
Chain of Infection
Detection

A Hands-On Workshop on
Forensic Timeline Analysis

$whoami

• Sr. Security Research Engineer
@Qualys

• Talk to me about

• Security

• Forensics

• Full-time Foodie

• Please share recommendations

• Anime Enthusiast

Agenda

Timeline Analysis for Forensics

Intro to Go

Today’s Problem Statement

Caveats

QA

Timeline Analysis
for Forensics

What is Timeline Analysis?

What are some Use Cases?

Artefact of Need

What is a Timestamp?

Types of Timestamps

How to create a Timeline?

What is Timeline Analysis?

Process of re-constructing
chain of events to pinpoint
initial attack vector, movement
of adversary/malware, end goal
or point of detection.

Stages
of a

Timeline
Analysis

Collection

Normalization

Correlation

Interpretation

Collection – Sources Gathered

Event logs from the suspect’s workstation

File system metadata (timestamps)

Email server logs

VPN access logs

USB device connection logs

Collection –
Potential Key Finding
USB device connected
at 10:55 PM

Normalization – Action Taken

Timestamps
converted into UTC

Logs from Windows
and Linux parsed into

a unified schema

Normalization – Result

A normalized dataset where every event
is timestamped and categorized (login,
file access, etc.) in a common format.

Correlation – Cross Referenced Events

9:58 AM

VPN login from
external IP at 9:58
AM KST

10:30 AM

User accessed
confidential design
files at 10:30 AM
KST

10:55 PM

USB device
connected at 10:55
PM

10:57 PM – 11:42 PM

File copy
operations logged
between 10:57 PM –
11:42 PM KST

11:43 PM

USB device ejected
at 11:43 PM KST

Correlation – Insight

This deliberate separation of reconnaissance and extraction is a classic indicator of
insider threat behavior.

Late at night: The same user connected a USB device and copied the previously
identified files; executing the exfiltration outside regular monitoring windows.

During normal working hours: The individual accessed and flagged high-value files,
identifying assets of interest.

The sequence of events strongly indicates targeted data exfiltration by the person of
interest:

Interpretation – Conclusion Drawn

The person of interest remotely accessed the network, logged
in, accessed sensitive files, and transferred them to a USB drive.

The timeline supports the hypothesis of intentional data
exfiltration.

Some More Examples

Unexpected Login → Financial File Access → Large DNS Requests

File Execution → Prefetch Creation

USB Insertion → Process Creation

Browser →Download File → Filesystem Write

What are some Use Cases?

• Entry-point Discovery
• Persistence Detection
• Lateral Movement Mapping
• IoC Creation & Movement Tracking

Sample Malware Attack Sequence

1. Phishing Email Received
2. Email Downloads EXE
3. EXE Bypasses MoTW (Mark of The Web)
4. Remote Code Execution Achieved
5. Exploits CLFS to achieve Local Privilege Escalation
6. Leaks NTLM Hashes
7. Monitors Local IPs for RDP/SSH Access
8. Sprays Passwords Until Successful / Complete Failure

Artefact of Need

Timestamps

What is a Timestamp?

A sequence of characters that
precisely records the date and
time an event occurred,
typically down to the second or
even millisecond.

Great. But… can you give us an example?

Sure, here’s one (unix epoch)

Component Value Explanation

Raw Timestamp 1633072800 Total seconds since Unix epoch (1 Jan 1970, 00:00:00 UTC)

Time Zone UTC Unix epoch timestamps are always in Coordinated
Universal Time

Converted Date 2021-10-01
The calendar date in YYYY-MM-DD format

Milliseconds 1633072800000
To convert to millisecond precision, multiply by 1000

But wait… there’s
more
We’ll discuss different types of timestamps
based on various classifications, next.

Types of Timestamps

Classification by Format

Classification by Semantics

Classification by Source

Classification
by Format

ISO 8601

Unix Epoch

Windows Filetime

RFC 3339

ISO 8601
• An international standard for representing dates and times in a

consistent and unambiguous way, using the order of year, month,
day, hour, minute, and second.

• Often found in system / app logs
• Lower-level mechanisms don’t use this

ISO 8601

Unix
Epoch

This timestamp represents
the number of seconds since
00:00:00 UTC on 1 January
1970.

Always in UTC.

Used by system drivers /
file systems and low-level
entities.

Unix Epoch

Component Value Explanation

Raw Timestamp 1633072800 Total seconds since Unix epoch (1 Jan 1970,
00:00:00 UTC)

Time Zone UTC Unix epoch timestamps are always in Coordinated
Universal Time

Converted Date 2021-10-01 The calendar date in YYYY-MM-DD format

Milliseconds 1633072800000 To convert to millisecond precision, multiply by
1000

Windows Filetime

A 64-bit value that represents the number of 100-nanosecond intervals that have
elapsed since 12:00 A.M. January 1, 1601.

Always in UTC.

Minimum supported OS: Windows 2000 / Windows Server 2000

Windows
Filetime

• 0x01D7B6C0D53E8000

• A 64-bit value made of 2 32-bit parts

Component Hex Decimal

dwHighDateTime 0x01D7B6C0 30914240

dwLowDateTime 0xD53E8000 3577643008

RFC 3339

Formalises ISO 8601 with a more restricted definition.

All dates and times are assumed to be in the "current era", somewhere
between 0000AD and 9999AD.

All times expressed have a stated relationship (offset) to Coordinated
Universal Time (UTC).

Timestamps can express times that occurred before the introduction of UTC.

RFC 3339

Classification by Semantics

Creation
Time

Modification
Time Access Time Metadata

Change

Deletion Installation Download Print Time

Classification by Source

FILESYSTEM WINDOWS EVENT
LOGS

PREFETCH FILES

FileSystem

As the name suggests, these timestamps are classified for files
found on the file system

Different file systems store timestamps with varying levels of
accuracy

FileSystem

Event Logs
Event logs are detailed records generated by the operating
system that track system activities, security events, and
application behavior, providing valuable insights for
troubleshooting and monitoring.

Event Logs

Some Interesting Windows Events

4625 – LOGON 4688 – PROCESS
CREATION

4104 –
POWERSHELL

7036 – SERVICE
START/STOP

Prefetch Files

Stored in the C:/Windows/Prefetch.

Max Prefetch Files
Windows XP to 7 = 128 Windows 8 to 10 = 1024 Windows 11 = 8192

Prefetch files are created to speed up the loading time of applications by
caching the necessary data for frequently used programs.

Introduced in Windows XP

Prefetch files can be parsed using
PECmd tool

MORE Sources for
Timestamps!

Registry
Hives

LastWrite Time

UserAssists

MRU Lists

Run MRU

RecentDocs

ShellBags

USBSTOR

How to Create a Timeline?

• Gather the Artefacts
• Logs
• EVTX Files
• Prefetch Files
• Suspected Files

• Parse Timestamps
• Map Timestamps to Artefacts to Origin
• Generate Report / Visualise

BONUS

BODYFILE

BODYFILE

• The body file format is a delimiter-
separated output timeline format (as far
as known) introduced by the The Sleuth
Kit.

• Body files are pipe (|) delimited and are
referred to as an "intermediate file", as
they are not sorted chronologically and
are often staged for post-processing.

• Subsequent timeline sorting is done via
the mactime tool.

• All times within a body file are reported in
UNIX time format.

Sample BODYFILE

Tools for Forensic Timeline Analysis

Plaso Timesketch MFTECmd PECmd

EvtxECmd KAPE
Eric

Zimmerman’s
Tools

Introduction to Go

WHAT IS GO? HOW TO GO? LET’S GO WHY GO FOR
FORENSICS?

OVA Download Link –
Ubuntu24 and Win10

https://tinyurl.com/v4ak7k6

What is Go?

Open source, garbage collected programming language

Developed by Robert Griesemer, Rob Pike, and Ken Thompson at Google

Designed for building systems tooling

Currently used by Google, K8s, Docker, etc.

How to Go

Download & Install Go from
`go.dev`

OR

Visit `play.go.dev` in your
browser

For offline coding

Create a folder by name “dfrwsDemo”

Optional: run `go mod init dfrwsDemo`

Open in any text/code editor

Let’s Go

Hello World

Conditions

Loops

User Defined Functions

Reading Files

Hello
World

But before we go run, let’s
unpack each line

Run Code

go run <filename.go>

Output

Conditions

Output

Ways to declare a variable

Loops

Output

User Defined
Functions

Output

Reading
Files - Data

Output

Reading
Files -

Metadata

Output

Recursively
Finding Files

Output

Parsing Windows FILETIME

Output

Parsing Linux EPOCH Time

Output

Parsing BODYFILE

Output

Write JSON

Output

Code Download Link –
code.zip

https://tinyurl.com/v4ak7k6

Why Go for Forensics?

Go compiles to native code and runs fast, making it ideal for
processing large datasets like disk images or memory dumps.

Concurrency through multi-threading is built into go through green
threads called goroutines.

Cross-compilation works across all major operating systems.

Exposes C style ABI allowing easy foreign function interfaces between
other programming languages.

Today’s Problem
Statement

Problem Statement Discussion

Potential Solutions

Time for Experiment

Solution Discussion

Caveats

Problem Statement
Discussion

Background (completely fictional story)

MegaCorp operates a semi-automated internal
“Update Distribution System” used for pushing utilities
to employee systems.

On the morning of 15 October 2024,
MegaCorp’s internal monitoring systems
detected unusual file distribution activity
across five employee workstations.

Wave of EXEs

Two executables: update-tool.exe and
system-monitor.exe

Unexpected installer droppers inside
temp/ with sequence numbers

At first, this looked like a coordinated
software update.

But the timestamps didn’t match any scheduled
deployment window

First Signs of
Trouble

SoC in Action

All machines received identical files, often with identical mtimes,

Files appeared in waves, a few seconds apart per machine, All
machines referenced a network-share/deployment folder that no
team publicly owned.

Was this a legitimate update, or
a coordinated lateral spread?

Your job: Reconstruct the
true chain of events using
timestamps alone.

Dataset Download Link –
scenario.zip

https://tinyurl.com/v4ak7k6

Dataset
Generated

using
FSAGen

Find it here:
https://github.com/aoi
flux/generator

Solution Discussion – High Level View

Loop through
Loop through all the artefacts

(files)

Get
Get the data modified timestamps

Generate
Generate report

End Goal

Construction of a timeline of
events that represents a chain
of infection to show which
computer was infected first
and how malware moved
through to the last one.

Time for Experiment

Solution Discussion

Caveats

Different Timezone?

Clock Skew?

System Clock not in Sync
with NTP Server?

Additional Content – Anti-Forensics

TIME-STOMPING
ATTACKS

RAW DISK
READS

SYSTEM CLOCK
MANIPULATION

USN / $LOGFILE
MANIPULATION

Additional Content –
Anti-Forensics
• Forced SSD Trim
• Deleted Prefetch Files
• Fileless Malware
• Raw Disk Writes (Bypassing

Filesystem)

Additional Content – More Investigation Scenarios!

FSAGen can be used to generate any number of scenarios

Provided OVA file contains FSAGen tool and playbooks

Please feel free to generate as many scenarios as you like

Q/A

Let’s
Connect

	슬라이드 1: Chain of Infection Detection
	슬라이드 2: $whoami
	슬라이드 3: Agenda
	슬라이드 4: Timeline Analysis for Forensics
	슬라이드 5: What is Timeline Analysis?
	슬라이드 6: Stages of a Timeline Analysis
	슬라이드 7: Collection – Sources Gathered
	슬라이드 8: Collection – Potential Key Finding
	슬라이드 9: Normalization – Action Taken
	슬라이드 10: Normalization – Result
	슬라이드 11: Correlation – Cross Referenced Events
	슬라이드 12: Correlation – Insight
	슬라이드 13: Interpretation – Conclusion Drawn
	슬라이드 14: Some More Examples
	슬라이드 15: What are some Use Cases?
	슬라이드 16: Sample Malware Attack Sequence
	슬라이드 17
	슬라이드 18: Artefact of Need
	슬라이드 19: What is a Timestamp?
	슬라이드 20: Great. But… can you give us an example?
	슬라이드 21: Sure, here’s one (unix epoch)
	슬라이드 22: But wait… there’s more
	슬라이드 23: Types of Timestamps
	슬라이드 24: Classification by Format
	슬라이드 25: ISO 8601
	슬라이드 26: ISO 8601
	슬라이드 27: Unix Epoch
	슬라이드 28: Unix Epoch
	슬라이드 29: Windows Filetime
	슬라이드 30: Windows Filetime
	슬라이드 31: RFC 3339
	슬라이드 32: RFC 3339
	슬라이드 33: Classification by Semantics
	슬라이드 34: Classification by Source
	슬라이드 35: FileSystem
	슬라이드 36: FileSystem
	슬라이드 37: Event Logs
	슬라이드 38: Event Logs
	슬라이드 39: Some Interesting Windows Events
	슬라이드 40
	슬라이드 41: Prefetch Files
	슬라이드 42
	슬라이드 43: Prefetch files can be parsed using PECmd tool
	슬라이드 44
	슬라이드 45: MORE Sources for Timestamps!
	슬라이드 46: Registry Hives
	슬라이드 47: How to Create a Timeline?
	슬라이드 48: BONUS
	슬라이드 49: BODYFILE
	슬라이드 50: Sample BODYFILE
	슬라이드 51: Tools for Forensic Timeline Analysis
	슬라이드 52: Introduction to Go
	슬라이드 53: OVA Download Link – Ubuntu24 and Win10
	슬라이드 54: What is Go?
	슬라이드 55: How to Go
	슬라이드 56: For offline coding
	슬라이드 57: Let’s Go
	슬라이드 58: Hello World
	슬라이드 59: But before we go run, let’s unpack each line
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63
	슬라이드 64
	슬라이드 65: Run Code
	슬라이드 66: Output
	슬라이드 67: Conditions
	슬라이드 68: Output
	슬라이드 69: Ways to declare a variable
	슬라이드 70: Loops
	슬라이드 71: Output
	슬라이드 72: User Defined Functions
	슬라이드 73: Output
	슬라이드 74: Reading Files - Data
	슬라이드 75: Output
	슬라이드 76: Reading Files - Metadata
	슬라이드 77: Output
	슬라이드 78: Recursively Finding Files
	슬라이드 79: Output
	슬라이드 80: Parsing Windows FILETIME
	슬라이드 81: Output
	슬라이드 82: Parsing Linux EPOCH Time
	슬라이드 83: Output
	슬라이드 84: Parsing BODYFILE
	슬라이드 85: Output
	슬라이드 86: Write JSON
	슬라이드 87: Output
	슬라이드 88: Code Download Link – code.zip
	슬라이드 89: Why Go for Forensics?
	슬라이드 90: Today’s Problem Statement
	슬라이드 91: Problem Statement Discussion
	슬라이드 92: Background (completely fictional story)
	슬라이드 93: Wave of EXEs
	슬라이드 94: At first, this looked like a coordinated software update.
	슬라이드 95: First Signs of Trouble
	슬라이드 96: SoC in Action
	슬라이드 97: Was this a legitimate update, or a coordinated lateral spread?
	슬라이드 98: Your job: Reconstruct the true chain of events using timestamps alone.
	슬라이드 99: Dataset Download Link – scenario.zip
	슬라이드 100: Dataset Generated using FSAGen
	슬라이드 101: Solution Discussion – High Level View
	슬라이드 102: End Goal
	슬라이드 103: Time for Experiment
	슬라이드 104: Solution Discussion
	슬라이드 105: Caveats
	슬라이드 106: Additional Content – Anti-Forensics
	슬라이드 107: Additional Content – Anti-Forensics
	슬라이드 108: Additional Content – More Investigation Scenarios!
	슬라이드 109: Q/A
	슬라이드 110: Let’s Connect

