

Uncovering linux desktop espionage

Lukas Schmidt a,*, Sebastian Strasda a, Sebastian Schinzel a,b

a Fraunhofer SIT, National Research Center for Applied Cybersecurity ATHENE, Rheinstraße 75, Darmstadt, 64295, Germany
b IT Security Lab, Münster University of Applied Sciences, Stegerwaldstraße 39, Steinfurt, 48565, Germany

A R T I C L E I N F O

Keywords:
Memory forensics
Espionage attacks
Malware
Linux/Unix

A B S T R A C T

The increasing adoption of Linux-based desktop systems in various sectors, including critical infrastructures and
personal use, has made them an attractive target for Advanced Persistent Threat (APT) groups and state actors.
Yet, the espionage capabilities of Linux desktop malware and the forensic strategies for uncovering them remain
largely unexamined. This paper addresses this gap by analyzing ten malware families that target the Linux
desktop environment, studying the utilized espionage techniques, and introducing novel approaches to detect
them using memory forensics.

Facing the multitude of espionage attack implementations that result from the diverse Linux desktop
ecosystem, we propose to reduce the complexity of memory forensic investigations by focusing on the analysis of
targeted core services. We evaluate our approach by implementing proof-of-concept Volatility plugins for
identification of keylogging, screen capturing as well as camera and microphone recording malware, and prove
their effectiveness by performing forensic analyses of real-world espionage techniques that were utilized during
APT campaigns. Our evaluation shows that memory forensics is effective in uncovering Linux espionage attacks,
and we are confident that our study provides valuable insights for future research and practical analysis of these
threats.

1. Introduction

The continuous improvement of open source desktop software has
led to a rise in the usage of Linux-based desktop systems. As a result,
Linux-based workstations have been reported to be widely used by
public institutions and found utilization even in critical infrastructures,
e.g., at the U.S. Department of Defense (linux.com, 2007), India’s
Defence Ministry (Peri, 2023) or European law enforcement agencies
(HILLENIUS, 2013).

Moreover, Linux-based desktop systems also gained popularity as
personal computers for home use (Vaughan-Nichols). The economic
potential of its large user base has been recognized by large
game-developing companies like Steam (2024), which built a whole
gaming ecosystem around the Linux desktop, as well as specialized
companies offering professional-grade graphical applications (Case and
Richard, 2017). Reflecting its wide adoption, Linux even overtook
macOS’ user share as a gaming platform since 2023 (Steam, 2024),
underlining today’s relevance of Linux-based desktops in the field.

Contrarily, and despite multiple APT groups (Talos, 2023; Cyble,
2024; Kaspersky, 2020; Ramamoorthy et al., 2024) and state actors

(Amnesty International, 2020) repeatedly target the Linux desktop,
malware abusing Linux desktop functionality did not receive much
attention in research. We are unaware of any studies evaluating the
malicious capabilities of Linux desktop malware or addressing the de-
fense against them. As a result, the detection and forensic analysis of
desktop espionage attacks remain unsolved problems.

In this paper, we present a two-step approach to address these
challenges. Firstly, we identify malware samples that target the Linux
desktop environment and systematically analyze the techniques used to
commit espionage on desktop users. We show that the investigated
malware samples utilize a multitude of techniques to spy on users, which
particularly target the desktop ecosystem.

Secondly, facing the advanced evasion and obfuscation methods of
malware used by APT groups, we propose to forensically examine
malware infections using memory forensics (Case and Richard, 2017).
While the broad range of utilized espionage techniques complicate the
application of memory forensic analyses, we show that most of the spy
attacks rely on functionality provided by a few core services. We use this
insight to reduce the complexity of memory forensic approaches and
develop proof-of-concept implementations that are capable of detecting

* Corresponding author.
E-mail address: lukas-schmidt@fh-muenster.de (L. Schmidt).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301921



Forensic Science International: Digital Investigation 53 (2025) 301921

2

espionage attacks. To foster future research and analyses, we make these
implementations publicly available in the form of plugins for the Vola-
tility framework (Volatility Foundation, 2025).

We evaluate our approach by re-implementing real-world desktop
malware attacks, executing them on systems powered by eight popular
Linux distributions, and performing forensic analyses using the devel-
oped plugins. Our evaluation shows that espionage attacks also
compromise seemingly resilient desktops based on Wayland, and we
demonstrate that memory-forensic analyses are effective in detecting
them.

Summarized, our contributions are as follows:

• We present, to our knowledge, the first extensive study on Linux
desktop malware. We compiled a dataset of ten malware families
targeting the Linux desktop, reverse engineered their behavior, and
report on the techniques used for conducting espionage attacks on
desktop users.

• We present novel techniques for detecting these espionage attacks by
analysing the process memory of display servers, audio providers and
the Linux kernel.

• By targeting eight popular Linux distributions, we analyze the impact
of espionage techniques on modern Linux desktops and evaluate our
detection methods.

• To foster future research and evaluation, we publish an open-source
repository (Muenster, 2025) with implementations of identified
real-world attacks, Volatility plugins for detecting them, and a
dataset containing memory dumps of infected systems.

2. Background & motivation

2.1. Linux desktop environment

The Linux desktop environment is a complex ecosystem that com-
prises various userland components working in tandem. At its core, the
Linux desktop environment relies on a display server that is responsible
for rendering graphics and handling of input events from devices such as
keyboards and mice. The two most commonly used display servers
protocols include the X Window System (X11) and Wayland. While X-
based environments utilize the XOrg server (X11) as display server,
Wayland-based environments use one of the many available Wayland
compositors. Additionally, the Linux desktop environment depends on
several other key components, in particular audio servers and the Video
4 Linux (V4L) subsystem. The audio server, nowadays typically imple-
mented using PipeWire, manages audio streams, offers sound mixing
capabilities, and interacts with audio hardware devices such as sound
cards and speakers. V4L is a set of APIs and drivers that provide access to
video capture devices such as webcams, TV tuners, and other multi-
media peripherals, providing functions such as video recording,
streaming, and playback.

2.2. Memory forensics

In recent years, the increasing sophistication of modern malware has
led to a shift in digital forensic analyses (Case and Richard, 2017).
Traditional methods of malware detection, which rely on
signature-based scanning and log analysis, fall short against advanced
threats that are heavily obfuscated, encrypted and primarily reside in
volatile memory to avoid detection. As a result, analyses of volatile
memory became a critical component of forensic investigations (Ligh
et al., 2014), either during live investigations or when analyzing mem-
ory snapshots of potentially compromised systems. Thereby modern
frameworks facilitate the inspection of kernel and process memory
(Volatility Foundation, 2025), offering investigators a complete view
into a system’s state, provided that the semantic byte-level data can be
correctly interpreted. Therefore, memory forensics provides insight into
information that is otherwise inaccessible and can be used to scale

detection and alerting of advanced malicious software (Manna et al.,
2021).

2.3. Motivating example

The malware families analyzed in this paper were mainly used by
state actors or APT groups, e.g., to spy on political dissidents after suc-
cessfully infiltrating their end-user devices (Amnesty International,
2020). We assume that attackers have fully compromised the victim’s
system and are spying on the victim’s activities and communication. To
reach their goals, attackers make use of sophisticated malware capable
of covering its presence, e.g., by hiding running malware processes (Ligh
et al., 2014). Against this background, memory forensics analyses are
particularly valuable, as they can be used to uncover hidden intrusions.
While previously researched malware mainly abuses kernel function-
ality to perform espionage (Ligh et al., 2014; Case et al., 2022), the ar-
chitecture of Linux desktop systems allows to implement spy attacks by
targeting desktop components, e.g., display or audio servers (see Snippet
1).

Snippet 1: Code of a keylogger that registers for events of the X11
server.

As a result, these attacks remain undetected by existing memory
forensic approaches, as they primarily focus on the evaluation of kernel
structures (Case et al., 2022; Ligh et al., 2014; Maxwell et al., 2013). To
close this gap, we propose to perform memory forensic analyses of tar-
geted desktop services. In this way, we find indicators of malware in-
fections, e.g., by identifying display server clients that demonstrate
suspicious behaviour (see Snippet 1).

3. Uncovering linux desktop espionage

3.1. Methodology

To effectively detect espionage attacks, a comprehensive overview of
the features and techniques implemented by malware is essential. In the
following, we describe our methodology for compiling a dataset of Linux
desktop malware, present the results of a thorough analysis of their
implemented espionage features and introduce approaches for detecting
them. To the best of our knowledge, we thereby present the first sys-
tematic overview of Linux desktop malware.

3.1.1. Collecting malware families & samples
In the absence of a publicly available dataset on Linux desktop

malware, we have compiled a dataset based on generally available in-
formation. Specifically, we first utilized search engines, i.e., Google and
DuckDuckGo, to identify relevant malware families. We thereby con-
ducted targeted searches using keywords and phrases such as linux
desktop malware, linux spyware, and linux trojan, and analyzed the results,
consisting of various articles, blog posts, and threat intelligence reports.
If an article indicated that a malware family targets the Linux desktop,
we searched malware repositories on Github (GitHub, 2025) and data-
bases such as MalwareBazaar (MalwareBazaar (2025) and Vx Under-
ground (2025), and downloaded the corresponding samples for
subsequent analyses. As seen in Table 1, this process allowed us to

L. Schmidt et al.



Forensic Science International: Digital Investigation 53 (2025) 301921

3

identify and collect samples of ten distinct malware families targeting
the Linux desktop, including those not previously documented or
analyzed in the academic literature.

3.1.2. Reverse engineering of espionage techniques
To evaluate the espionage capabilities of the identified malware

families, we reverse engineered the collected samples with a focus on
implemented spy techniques. The collected samples existed in two pri-
mary forms: binary executables and source code. Given the diversity of
samples and languages involved, we found manual analyses preferable
to automated attempts.

We analyzed the collected code and binary samples by employing a
combination of manual code review and static and dynamic analyses
with the help of Ghidra and gdb. As the binary samples utilized custom
packing and obfuscation mechanisms to complicate malware analysis,
we evaluated their packing schemes and unpacked them before further
analysis. We then investigated the implemented espionage capabilities
and identified various spy attacks targeting services of the Linux desktop
environment. We elaborate on the identified capabilities and their
implementations in the following sections and summarize the results in
Table 2.

3.1.3. Detecting malware using memory forensics
As illustrated in Sec. 2, we propose to uncover espionage attacks by

analyzing the memory of targeted desktop services, particularly by
identifying state changes that indicate malicious activity. In this way, we
can detect the malware’s behavior by investigating the address space of
a few desktop services, avoiding a costly analysis of all running pro-
cesses. Furthermore, this approach works independently of the imple-
mentation of the espionage techniques, i.e., our approach is independent
of the programming language used, as well as runtimes and shared
libraries.

We take benefit of the fact that open source software can be created
with debugging symbols. We use these symbols to analyze structures in
process memory that are affected by the execution of espionage attacks,
and identify changes to data fields that can be used as indicators of
espionage attacks. Using these insights, we implement proof-of-concept
Volatility (Volatility Foundation, 2025) plugins that can be used to
uncover espionage attacks on Linux desktop systems. In the following,
we elaborate on the identified espionage techniques and the approaches
used to detect them in more detail.

3.2. Key- & mouselogging

3.2.1. Malware implementation
Expectedly, we found most of the desktop malware samples

Table 1
Identified Linux desktop malware families, implementation language, sample
availability, associated APT groups, and year the malware has been reported to
be used in the wild.

Malware Language Source
Code

Binary
Sample

APT
group

Reported

HackingTeam C/C++ ✓ ​ State
Actor

2013

Mokes C/C++ ​ ✓ – 2016
Fysbis C/C++ ​ ✓ APT28 2016
EvilGnome C/C++ ​ ✓ – 2019
FinSpy C/C++ ​ ✓ State

Actor
2021

Alchimist/
Insekt

Go ​ ✓ – 2022

DeimosC2 Go ✓ ​ Lazarus 2022
Empire Python ✓ ​ Turla 2022
Pupy Python ✓ ​ UTG-Q-

010
2024

Sliver Go ✓ ​ APT29 2024

Ta
bl
e
2

Li
nu

x
de

sk
to
p
m
al
w
ar
e
fa
m
ili
es
,t
he

A
PI
s
&

te
ch

ni
qu

es
us
ed

to
im

pl
em

en
ts

py
at
ta
ck
s,
an

d
th
e
de

sk
to
p
se
rv
ic
es

ta
rg
et
ed

.

La
ng

.
Li
br
ar
y

A
PI
/T

ec
hn

iq
ue

Ta
rg
et
ed

Se
rv
ic
e

H
ac
ki
ng

Te
am

M
ok

es
Fy

sb
is

Ev
ilG

no
m
e

Fi
nS

py
A
lc
hi
m
is
t/
In
se
kt

D
ei
m
os
C2

Em
pi
re

Pu
Py

Sl
iv
er

K
ey

lo
gg

er
​

​

C
xl
ib

XS
el
ec
tIn

pu
t

D
is
pl
ay

Se
rv
er

​
​

​
​

​
​

​
​

●
​

C
xl
ib

XI
Se
le
ct
Ev

en
ts

●
​

​
​

​
​

​
●

●
​

C
xl
ib

XQ
ue

ry
Ke

ym
ap

​
​

●
​

●
​

​
●

●
​

M
ou

se
lo
gg

er
​

​

C
xl
ib

XQ
ue

ry
Po

in
te
r

D
is
pl
ay

Se
rv
er

●
​

​
​

​
​

​
​

​
​

Sc
re
en

Ca
pt
ur
e

​
​

C
xl
ib

XG
et
Im

ag
e

D
is
pl
ay

Se
rv
er

●
​

​
​

​
​

​
​

​
​

Py
py

th
on

-m
ss

XG
et
Im

ag
e

​
​

​
​

​
​

​
​

●
​

G
o

sc
re
en

sh
ot

xg
b.
ge
tIm

ag
e

​
​

​
​

​
​

●
​

​
●

G
o

xg
b

xg
b.
ge
tIm

ag
e

​
​

​
​

​
●

​
​

​
​

C
Ca

ir
o

ca
ir
o_
xl
ib
_s
ur
fa
ce
_c
re
at
e

​
​

​
●

​
​

​
​

​
​

C
gd

k
gd

k_
pi
xb

uf
_g
et
_fr

om
_w

in
do

w
​

​
​

​
●

​
​

​
​

​
C+

+
Q
t

Q
Sc
re
en

.g
ra
bW

in
do

w
​

●
​

​
​

​
​

​
​

​
Ca

m
er
a
R
ec
.

​
​

C
st
dl
ib

op
en

V4
L2

D
ev
ic
e

●
​

​
​

●
​

​
​

​
​

M
ic
ro
.R

ec
.

​
​

C
Pu

ls
eA

ud
io

pa
_s
im

pl
e_
ne

w
A
ud

io
Se
rv
er

●
​

​
●

​
​

​
​

​
​

C+
+

Q
t

Q
A
ud

io
In
pu

t
​

●
​

​
​

​
​

​
​

​
C

Po
rt
A
ud

io
pa

_in
iti
al
iz
e

​
​

​
​

​
​

​
​

●
​

L. Schmidt et al.



Forensic Science International: Digital Investigation 53 (2025) 301921

4

implement key- and mouselogging features, e.g., functionality to record
keystrokes to steal passwords, sensitive information, and other confi-
dential material. Thereby all investigated malware samples abuse
functionality of the Xorg server for implementing these espionage at-
tacks, as the X server also handles the processing of input events for the
application. Malware applies multiple techniques for capturing key-
strokes and mouse pointer events.

Firstly, some malware samples register at the X server to receive core
input events, which represents the traditional X-server implementation
of input handling. Thereby, a connection to the X server is established
using the XOpenDisplay function, and the malware registers for notifi-
cation of keypress events using the XSelectInput API (see Snippet 1). As a
result, the X server queues keyboard input events and delivers them
when the malware signals readiness by calling XNextEvent.

Secondly, some malware families use the more modern input ex-
tensions as an alternative for capturing input events. To do so, they
create an event mask with XISetMask and utilize it to register for events
with the XISelectEvents function. Similar to the handling of the core
event queues, keypress events are delivered to the malware when
requested with XNextEvent.

Thirdly, and differing from the previously introduced variants, some
malware samples implement keylogging by fetching the logical state of
the keyboard in microsecond intervals. After establishing a connection
to the X server, the malware requests a bit vector containing the
keyboard state with XQueryKeymap. The returned bit vector indicates
key presses, which the malware compares to the bit vectors of previous
intervals. Thereby, any changes between these vectors represent a
keystroke.

We found that some malware samples utilize the same mechanisms
to also query the mouse pointer’s position, either by registering for the
corresponding events or using the XQueryPointer function. Combined
with the capture of screenshots, user’s actions on the screen can be
tracked accurately.

3.2.2. Memory forensic analysis
We shortly elaborate on the X server’s internal memory structures to

facilitate the understanding of the following approaches. The X11 server
holds client information in a struct _Client, and stores pointers to each
client’s structure in a linked list called clients. Each _Client structure
contains a pointer to the ClientIdPtr substructure, in which detailed
information about the originating process is stored, such as the process
ID and the process name. The X11 server uses screen and window ab-
stractions to display a graphical user interface. A _Screen structure en-
capsulates information and resources related to a specific screen of a
display, which can consist of one or more monitors. It contains a pointer
to a linked list of top-level windows encapsulated in _Window structures,
which holds all the relevant information required to manage and display
a specific window.

3.2.2.1. Core events. When a malware requests core event notification
using XSelectInput, the X11 server iterates over each window. It appends
the malware client to a linked list named otherClients. This list holds
_OtherClients structure instances, and each list member contains a mask.
This mask is used to register the corresponding client for event notifi-
cations of the window and is evaluated when an input event, such as a
key press, occurs. We leverage this fact to detect key- and mouseloggers
with the xevents Volatility plugin. The plugin scans the heap of the X11
server for _Screen structure instances and uses screen instances found to
identify the attached parent-level windows. Following, the plugin
evaluates each window’s otherClient list and identifies all clients that
register for input event notification by setting the key press 0x03 or
mouse event flags 0x02. Through this plugin, investigators can imme-
diately identify key- and mouseloggers that rely on core event notifi-
cation (see Fig. 1).

3.2.2.2. Input extensions. By calling XISelectEvents(), malware registers
for notification of events via input extensions. These behave similarly to
the core event notifications but differ in implementation. In case a client
wants to capture events via input extensions, the X11 server appends the
client to a linked list holding instances of struct _InputClients, which is
only accessible by following an extensive pointer chain: A pointer to this
list can be found in the InputClients field of the OtherInputMasks
structure, which can be accessed via a structure called _WindowOpt,
which contains additional information about a window and itself is a
substructure of struct _Window. We use this insight to implement key-
and mouselogger detection in the xinputextensions plugin. The plugin
identifies _Screen instances on the heap of the X11 server and iterates
over the linked windows. The plugin follows the previously described
pointer chain for each window and accesses the InputClients list. For
each client in this list, the plugin evaluates a struct _XI2Mask, repre-
senting an array of masks. This array separately encodes event notifi-
cation masks for each registered input device. To capture all input
events, malware registers for the placeholder devices XIAllDevices or
XIAllRawDevices and sets the flag 0x20 for keystroke logging or the flag
0x02 for mouse logging. By checking the masks for these values, the
plugin can detect key and mouse capturing and effectively supports in-
vestigators in identifying malware that abuses input extensions (see
Fig. 2).

The analysis of espionage attempts reading the logical state of input
devices is identical to those used for screen capturing, and we describe
their analysis below.

3.3. Screen capturing

3.3.1. Malware implementation
An espionage technique commonly used by malware is screen

capturing, which involves saving an image of the screen to spy on sen-
sitive data currently being displayed. While almost every investigated
malware family provides screen capturing functionality, their imple-
mentations vary widely. As seen in Table 2, various shared libraries,
packages, and APIs are utilized to acquire screenshots.

Snippet 2: Screen capture utilizing the GDK APIs.

When investigating the source code of these modules, we found them
to represent high-level wrappers around a few core libraries that talk to
the system’s display server (see Snippet 2). As the ability to capture
screenshots is restricted in Wayland-based systems due to security and
privacy concerns, these libraries primarily utilize the X11 client APIs.
Therefore, to create a screenshot, the malware establishes a connection
to the display server using the XOpenDisplay function and then requests
a screenshot of the root window using XGetImage. In return, the display

Fig. 1. Xevents plugin detecting a keylogger that captures X11 core events.

Fig. 2. Xinputextensions detecting a keylogger that captures X11 events via
input extensions.

L. Schmidt et al.



Forensic Science International: Digital Investigation 53 (2025) 301921

5

server provides a buffer containing an XImage, representing a screenshot
of the entire screen.

3.3.2. Memory forensic analysis
Both the screen capturing techniques utilizing XGetImage as well as

the key-/mouseloggers relying on XQueryKeymap/-Pointer operate on
the basis of a polling model, where the X11 server is periodically queried
for information. This complicates their forensic analysis, as no regis-
tration for event notifications or analogous mechanisms is performed.
Consequently, malicious activities cannot be detected by analyzing
notification queues and event masks. To overcome this hurdle, we
leverage the fact that malware querying the X11 server must use the
XOpenDisplay function to establish a connection. On the server side, this
reflects in initialization of a corresponding struct _Client instance.

We take use of this behavior to detect suspicious applications with
the xclients Volatility plugin. The plugin first scans the X11 server pro-
cess memory for _Client instances representing connected applications.
Since this reveals both malicious and regular applications, we minimize
false positives in the following way. We noted that every examined
malware sample connects to the X11 server without generating a win-
dow. This is in contrast to nearly all regular applications, which connect
to the X11 server for displaying a graphical user interface. Therefore, to
detect malicious applications, we identify client applications that do not
have a window associated. We do so by enumerating all parent-level
windows maintained by the X11 server, and determining their owning
clients by evaluating the _Window.drawable.id field. Then we map these
client identifiers with those of the previously obtained clients instances
contained in _Client.id. In case a client does not refer to any window, the
plugin marks the corresponding applications as suspicious, allowing an
investigator to identify malicious software (see Fig. 3).

3.4. Webcam & video recording

3.4.1. Malware implementation
In addition to capturing screenshots, some of the investigated mal-

ware samples can record streams of video devices. To do so, they utilize
the V4L2 API, the standard interface to video devices in Linux envi-
ronments. While malware usually tries to capture video footage of
webcams, the V4L2 implementations are not limited to them and
generalize to all available video devices. The V4L2 subystem of the
Linux kernel offers access to every identified video device by providing
a/dev/videoX character device. To capture streams of a video device,
malware first obtains a file descriptor to the corresponding character
device. It then creates a buffer of the type V4L2_BUF_TYPE_VIDEO_-
CAPTURE, and configures to map video data into its process memory by
setting the V4L2_MEMORY_MMAP attribute. Finally, the malware
queries the kernel to fill the buffer with video data by making an ioctl
system call with VIDIOC_QUERYBUF (see Snippet 3).

Snippet 3: Webcam recording utilizing V4L.

3.4.2. Memory forensic analysis
As a prerequisite for capturing streams of video devices, the malware

has to open a handle to the corresponding video device via the open
system call. The Linux kernel names V4L2 devices according to the/dev/
videoX scheme. We combine these facts to identify potential espionage
attempts via open handles to V4L2 devices, and implement this detec-
tion approach in the v4l2 Volatility plugin. The plugin leverages Linux
kernel symbols to identify the kernel list that holds the control blocks of
managed processes. Each process is represented by an instance of struct
task_struct with a pointer to an array of open file descriptors in task_-
struct- > files- > fd_array. We use this array to iterate over all file
handles of the process and resolve the corresponding file names. If a
process opened a handle to a/dev/videoX character device, the plugin
flags the process as potentially malicious, allowing an investigator to
immediately identify video capturing software (see Fig. 4).

3.5. Microphone & audio recording

3.5.1. Malware implementation
Some of the examined malware samples can record audio streams, e.

g., to spy on users by capturing microphone inputs. Recording micro-
phone input requires access to the corresponding audio device. How-
ever, instead of directly accessing audio devices, Linux applications use
the services of an audio server. To control audio servers, clients can
utilize various shared libraries or directly use APIs from application
frameworks such as Qt. This versatility also corresponds to the ap-
proaches implemented by the malware under investigation, we found
malware utilizes the PulseAudio, the PortAudio, or the Qt client APIs to
capture audio streams. However, regardless of which API is used, the
capturing workflow is similar. We illustrate the workflow using the
PulseAudio API (see Snippet 4). First, the pa_simple_new function es-
tablishes a connection to the audio server. By setting the PA_S-
TREAM_RECORD flag, the server is set up for audio recording. Finally,
the audio stream is requested from the server by calling pa_simple_read,
which directly writes the audio stream to a byte buffer. At this point, the
malware completes the recording by either exfiltrating the audio stream
over the network or saving it to a file.

Snippet 4: Audio recording utilizing PulseAudio APIs.

3.5.2. Memory forensic analysis
While Linux distributions often shipped with the PulseAudio server

in the past, now most distributions utilize a single audio server imple-
mentation, the modern PipeWire audio server (see Table 3), which fa-
cilitates the forensic analysis. The PipeWire server communicates with
clients through a UNIX domain socket using the PipeWire native pro-
tocol. However, our evaluation (Table 3) shows that malware whichFig. 3. Xclients detecting a keylogger abusing XQueryKeymap.

Fig. 4. v4l2 plugin detecting capture of video devices.

L. Schmidt et al.



Forensic Science International: Digital Investigation 53 (2025) 301921

6

utilizes other APIs and network protocols can also successfully capture
audio streams. This is due to the use of API-compatible daemons in the
PipeWire project, which integrate with the PipeWire server and thus
provide compatibility with other server implementations. Consequently,
we focused on forensically analyzing the PipeWire server with the
pipewire Volatility plugin to identify audio espionage attacks.

PipeWire internally manages connected clients as nodes, which are
instances of the pw_node_impl structure. The structure exhibits a field
pw_node_impl.info, which can be used to identify a list of properties
pointed to by pw_node_info.prop. The prop field contains a pointer to a
spa_dict structure, representing a dictionary of node properties that
provide detailed information about the client and the requested re-
sources. Therefore, the pipewire plugin scans the process memory of the
PipeWire server instance to identify pw_node_impl instances. Following,
it evaluates the node’s properties, and identifies recording nodes using
the media. class field. Thus, the plugin gives the investigators an im-
mediate overview of processes that record audio streams (see Fig. 5).

4. Evaluation

With our work, we aim to contribute to the detection of espionage
attacks and empower investigators with novel Linux forensic capabil-
ities. To verify the applicability of the introduced methods in real-world
scenarios, we performed multiple analyses of infected systems utilizing
the previously introduced Volatility plugins.

4.1. Experimental setup

Considering that Linux distributions differ in their use of packages
and software versions, we performed our evaluation across major Linux
distributions to ensure the portability of the presented approaches.
Therefore, we set up eight virtual machines and installed major Linux
distributions with their default desktop environment and configuration.
We denote the hard- and software used for virtualization in Table 4.

Since espionage attacks are not automatically triggered when the
malware is launched but only when the control server requests them, we
transferred the reverse-engineered espionage attacks to independently
executable programs. This allows us to execute the same attack tech-
niques without having to trigger the code paths in the malware. We
deployed these attack programs to the virtual machines and mimicked
user behavior by running desktop applications. We then iteratively
executed an attack program, created a memory dump using AVML, and
reverted the machine to a clean snapshot until all espionage attacks were
executed on all distributions. Finally, we used the resulting memory
dumps to validate the developed Volatility plugins and documented our
results in Table 3.

4.2. Results

As can be seen from Table 3, the executed espionage techniques
compromise all evaluated distributions. This even holds true for key-
logging and screen capturing approaches on seemingly secure Wayland-
based distributions, although only for non-native Wayland applications.
The only exception is screen capturing on CentOS using the Qt frame-
work, where Qt fails to access window surfaces due to unknown reasons.
Overall, our results reveal a serious privacy threat, as major applications
do not yet support Wayland, e.g., the Chromium browser or Electron-
based applications. We discuss the reasons for this behavior in Sec. 5.

Notably, our evaluation shows that the Volatility plugins successfully
detect all the espionage attacks that were conducted. The detection
works across all evaluated Linux distributions, indicating the portability
of our approaches. Finally, all distributions examined use PipeWire as an
audio server, which underlines the practical applicability of detecting
audio and microphone capture malware by analyzing the PipeWire
process memory. Ta

bl
e
3

O
ve
rv
ie
w

ab
ou

te
sp
io
na

ge
at
ta
ck

im
pl
em

en
ta
tio

ns
,t
he

ir
im

pa
ct

on
Li
nu

x
di
st
ri
bu

tio
ns
,a

nd
th
e
Vo

la
til
ity

pl
ug

in
s
un

co
ve
ri
ng

th
em

.

O
pe

ra
tin

g
Sy

st
em

Es
pi
on

ag
e
Te

ch
ni
qu

e

K
ey

-/
M
ou

se
Sc
re
en

Ca
m
.

M
ic
ro
.

D
is
tr
ib
ut
io
n

D
es
kt
op

D
is
pl
ay

Se
rv
er

A
ud

io
Se
rv
er

XS
el
ec
tIn

pu
t

Xi
Se
le
ct
Ev

en
ts

XQ
ue

ry
Ke

ym
ap

XG
et
Im

ag
e

G
D
K

Q
t

V4
L2

Po
rt
A
ud

io
Pu

ls
eA

ud
io

Q
t

U
bu

nt
u
24

.0
4.

G
no

m
e

W
ay

la
nd

/X
W
ay

la
nd

Pi
pe

W
ir
e

◑
◑

◑
◑

◑
◑

●
●

●
●

Xu
bu

nt
u
24

.0
4.

Xf
ce

Xo
rg

Pi
pe

W
ir
e

●
●

●
●

●
●

●
●

●
●

Ku
bu

nt
u
24

.0
4.

KD
E

W
ay

la
nd

/X
W
ay

la
nd

Pi
pe

W
ir
e

◑
◑

◑
◑

◑
◑

●
●

●
●

Li
nu

x
M
in
t2

2.
1

Ci
nn

am
on

Xo
rg

Pi
pe

W
ir
e

●
●

●
●

●
●

●
●

●
●

Fe
do

ra
41

G
no

m
e

W
ay

la
nd

/X
W
ay

la
nd

Pi
pe

W
ir
e

◑
◑

◑
◑

◑
◑

●
●

●
●

D
eb

ia
n
12

.9
G
no

m
e

W
ay

la
nd

/X
W
ay

la
nd

Pi
pe

W
ir
e

◑
◑

◑
◑

◑
◑

●
●

●
●

Ce
nt
O
S
10

G
no

m
e

W
ay

la
nd

/X
W
ay

la
nd

Pi
pe

W
ir
e

◑
◑

◑
◑

◑
○

●
●

●
●

Ro
ck
y
9.
5

G
no

m
e

W
ay

la
nd

/X
W
ay

la
nd

Pi
pe

W
ir
e

◑
◑

◑
◑

◑
◑

●
●

●
●

V
ol
at
ili
ty

Pl
ug

in
s

xe
ve
nt
s

✓
​

​
​

​
​

​
​

​
​

xi
np

ut
ex
te
ns
io
ns

​
✓

​
​

​
​

​
​

​
​

xc
lie

nt
s

​
​

✓
✓

✓
✓

​
​

​
​

pi
pe

w
ir
e

​
​

​
​

​
​

​
✓

✓
✓

v4
l2

​
​

​
​

​
​

✓
​

​
​

●
w
or
ki
ng

on
al
la

pp
lic

at
io
ns
.

◑
w
or
ki
ng

on
ap

pl
ic
at
io
ns

no
tn

at
iv
el
y
su
pp

or
tin

g
W
ay

la
nd

(e
.g
.,
Ch

ro
m
e,

El
ec
tr
on

ap
ps
,1

Pa
ss
w
or
d)
.

L. Schmidt et al.



Forensic Science International: Digital Investigation 53 (2025) 301921

7

5. Discussion

This study analyzed spy techniques utilized by ten different malware
families. Our investigation revealed implementations of various espio-
nage techniques, utilizing multiple shared libraries and programming
languages, which demonstrates that Linux desktops are tangible targets
for espionage operations. Our analysis showed that the samples inves-
tigated primarily targeted Linux desktop services, so currently available
memory forensic techniques may fall short in detecting them. We
therefore introduced novel memory forensic approaches for analyzing
core services of the Linux desktop ecosystem, and our proof-of-concept
implementations proved effective in detecting espionage attacks across
all evaluated desktop distributions.

5.1. X11, Wayland and XWayland

Our analysis indicates that, despite the emergence of Wayland as a
successor to X11, the latter remains the primary target for malware
developers. A potential reason for this is the greater attack surface
offered by X11 since espionage attempts can be executed with regular
user permissions. While Wayland-based desktop environments should
mitigate these espionage techniques, our evaluation shows that all
evaluated desktop distributions use XWayland for backward compati-
bility reasons. XWayland provides X-protocol services to non-native
Wayland applications, which allows them to run non-ported software
but also retains their susceptibility to X11-based espionage techniques.
This poses a serious privacy threat, impacting popular applications like
Chromium and Electron-based software, and therefore messaging plat-
forms such as Slack and Discord, as well as the password manager
1Password.

5.2. Limitations

Research has shown that memory forensics can be affected by page
smearing (Pagani et al., 2019; Ottmann et al., 2023) or virtual memory
swapping, e.g., in case of scarcity of resources due to high workloads. To
provide a realistic evaluation, we activated the use of swap files and
emulated typical user workload. While memory forensics of userland
processes can be particularly susceptible to memory swapping, we have
not encountered a situation where the introduced approaches failed to
correctly analyze an acquired dump. Notably, despite the fact that only a
small amount of virtual memory was assigned to the virtual machines.
However, high-intensive system workloads could negatively influence
the acquisition of memory dumps, and therefore influence analysis re-
sults. In future work, a measurement with high-intensive workloads can
be performed to evaluate the impact on the presented approaches.

5.3. Future work

In some cases, malware implementations use plugin or extension
architectures, so that malware samples of the same family may exhibit
different functionality. Therefore, our analysis may not cover all
potentially available modules and techniques, but only those included in

the malware samples we were able to obtain. For instance, the FinFisher
malware has been reported to include an audio recording module
(Amnesty International, 2020), which was not included in our samples.
While we built a malware dataset using publicly available information,
we expect commercial malware feeds, such as VirusTotal, to hold even
more samples and malware families targeting the Linux desktop. As the
authors do not have access to these commercial feeds, their evaluation is
left for future work.

During our study, we found that desktop environments, such as
Gnome and KDE, provide functionality that is unavailable in Wayland-
based systems due to the enhanced security model. This applies in
particular to screen capturing functionality, which is often demanded by
users, but not natively supported in Wayland. For instance, we found
that both Gnome and KDE allow applications to request screen re-
cordings and screenshots via D-Bus services, and some Wayland com-
positors offer similar functionality via portal extensions. Future work
should explore, in which way these specific implementations may pose a
privacy risk, enhancing the understanding of potentially evolving
threats.

6. Related work

Even before the reported rise of Linux malware (Cozzi et al., 2018;
Ramamoorthy et al., 2024; Chierzi andMercês, 2021), memory forensics
has been a critical component of forensic analyses investigating Linux
systems (Ligh et al., 2014; Maxwell et al., 2013), e.g., by evaluating
kernel structures to identify hidden processes or network connections
that indicate rootkit presence.

In recent years, Linux memory forensics has seen significant ad-
vancements, e.g., by the adoption of userland heap analyses (Block and
Dewald, 2017) and novel approaches that provide hardware and
kernel-agnostic memory evaluation (Oliveri and Balzarotti, 2022; Oli-
veri et al., 2023), aiming to make Linux memory analyses a scalable,
cross-architecture forensic approach. Thereby, its wide adoption is
mirrored by various forensic applications, e.g., to recover messages and
passwords from instant messaging applications (Davis et al., 2022) or
network attack (Zhang et al., 2022) and eBPF rootkit detection
(Zaidenberg et al., 2025).

Recently, related work called for increasing efforts on memory an-
alyses of userland subsystems for detecting sophisticated malware (Case
and Richard, 2017), as happened with Objective C (Case and Richard,
2016), Swift (Manna et al., 2021) and. NET runtimes (Manna et al.,
2022). In contrast, memory analyses of GUI environments have pri-
marily been used to extract user data, e.g., screenshots (Saltaformaggio
et al., 2015) or documents (Saltaformaggio et al., 2014). In line with
these efforts, open source Volatility plugins to extract window attributes
and screenshots from Linux-based X11 servers were published (Geek,
2023; eurecom-s3/linux_screenshot_xwindows and original, 2024).
However, the potential for memory forensics focusing on malware
detection in the Linux desktop ecosystem remains largely unexplored. As
a result, current memory forensic approaches can reveal malware tar-
geting Linux kernel functionality (Ligh et al., 2014; Case et al., 2022),
but do not cover espionage attacks that abuse Linux desktop
functionality.

7. Conclusion

In this work, we investigated the espionage capabilities of Linux
desktop malware and introduced novel methods to detect them. Our
analysis reveals implementations of sophisticated spying capabilities,
which pose a significant threat to user privacy. Since the investigated
malware is used by state actors and APT groups known to hide their
traces, we proposed memory forensic techniques to uncover espionage
attempts. Our evaluation shows that the introduced methods success-
fully detect espionage attacks and work across major Linux distribu-
tions. Thus, this study provides insights into a previously understudied

Table 4
Experimental setup.

Hardware Software

CPU 2 vCPU Hypervisor QEMU 9.2.0
RAM 1GiB Mem. Acquisition AVML 0.14.0
Disk Size 32GiB Mem. Analysis Volatility 3 2.11

Fig. 5. The pipewire plugin detecting capture of microphone input.

L. Schmidt et al.



Forensic Science International: Digital Investigation 53 (2025) 301921

8

threat and offers investigators practical tools for responding to it.

Acknowledgement

This research work was supported by the National Research Center
for Applied Cybersecurity ATHENE.

References

Amnesty International, 2020. German-made FinSpy spyware found in Egypt, and Mac
and Linux versions revealed. https://www.amnesty.org/en/latest/research
/2020/09/german-made-\allowbreakfinspy-spyware-found-in-egypt-and\allo
wbreak-mac-and-linux-versions-revealed/.

Block, F., Dewald, A., 2017. Linux memory forensics: Dissecting the user space process
heap. Digit. Invest. 22, S66–S75. https://doi.org/10.1016/j.diin.2017.06.002. URL.
https://www.sciencedirect.com/science/article/pii/S1742287617301895.

Case, A., Richard, G.G., 2016. Detecting objective-C malware through memory forensics.
Digit. Invest. 18, S3–S10. https://doi.org/10.1016/j.diin.2016.04.017. URL. https://
www.sciencedirect.com/science/article/pii/S1742287616300524.

Case, A., Richard, G.G., 2017. Memory forensics: the path forward. Digit. Invest. 20,
23–33. https://doi.org/10.1016/j.diin.2016.12.004. URL. https://linkinghub.else
vier.com/retrieve/pii/S1742287616301529.

Case, A., Moreira, G., Sellers, A., 2022. New Memory Forensics Techniques to Defeat
Device Monitoring Malware.

Chierzi, V., Mercês, F., 2021. Evolution of IoT linux malware: a MITRE ATT&CK TTP
based approach. In: 2021 APWG Symposium on Electronic Crime Research (eCrime),
pp. 1–11. https://doi.org/10.1109/eCrime54498.2021.9738756 iSSN: 2159-1245.
https://ieeexplore.ieee.org/abstract/document/9738756/citations?
tabFilter=papers#citations.

Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D., 2018. Understanding linux
malware. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 161–175.
https://doi.org/10.1109/SP.2018.00054 iSSN: 2375-1207. https://ieeexplore.ieee.
org/abstract/document/8418602.

Cyble, 2024. Cryptocurrency lures and pupy RAT: analysing the UTG-Q-010 campaign -
Cyble, section: APT. https://cyble.com/blog/analysing-the-utg-q-010-campaign/.

Davis, M., McInnes, B., Ahmed, I., 2022. Forensic investigation of instant messaging
services on linux OS: Discord and Slack as case studies. Forensic Sci. Int.: Digit.
Invest. 42, 301401. https://doi.org/10.1016/j.fsidi.2022.301401. URL. https://
www.sciencedirect.com/science/article/pii/S2666281722000828.

eurecom-s3/linux_screenshot_xwindows, original-date: 2018-05-15T11:59:43Z. https:
//github.com/eurecom-s3/linux_screenshot_xwindows, 2024.

Geek, B.t., 2023. bridgeythegeek/linux_xwindows, Original-Date: 2017-12-03T11:03:
52Z. https://github.com/bridgeythegeek/linux_xwindows.

GitHub, I., 2025. Github. https://github.com. (Accessed 29 January 2025).
Hillenius, G., 2013. ’Open source only’ at Dutch police Internet forensics. https://inter

operable-europe.ec.europa.eu/collection/open-source-observatory-osor/news/open-
source-only-dutch-p.

Kaspersky, 2020. An overview of targeted attacks and APTs on Linux. https://securelist.
com/an-overview-of-targeted-attacks-and-apts-on-linux/98440/.

Ligh, M.H., Case, A., Levy, J., Walters, A., 2014. The Art of Memory Forensics: Detecting
Malware and Threats in Windows, Linux, and Mac Memory. John Wiley & Sons.

linux.com, 2007. Open technology within DoD, section: news. https://www.linux.com/n
ews/open-technology-within-dod-intel-systems/.

MalwareBazaar, 2025. Malwarebazaar database. https://bazaar.abuse.ch. (Accessed 29
January 2025).

Manna, M., Case, A., Ali-Gombe, A., Richard, G.G., 2021. Modern macOS userland
runtime analysis. Forensic Sci. Int.: Digit. Invest. 38, 301221. https://doi.org/

10.1016/j.fsidi.2021.301221. URL. https://www.sciencedirect.com/science/article/
pii/S2666281721001293.

Manna, M., Case, A., Ali-Gombe, A., Richard, G.G., 2022. Memory analysis of .NET and .
net core applications. Forensic Sci. Int.: Digit. Invest. 42, 301404. https://doi.org/
10.1016/j.fsidi.2022.301404. URL. https://www.sciencedirect.com/science/article/
pii/S2666281722000853.

Maxwell, R., Malin, C.H., Casey, E., Aquilina, J.M., 2013. In: Malware Forensics Field
Guide for Linux Systems: Digital Forensics Field Guide, illustrated edition Edition.
Syngress Media, Amsterdam Boston.

Muenster, F., 2025. Uncovering linux desktop espionage. https://github.com/FHMS-
ITS/uncovering-linux-desktop-espionage/. (Accessed 29 January 2025).

Oliveri, A., Balzarotti, D., 2022. In the land of MMUs: multiarchitecture OS-agnostic
virtual memory forensics. ACM Transactions on Privacy and Security 25 (4), 1–32.
https://doi.org/10.1145/3528102. URL. https://dl.acm.org/doi/10.1145/3528102.

Oliveri, A., Dell’Amico, M., Balzarotti, D., 2023. An OS-agnostic approach to memory
forensics. In: Proceedings 2023 Network and Distributed System Security
Symposium. Internet Society, San Diego, CA, USA. https://doi.org/10.14722/
ndss.2023.23398. URL. https://www.ndss-symposium.org/wp-content/uploads/20
23/02/ndss2023_s398_paper.pdf.

Ottmann, J., Breitinger, F., Freiling, F., 2023. An experimental assessment of
inconsistencies in memory forensics. ACM Trans. Priv. Secur. 27 (1). https://doi.org/
10.1145/3628600.

Pagani, F., Fedorov, O., Balzarotti, D., 2019. Introducing the temporal dimension to
memory forensics. ACM Transactions on Privacy and Security 22 (2), 1–21,
publisher: Association for Computing Machinery. https://orcid.org/0000-0002-
4357-9804. https://dl.acm.org/doi/abs/10.1145/3310355.

Peri, D., 2023. India Defence Ministry to Replace Microsoft OS with Maya. The Hindu.
URL. https://www.thehindu.com/news/national/defence-ministry-to-replace-micr
osoft-os-with-maya/article67172875.ece.

Ramamoorthy, J., Varol, C., Shashidhar, N., 2024. APT Warfare: Technical Arsenal and
Target Profiles of Linux Malware in Advanced Persistent Threats.

Saltaformaggio, B., Gu, Z., Zhang, X., Xu, D., 2014. DSCRETE: Automatic Rendering of
Forensic Information from Memory Images via Application Logic Reuse. https://
www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/sa
ltaformaggio.

Saltaformaggio, B., Bhatia, R., Gu, Z., Zhang, X., Xu, D., 2015. GUITAR: piecing together
android app GUIs from memory images. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, Denver Colorado
USA, pp. 120–132. https://doi.org/10.1145/2810103.2813650. URL. https://dl.
acm.org/doi/10.1145/2810103.2813650.

Steam, 2024. Steam hardware & software survey. https://store.steampowered.com/hws
urvey/Steam-Hardware-Software-Survey-Welcome-to-Steam?platform=combined.

Talos, C., 2023. Lazarus Group’s infrastructure reuse leads to discovery of new malware.
https://blog.talosintelligence.com/lazarus-collectionrat/.

Underground, V., 2025. Vx underground. https://vx-underground.org. (Accessed 29
January 2025).

S. Vaughan-Nichols, 5 reasons why desktop Linux is finally growing in popularity. URL
https://www.zdnet.com/article/5-reasons-why-desktop-\allowbreaklinux-is-f
inally-growing-in-popularity/.

Volatility Foundation, 2025. Volatility 3.0. https://github.com/volatilityfoundation/vol
atility3.

Zaidenberg, N., Kiperberg, M., Menachi, E., Eitani, A., 2025. Detecting eBPF Rootkits
Using Virtualization and Memory Forensics, pp. 254–261. URL. https://www.scit
epress.org/Link.aspx?doi=10.5220/0012470800003648.

Zhang, Z., Liu, Z., Bai, J., 2022. Network attack detection model based on Linux memory
forensics. In: 2022 14th International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA), pp. 931–935. https://doi.org/10.1109/
ICMTMA54903.2022.00189 iSSN: 2157-1481. https://ieeexplore.ieee.org/abstra
ct/document/9724000.

L. Schmidt et al.


