Chain of Infection

Detection

A Hands-On Workshop on
Forensic Timeline Analysis

Swhoami

 Sr. Security Research Engineer

QIOUENS

* Talk to me about
* Security
* Forensics

* Full-time Foodie
* Please share recommendations

e Anime Enthusiast

Agenda

What is Timeline Analysis?

What are some Use Cases?

. . . Artefact of Need
Timeline Analysis

for Forensics What is a Timestamp?

Types of Timestamps

How to create a Timeline?

What is Timeline Analysis?

Process of re-constructing
chain of events to pinpoint
Initial attack vector, movement
of adversary/malware, end goal
or point of detection.

Collection

Stages

Of > Normalization

Timeline Correlation
Analysis

Interpretation

Collection — Sources Gathered

LJE Eventlogs from the suspect’s workstation

File system metadata (timestamps)

@ Email server logs

s VPNaccess logs

m USB device connection logs

Collection —
Potential Key Finding

USB device connected
at 10:55 PM

Normalization — Action Taken

Logs from Windows
and Linux parsed into
a unified schema

Timestamps

converted into UTC

Normalization — Result

A normalized dataset where every event
Is timestamped and categorized (login,
file access, etc.) in a common format.

Correlation — Cross Referenced Events

VPN login from USB device . .
external IP at 9:58 connected at 10:55 USB device ejected
AM KST PM at 11:43 PM KST
10:30 AM 10:57 PM - 11:42 PM
9:58 AM 10:55 PM 11:43 PM
User accessed File copy :
confidential design operations logged
files at 10:30 AM between 10:57 PM —

KST 11:42 PM KST

Correlation — Insight

The sequence of events strongly indicates targeted data exfiltration by the person of
Interest:

During normal working hours: The individual accessed and flagged high-value files,
identifying assets of interest.

Late at night: The same user connected a USB device and copied the previously
identified files; executing the exfiltration outside regular monitoring windows.

This deliberate separation of reconnaissance and extraction is a classic indicator of
insider threat behavior.

Interpretation — Conclusion Drawn

m The person of interest remotely accessed the network, logged
in, accessed sensitive files, and transferred them to a USB drive.

‘ The timeline supports the hypothesis of intentional data
0 exfiltration.

Some More Examples

Unexpected Login = Financial File Access > Large DNS Requests

File Execution =2 Prefetch Creation
USB Insertion = Process Creation

Browser - Download File = Filesystem Write

What are some Use Cases?

* Entry-point Discovery

)

Persistence Detection
_ateral Movement Mapping

oC Creation & Movement Tracking

Sample Malware Attack Sequence

. Phishing Email Received

. Email Downloads EXE

. EXE Bypasses MoTW (Mark of The Web)

. Remote Code Execution Achieved

. Exploits CLFS to achieve Local Privilege Escalation

. Leaks NTLM Hashes

. Monitors Local IPs for RDP/SSH Access

. Sprays Passwords Until Successful / Complete Failure

0O N O O b W N =

Malware Attack Chain

Phish - Download EXE

Bypass MoTW - RCE |
- :
Privilege Escalation
—

Steal Credentials

=

Network Scanning

->

Password Spray

alt J|[Success]

Lateral Movement

[Failur

D
[

Attack Blocked

Artefact of Need

Timestamps

Whatis a Timestamp?

A sequence of characters that
precisely records the date and
time an event occurred,
typically down to the second or
even millisecond.

Great. But... can you give us an example?

Sure, here’s one (unix epoch)

Raw Timestamp 1633072800 Total seconds since Unix epoch (1 Jan 1970, 00:00:00 UTC)

Time Zone UTC Unix epoch timestamps are always in Coordinated
Universal Time

Gl R 2021-10-01 The calendar date in YYYY-MM-DD format

Milli d 1633072800000
Lol Sz To convert to millisecond precision, multiply by 1000

But walit... there’s
more

We’'ll discuss different types of timestamps
based on various classifications, next.

Types of Timestamps

Classification by Format
Classification by Semantics
Classification by Source

Classification
by Format

mm S0 8601

mm Unix Epoch

== \VVindows Filetime

mm RFC 3339

ISO 8601

* Aninternational standard for representing dates and timesin a
consistent and unambiguous way, using the order of year, month,
day, hour, minute, and second.

* Often found in system / app logs

| ower-level mechanisms don’t use this

ISO 8601

-

Time Seperator
Zulu Time (UTC+0)

20251011 l 3’]:[42]:15%5
AN

Year Month Day Hour Minute Second Milli-
Second

This timestamp represents
the number of seconds since
00:00:00 UTC on 1 January
1970.

Unix
Epoch

Always in UTC.

Used by system drivers /

file systems and low-level
entities.

Raw Timestamp 1633072800

Total seconds since Unix epoch (1 Jan 1970,
00:00:00 UTC)

Time Zone UTC Unix epoch timestamps are always in Coordinated

Universal Time

Converted Date 2021-10-01 The calendar date in YYYY-MM-DD format

Milliseconds 1633072800000 To convert to millisecond precision, multiply by

1000

Windows Filetime

A 64-bit value that represents the number of 100-nanosecond intervals that have
elapsed since 12:00 A.M. January 1, 1601.

Always in UTC.

Minimum supported OS: Windows 2000 / Windows Server 2000

. * Ox01D7B6CODS53ES8000
Windows
. . * A 64-bit value made of 2 32-bit parts
Filetime

T T

dwHighDatelime 0x01D7B6CO 30914240

dwlLowDatelime OxD53E8000 3577643008

RFC 3339

Formalises ISO 8601 with a more restricted definition.

All dates and times are assumed to be in the "current era", somewhere
between 0000AD and 9999AD.

All times expressed have a stated relationship (offset) to Coordinated
Universal Time (UTC).

Timestamps can express times that occurred before the introduction of UTC.

RFC 3339

-

Year

Month Date Hour }b Second
\2@25 10-20TR1:02: J@L«es:m}

Minute

/

Date/Time Seperator Offset from UTC

Classification by Semantics

Creation
Time

Classification by Source

0

FILESYSTEM WINDOWS EVENT PREFETCH FILES
LOGS

FileSystem

As the name suggests, these timestamps are classified for files
found on the file system

|

Different file systems store timestamps with varying levels of
accuracy

(L

B workshop.pptx Properties

General Digital Signatures Security Details Previous Versions

Property Value a
Slides 42
Notes 0
Hidden count 0
Multimedia clips 0
Presentation format Widescreen
Template
Scale No
F‘ l S Links dirty? No
ileSystem
File
Size 174 KB
Date created 03-10-2025 05:26 PM
Date modified 21-10-2025 01:27 PM
Date accessed 21-10-2025 01:27 PM
Availability
Offline status
Shared with
Computer LIGHT (this PC)
v

Remove Properties and Personal Information

Cancel Apply

Event Logs

Event logs are detailed records generated by the operating
system that track system activities, security events, and
application behavior, providing valuable insights for
troubleshooting and monitoring.

[i[Event Viewer
File Action View Help
= = = I] 57

ii] Event Viewer (Local)

Event Logs

Actions
g Custom Views
T Windows Logs Lf.\vel Date and Time Source Event ID Task Category System
i] Application i) Information 21-10-2025 05:20:14 PM UserModePowerService 12 (10 Open Saved Log..
| Security ! Information 21-10-2025 05:19:37 PM UserModePowerService 12 (10) ¥ Create Custom View...
] Setup { I JInformation 21-10-2025 05:19:37 PM Iphlpsvc-Trace 4068 None Import Custom View..
I System (1) Information 21-10-2025 05:19:37 PM Kernel-Power 105 (100)
=] Forwarded Events (i) Information 21-10-2025 04:33:20 PM Virtual Disk Service 4 None Clear Log...
Applications and Services Ubc || (i) Information 21-10-2025 04:27:40 PM Service Control Mana.. 7040 None ¥ Filter Current Log..
21 Subscriptions i) Information 21-10-2025 04:27:14 PM Kernel-General 16 None Properties
) Information 21-10-2025 04:27:14 PM Kernel-General 16 None

(i) Information 21-10-2025 04:27:04 PM Kernel-General 16 None Find..
\ |) Information 21-10-2025 04:27:04 PM Kernel-General 16 None Save All Events As..
(i) Information 21-10-2025 04:23:22 PM Iphlpsve-Trace 4071 None Attach a Task To this Log..
(i) Information 21-10-2025 04:22:43 PM UserModePowerService 12 (10) View
(i) Information 21-10-2025 04:22:43 PM Kernel-Power 105 (100)
(i) Information 21-10-2025 04:21:59 PM Kernel-General 16 None (& Refresh
(i) Information 21-10-2025 04:21:59 PM Kernel-General 16 None ﬂ Help
(i) Information 21-10-2025 04:21:59 PM Kernel-General 16 None
(i) Information 21-10-2025 04:21:59 PM Kernel-General 16 None EventlzUseiedaboneranice
(I) Information 21-10-2025 04:21:58 PM Kernel-General 16 None Event Properties

Event 12, UserModePowerService

General

Details

Process C:\Program Files\ASUS\ARMOURY CRATE Service\ArmouryCrate.UserSessionHelper.exe (process ID:9752) reset policy scheme fram
{64ab4f24-65b9-4b56-befd-5ec1eaced9b3} to {27fa6203-3987-4dcc-918d-748559d54%ec}

ﬂ Attach Task To This Event...
| Copy
I.—I Save Selected Events...

3 Refresh

ﬂ Help

Log Name: System
Source: UserModePowerService Logged:

Task Category: (10)

21-10-2025 05:20:14 PM
Event ID: 12

Level: Information Keywords:

Some Interesting Windows Events

©

4625 - LOGON 4688 - PROCESS 4104 - 7036 - SERVICE
CREATION POWERSHELL START/STOP

{2 Event Viewer
File Action View Help

s 77 BE

@ Event Viewer (Local)
> :} Custom Views

s Windows Logs
fs] Application
El Security
EI Setup

E] System

] Forwarded Events
> [Applications and Services |
_E Subscriptions

System Number of events: 36,523

Level

@ Information
@ Information
® Information
@ Information
@ Information
@ Information
@ Information
® Information
@ Information
@ Information
@ Information
® Information
CD Information
® Information
CD Information
@ Information
CD Information
@ Information

Date and Time

| 21-10-2025 05:20:14 M|

21-10-2025 05:19:37 PM
21-10-2025 05:19:37 PM
21-10-2025 05:19:37 PM
21-10-2025 04:33:20 PM
21-10-2025 04:27:40 PM
21-10-2025 04:27:14 PM
21-10-2025 04:27:14 PM
21-10-2025 04:27:04 PM
21-10-2025 04:27:04 PM
21-10-2025 04:23:22 PM
21-10-2025 04:22:43 PM
21-10-2025 04:22:43 PM
21-10-2025 04:21:59 PM
21-10-2025 04:21:59 PM
21-10-2025 04:21:59 PM
21-10-2025 04:21:59 PM
21-10-2025 04:21:58 PM

Source
UserModePowerService
UserModePowerService
Iphlpsvc-Trace
Kernel-Power

Virtual Disk Service
Service Control Mana...
Kernel-General
Kernel-General
Kernel-General
Kernel-General
Iphlpsvc-Trace
UserModePowerService
Kernel-Power
Kernel-General
Kernel-General
Kernel-General
Kernel-General
Kernel-General

Event ID
12

12

4068

Task Category
(10)
(10)
None
(100)
None
None
None
None
None
None
None
(10)
(100)
None
None
None
None
None

Event 12, UserModePowerService

General Details

Process C:\Program Files\ASUS\ARMOURY CRATE Service\ArmouryCrate.UserSessionHelper.exe (process ID:9752) reset policy scheme from
{64a64f24-65b9-4b56-befd-5ec1eaced9b3} to {27fa6203-3987-4dcc-918d-748559d549%ec}

- NP i (<)

Open Saved Log..

Create Custom View..
Import Custom View...
Clear Log..

Filter Current Log...
Properties

Find..

Save All Events As..
Attach a Task To this Log...
View

Refresh

Event Properties

Attach Task To This Event..
Copy

Save Selected Events..
Refresh

Help

LogName: System

21-10-2025 05:20:14 PM
Task Category: (10)

Source: UserModePowerService Logged:
Event ID: 12

Prefetch Files

Introduced in Windows XP

Prefetch files are created to speed up the loading time of applications by
caching the necessary data for frequently used programs.

Max Prefetch Files

Windows XPto7 =128 Windows 8to 10 =1024 Windows 11 =8192

A 4

Stored in the C:/Windows/Prefetch.

C:\Windows\Prefetch X + — (m] X

& = ™ C J > ThisPC > OS(C) > Windows > Prefetch > Search Prefetch Q
® New -~ T Sort - = View v .ee (B Details
2 Home (J Name B Date modified Type Size
E] Gallery ‘ ReadyBoot 21-10-2025 12:53 PM File folder
@ Gauray - Personl (] IU14D2N.TMP-980CA1 F 18-10-2025 06:29 PM PF File 9 KB
|| 7ZFM.EXE-267DC9BE.pf 14-09-2025 12:44 PM PF File 25 KB
|| 7ZG.EXE-15AB700A.pf 14-09-2025 12:44 PM PF File 16 KB
@8 Desktop * ['] AACAMBIENTLIGHTING.EXE-67B2E7EA pf 20-10-2025 10:50 PM PF File 26 KB
- Downloads of (") ADA LANGUAGE SERVEREXE-1A446CBI.pf 21-10-2025 01:24 PM PF File 19 KB
= Documents » ('] ALEXE-C5BOF666.pf 21-10-2025 12:54 PM PF File 33 KB
PR Pictures » ('] AM_DELTA_PATCH_1.439.293.0.EX-008B7093.. 20-10-2025 01:12 PM PF File 3 KB
® Music » ['] AOMHOST64.EXE-76435935.pf 14-10-2025 07:29 PM PF File 76 KB
i3 Videos » || APPACTIONS.EXE-1B86A9F9.pf 20-10-2025 01:11 PM PF File 21KB
thesic ['] APPLICATIONFRAMEHOST.EXE-8CE9ATEEpf 21-10-2025 01:00 PM PF File 27 KB
('] ARMOURY CRATE EGPU PRODUCT.EX-099E3... 21-10-2025 01:34 PM PF File 8 KB
" || ARMOURYCRATE.EXE-D7FFD468.pf 20-10-2025 09:30 PM PF File 51 KB
dfrws_apac_25
[') ARMOURYCRATEKEYCONTROL.EXE-077DDC... 21-10-2025 01:34 PM PF File 22 KB
Inee || ASCHECKASCI.EXE-985A170F.pf 21-10-2025 01:34 PM PF File 10 KB
['] ASM.EXE-OF397DDA pf 21-10-2025 01:24 PM PF File 4KB
v [This PC ['] ASUSLIVEUPDATETOAST.EXE-61CD43EB.pf 21-10-2025 01:53 PM PF File 23 KB
> e OS (C) [') ASUSMOUSEAGENT.EXE-DCO30BE6.pf 21-10-2025 12:53 PM PF File 10 KB
N [ASUSMYASUSNOTIFICATION.EXE-03BBIDS5... 21-10-2025 01:53 PM PF File 22 KB

== nexus (N:)

ACIICACTY YWD AD-AmmA4d A0y 0

el AN TYOYTYD AT DR A

nr rel e

a7y LD

Prefetch files can be parsed using
PECmd tool

-\PECmd.exe -7 C:\Windows\Preretcn\EAPLORER.EXE-D5ED/654.pT
PECmd version 1.5.1.0

Author: Eric Zimmerman (saericzimmerman@gmail.com)
https://github.com/EricZimmerman/PECmd

Command line: -f C:\Windows\Prefetch\EXPLORER.EXE-D5E97654.pf
Warning: Administrator privileges not found!

Keywords: temp, tmp

Processing C:\Windows\Prefetch\EXPLORER.EXE-D5E97654.pf
Created on: 2024-11-25 18:52:25

Modified on: 2025-10-18 13:22:20
Last accessed on: 2025-10-21 08:22:08

Executable name: EXPLORER.EXE
Hash: D5E97654

File size (bytes):

Version: null

Run count:

Last run: 2025-10-18 13:22:18
Other run times: 2025-10-18 12:58:53, 2025-10-18 08:03:31,| 2025-10-13 20:11:54, 2025-10-13 20:11:54, 2025-09-23 16:22:06, 20
25-09-23 16:22:06, 2025-09-22 18:27:06

Volume information:
#0: Name: \VOLUME{01d8164791681b58-fc917b88} Serial: FC917B88 Created: 2022-01-31 02:09:24 Directories: File references:
#1: Name: \VOLUME{01da522087d5e8e9-08880acf} Serial: 8880QACF Created: 2024-01-28 19:31:03 Directories: File references:

Directories referenced:

MORE Sources for
Timestamps!

LastWrite Time

UserAssists

MRU Lists

Registry ===
H iveS RecentDocs

ShellBags

USBSTOR

How to Create a Timeline?

* Gather the Artefacts
* Logs
* EVTX Files
* Prefetch Files
* Suspected Files

* Parse Timestamps
 Map Timestamps to Artefacts to Origin
* Generate Report/ Visualise

BONUS

BODYFILE

BODYFILE

* The body file format is a delimiter-
separated output timeline format (as far
as known) introduced by the The Sleuth
Kit.

* Body files are pipe (|) delimited and are
referred to as an "intermediate file", as
they are not sorted chronologically and
are often staged for post-processing.

* Subsequent timeline sorting is done via
the mactime tool.

* Alltimes within a body file are reported in
UNIX time format.

Sample BODYFILE

2 pwsh in bodyfile

bodyfile cat .\sample.bodyfile

0/filel.txt]12345|rrw-r--r—1000|1000|1024[1699315200]1699315200|1699315200|1699315200
0|/file2.logl12346|rrw-r--r—1000|1000|2048[1699315300]1699315300|1699315300|1699315300

0|/dir/file3.dat|12347 | rrw-r-—-r— 1000|1000|4096|1699315400|1699315400|1699315400|1699315400
Ceaura 3 1005 =)

Tools for Forensic Timeline Analysis

Eric

Zimmerman’s
Tools

Introduction to Go

WHAT IS GO? HOW TO GO? LET’S GO WHY GO FOR
FORENSICS?

OVA Download Link —
Ubuntu24 and Win10

https://tinyurl.com/v4ak7k6 I I

What is Go?

Open source, garbage collected programming language

Developed by Robert Griesemer, Rob Pike, and Ken Thompson at Google

Designed for building systems tooling

Currently used by Google, K8s, Docker, etc.

How to Go |

Download & Install Go from
“go.dev’

OR O

Visit play.go.dev inyour
browser

For offline coding

B Create afolder by name “dfrwsDemo”

m' Optional: run go mod init dfrwsDemo

g Open in any text/code editor

Let’s Go

i e
6 B, . o)

package mailn

tmport “fmt"

func main() {
fmt.Println("Hello, World!")

}

Y

But before we go run, let’
unpack each line |

package declaration

package main
tmport “fmt"

func main() {
fmt.Println("Hello, World!")
s

import package \

P
- - o\
N N

package main

tmport "fmt

n

func main() {
fmt.Println("Hello, World!")

unction

o0
package main

umport "fmt"

func main()| {
tmt.Println({"Hello, World!")

}

/,;ackage name in Llowercase

package main
import "fmt'

func main() {
fmtsPrintln("Hello, World!")
}

dot seperator exported functions start with an

UPPERCASE letter)

no semi-colon here
we will see their use in specific cases

2900
package main
Sl

import “fmt

func main() {
fmt.Println("Hello, World!") §

Run Code

go run <filename.go>

2 pwsh in hello

go run .\hello.go

Hello, World!

| _gaura @ -9 8

Conditions

package main

import “fmt"

func main() {

}

var num int
num = 5

if num > 5 {
fmt.Println("Greater than 5")
} else if num < 5 {

fmt.Println("Less than 5")
} else {

fmt.Println("Equal to 5")
}

Output

2 pwsh in cnds

go run .\cnds.go

Equal to 5

| _gaura & _ - 9 _ }

Ways to declare a variable

package mailn
import "fmt"

main() {
fpath := "/some/path/to/file"

anotherPath string
anotherPath = "/some/path/foo/bar”

fixedPath = "/another/path/fixed”

fmt.Println(fpath)
fmt.Println(anotherPath)
fmt.Println(fixedPath)

func main() {
for 1 := 0; 1 < 10; i1++ {
fmt.Println(1)

}
}

2 pwsh in loops

go run .\loops.go

0
1
2
3
4
5
6
7
8
9

00

package main

import “fmt"

User Defined fune watn(} {

var num int

Functions e

res := i1sEven(num)
fmt.Println(res)

}

func isEven(num int) bool {
if nums2 == 0 {
return true

}

return false

Output

package mailn

import (
"fmt"
"os"

main() {
fpath := "./go.mod"
data, err := os.ReadFile(fpath)
if err = {

panic(err)
}

dataStr := string(data)
fmt.Println(dataStr)|j

Reading
Files - Data

2. pwsh in filegames

go run .\filegames.go

module filegames

g0 1.25.2

| gaura @ _ i)

package main

import (
"fmt"
'IIOS

n

main() {
fpath := "./go.mod"
finfo, err := os.Stat(fpath)

Reading

I - if err {
FIleS if os.IsNotExist(err) {
Metadata fmt.Println("File does NOT exist")

return

}

panic(err)

}

fmt.Println(finfo.ModTime())
fmt.Println(finfo.ModTime().UTC())}}

> pwsh in filegames

go run .\filegames.go

2025-10-24 03:32:42 +0530 IST
2025-10-23 22:02:42 +0000 UIC

| _gaura @ L on o)

Recursively
Finding Files

2 pwsh in recur

1 [Jackage main

import (
"fmt"
"io/fs"
"path/filepath”

main() {
fpath :=
filepath.Walk(fpath, (path string, info fs.FileInfo, err error) error {
if info.IsDir() {
return
}

fmt.Printf("Name: %s | Last Modified Time: %v\n", info.Name(), info.ModTime())

return

b

Output

> pwsh in recur

II4ilg co0 run .\recur.go

Name:
Name:
Name:
Name:
Name:
Name:

Name:

QVQCJEOHOV.docx | Last Modified Time: 2025-11-06 22:00:27.120146 +0530 IST
V7CVZ5YIIG.db-journal | Last Modified Time: 2025-11-06 22:00:27.1550188 +0530 IST
2P3TEEVMGC.mp4 | Last Modified Time: 2025-11-06 22:00:27.0802229 +0530 IST
places_T76DPU.sqlite | Last Modified Time: 2025-11-06 22:00:27.1555989 +0530 IST
ZNNPHEOMMJ] .pdf | Last Modified Time: 2025-11-06 22:00:27.1102995 +0530 IST

go.mod | Last Modified Time: 2025-11-06 22:01:30.4030057 +0530 IST

recur.go Last Modified Time: 2025-11-06 22:11:34.3775977 +@530 IST

-, |

Parsing Windows FILETIME

2 pwsh in filetime

[Jackage main

import (
"fmt"
"time"

)

func filetimeToTime(ft uint64) time.Time {
const filetimeOffset = 116444736000000000 // in 100-ns ticks
ns := int64((ft - filetimeOffset) * 100)
return time.Unix(@, ns).UTC()

}

func main() {
FiL = uint64(0X01D7BGC@D53E8®0®)

parsed := filetimeToTime(ft)
fmt.Println("FILETIME > Time:", parsed)

Output

2. pwsh in filetime

go run .\filetime.go

FILETIME » Time: 2021-10-01 12:35:35.8338048 +0000 UTC

| gaura @ _ i L9)

Parsing Linux EPOCH Time

2 pwsh in epoch

lackage main
import (

mn _Fmt m
thimelT

func main() f{
epoch := int64(1633072800) // Example Unix timestamp in seconds

t := time.Unix(epoch, 0).UTC()
fmt.Println("Epoch Seconds > Time:", t)

Output

2 pwsh in epoch

go run .\epoch.go

Epoch Seconds » Time: 2021-10-01 07:20:00 +0000 UTC

_gaura @ -l)

Parsing BODYFILE

> pwsh in bodyfile

flackage main

import (
"bufio”
"fmt"
"OS"
"strings"

)

func main() {
file, err := os.Open("sample.bodyfile")
if err = nil {
panic(err)
}

defer file.Close()

scanner := bufio.NewScanner(file)
for scanner.Scan() {
fields := strings.Split(scanner.Text(), "I|")
fmt.Printf("Name: %s, Size: %s, Modified Time: %s\n",
fields[1], fields[6], fields[8])

2= pwsh in bodyfile

CLLVARANE co run .\bodyfile.go

Name: /filel.txt, Size: 1024, Modified Time: 1699315200

Name: /file2.log, Size: 2048, Modified Time: 1699315300
Name: /dir/file3.dat, Size: 4096, Modified Time: 1699315400

| _gaura @ il

2 pwsh in jason

1 [Jackage main

import (
"encoding/json"
'IIOS'II

Event {
EventID int "Jjson:"event_id"
Timestamp string "json:"timestamp”’
Message string Jjson:"message"

Write JSON

main() {
events := []Event{
{4624, "2025-10-11T03:42:15Z", "Logon Success"},
{4688, "2025-10-11T03:42:20Z", "Process Created"},
}

f, err := os.Create("output.json")

if err == {
panic(err)

t

f.Close()

json.NewEncoder(f).Encode(events)

Output

2 pwsh in jason

JEEI» co run .\jason.go
jason 1s
Directory: O:\teach\dfrws_apac_25\materiall\code\jason
-a— 07-11-2025 12:18 AM 24 go.mod

-—a— 07-11-2025 12:19 AM 473 jason.go
-a— 07-11-2025 12:19 AM 162 output.json

cat .\output.json

[{"event_id":4624,"timestamp":"2025-10-11T03:42:15Z", "message":"Logon Success"},{"event_id":4688,"timestamp":"2025-10-11T03:
42:20Z","message":"Process Created"}]

[gaura » - . » N 7 in pwsh at 00:20:05

Code Download Link —
code.zip

https://tinyurl.com/v4ak7k6

L

Why Go for Forensics?

Go compiles to native code and runs fast, making it ideal for
processing large datasets like disk images or memory dumps.

Concurrency through multi-threading is built into go through green
threads called goroutines.

Cross-compilation works across all major operating systems.

Exposes C style ABI allowing easy foreign function interfaces between
other programming languages.

Problem Statement Discussion

~/ Potential Solutions

Today’s Problem
Statement x Time for Experiment

Q Solution Discussion

b

Caveats

Problem Statement
Discussion

N\ V A\ =— /[\

\

B
/

/

4

Background (completely fictional story)

MegaCorp operates a semi-automated internal
“Update Distribution System” used for pushing utilities
to employee systems.

On the morning of 15 October 2024,
MegaCorp’s internal monitoring systems
detected unusual file distribution activity
across five employee workstations.

Wave of EXEs

Two executables: update-tool.exe and
system-monitor.exe

Unexpected installer droppers inside
temp/ with sequence numbers

At first, this looked like a coordinated

software update.

But the timestamps didn’t match any scheduled
deployment window

First Signs of
Trouble

SOC analysts noticed multiple
employees receiving unusual
emails

* notification-001.eml
e alert-system.eml
* update-###.eml

SoC in Action

All machines received identical files, often with identical mtimes,

Files appeared in waves, a few seconds apart per machine, All

machines referenced a network-share/deployment folder that no
team publicly owned.

. Was this a legitimate update, or -
", acoordinated lateral spread? -

Your job: Reconstruct the
true chain of events using
timestamps alone.

Dataset Download Link —
scenario.zip

https://tinyurl.com/v4ak7k6 I I

Dataset Find it here:
https://github.com/aoil

Generated flux/generator
using

FSAGen

Solution Discussion — High Level View

*

Loop through Get Generate

Loop through all the artefacts Get the data modified timestamps Generate report
(files)

L)
Y 4 <\
Construction of a timeline of \
events that represents a chain
of infection to show which
computer was infected first

and how malware moved
through to the last one.

Time for Experiment

Different Timezone?

Caveats Clock Skew?

@ System Clock not in Sync
with NTP Server?

Additional Content — Anti-Forensics

TIME-STOMPING RAW DISK SYSTEM CLOCK USN / SLOGFILE
ATTACKS READS MANIPULATION MANIPULATION

Additional Content -
Anti-Forensics

-orced SSD Trim

Deleted Prefetch Files
-ileless Malware

Raw Disk Writes (Bypassing

-ilesystem)

Additional Content — More Investigation Scenarios!

FSAGen can be used to generate any number of scenarios

Provided OVA file contains FSAGen tool and playbooks

Please feel free to generate as many scenarios as you like

Q/A

Gaurav Gogia
Security R&D @Qualys | Purple Teaming

Let’s

Connect

	슬라이드 1: Chain of Infection Detection
	슬라이드 2: $whoami
	슬라이드 3: Agenda
	슬라이드 4: Timeline Analysis for Forensics
	슬라이드 5: What is Timeline Analysis?
	슬라이드 6: Stages of a Timeline Analysis
	슬라이드 7: Collection – Sources Gathered
	슬라이드 8: Collection – Potential Key Finding
	슬라이드 9: Normalization – Action Taken
	슬라이드 10: Normalization – Result
	슬라이드 11: Correlation – Cross Referenced Events
	슬라이드 12: Correlation – Insight
	슬라이드 13: Interpretation – Conclusion Drawn
	슬라이드 14: Some More Examples
	슬라이드 15: What are some Use Cases?
	슬라이드 16: Sample Malware Attack Sequence
	슬라이드 17
	슬라이드 18: Artefact of Need
	슬라이드 19: What is a Timestamp?
	슬라이드 20: Great. But… can you give us an example?
	슬라이드 21: Sure, here’s one (unix epoch)
	슬라이드 22: But wait… there’s more
	슬라이드 23: Types of Timestamps
	슬라이드 24: Classification by Format
	슬라이드 25: ISO 8601
	슬라이드 26: ISO 8601
	슬라이드 27: Unix Epoch
	슬라이드 28: Unix Epoch
	슬라이드 29: Windows Filetime
	슬라이드 30: Windows Filetime
	슬라이드 31: RFC 3339
	슬라이드 32: RFC 3339
	슬라이드 33: Classification by Semantics
	슬라이드 34: Classification by Source
	슬라이드 35: FileSystem
	슬라이드 36: FileSystem
	슬라이드 37: Event Logs
	슬라이드 38: Event Logs
	슬라이드 39: Some Interesting Windows Events
	슬라이드 40
	슬라이드 41: Prefetch Files
	슬라이드 42
	슬라이드 43: Prefetch files can be parsed using PECmd tool
	슬라이드 44
	슬라이드 45: MORE Sources for Timestamps!
	슬라이드 46: Registry Hives
	슬라이드 47: How to Create a Timeline?
	슬라이드 48: BONUS
	슬라이드 49: BODYFILE
	슬라이드 50: Sample BODYFILE
	슬라이드 51: Tools for Forensic Timeline Analysis
	슬라이드 52: Introduction to Go
	슬라이드 53: OVA Download Link – Ubuntu24 and Win10
	슬라이드 54: What is Go?
	슬라이드 55: How to Go
	슬라이드 56: For offline coding
	슬라이드 57: Let’s Go
	슬라이드 58: Hello World
	슬라이드 59: But before we go run, let’s unpack each line
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63
	슬라이드 64
	슬라이드 65: Run Code
	슬라이드 66: Output
	슬라이드 67: Conditions
	슬라이드 68: Output
	슬라이드 69: Ways to declare a variable
	슬라이드 70: Loops
	슬라이드 71: Output
	슬라이드 72: User Defined Functions
	슬라이드 73: Output
	슬라이드 74: Reading Files - Data
	슬라이드 75: Output
	슬라이드 76: Reading Files - Metadata
	슬라이드 77: Output
	슬라이드 78: Recursively Finding Files
	슬라이드 79: Output
	슬라이드 80: Parsing Windows FILETIME
	슬라이드 81: Output
	슬라이드 82: Parsing Linux EPOCH Time
	슬라이드 83: Output
	슬라이드 84: Parsing BODYFILE
	슬라이드 85: Output
	슬라이드 86: Write JSON
	슬라이드 87: Output
	슬라이드 88: Code Download Link – code.zip
	슬라이드 89: Why Go for Forensics?
	슬라이드 90: Today’s Problem Statement
	슬라이드 91: Problem Statement Discussion
	슬라이드 92: Background (completely fictional story)
	슬라이드 93: Wave of EXEs
	슬라이드 94: At first, this looked like a coordinated software update.
	슬라이드 95: First Signs of Trouble
	슬라이드 96: SoC in Action
	슬라이드 97: Was this a legitimate update, or a coordinated lateral spread?
	슬라이드 98: Your job: Reconstruct the true chain of events using timestamps alone.
	슬라이드 99: Dataset Download Link – scenario.zip
	슬라이드 100: Dataset Generated using FSAGen
	슬라이드 101: Solution Discussion – High Level View
	슬라이드 102: End Goal
	슬라이드 103: Time for Experiment
	슬라이드 104: Solution Discussion
	슬라이드 105: Caveats
	슬라이드 106: Additional Content – Anti-Forensics
	슬라이드 107: Additional Content – Anti-Forensics
	슬라이드 108: Additional Content – More Investigation Scenarios!
	슬라이드 109: Q/A
	슬라이드 110: Let’s Connect

