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A B S T R A C T

Monero, a privacy-preserving cryptocurrency, employs advanced cryptographic techniques to obfuscate trans
action participants and amounts, thereby achieving strong untraceability. However, digital forensic approach can 
still reveal sensitive information by examining off-chain artifacts such as memory and wallet files. In this work, 
we conduct an in-depth forensic analysis of Monero’s wallet application, focusing on the handling of public and 
private keys and the wallet’s data storage formats. We reveal how these keys are managed in memory and 
develop a memory scanning algorithm capable of identifying key-related data structures. Furthermore, we 
analyze the wallet keys and cache files, presenting a method for decrypting and interpreting serialized keys and 
transaction data encrypted with a user-specified passphrase. Our approach is implemented as an open-source 
Volatility3 plugin and a set of decryption scripts. Finally, we discuss the applicability of our methodology to 
multi-cryptocurrency wallets that incorporate Monero components, thereby validating the generalizability of our 
techniques.

1. Introduction

Cryptocurrencies do not reveal the connection between wallet owner 
entity and wallet address. Despite all transactions being recorded on a 
public blockchain ledger, this principle ensures cryptocurrency untra
ceability. The entity can prove ownership of his/her wallet at any time 
by utilizing their private key. However, entity recognition is possible by 
leveraging transaction properties, behavioral patterns, and off-chain 
data (Wu et al., 2021).

Dark coins maximize anonymity by encrypting transaction data 
before storing it on the public ledger. In particular, Monero, a type of 
dark coin, encrypts the sender, receiver, and transaction amount before 
storing them on the Monero blockchain. Monero’s untraceability en
sures that only the parties involved in a transaction can read its data. 
Attempts to spoil Monero’s untraceability (Kumar et al., 2017; Hinter
egger and Haslhofer, 2019; Möser et al., 2018) discovered the possibility 
of identifying sender entities, but could not fully track the Monero 
transaction.

Digital forensic approaches are employed to seize cryptocurrencies, 
including Monero, and to trace the transaction flow. Koerhuis et al. 
(2020) conducted a forensic analysis of artifacts generated by Monero 
and Verge cryptocurrency wallets, identifying and analyzing residual 

data critical for transaction tracing. Because cryptocurrency wallet ap
plications store not only transaction data but also private keys on the 
user’s device, a suspect’s device serves as a valuable source of evidence 
in illegal transaction investigations. An investigator can use the private 
keys obtained from a suspect’s device to prevent further movement or 
laundering of illicit proceeds.

The Monero project maintains two wallet applications: Command 
Line Interface (CLI) (Monero Project, 2025a) and Graphical User Inter
face (GUI) (Monero Project, 2025b). The source code of Monero CLI 
contains the core components necessary for Monero transactions, while 
Monero GUI provides enhanced usability for users. It is noteworthy that 
Monero GUI imports parts of the Monero CLI source code. This indicates 
that digital forensic approaches applicable to Monero CLI can also be 
applied to Monero GUI.

In this work, we analyze the source code of the Monero CLI to 
investigate its mechanisms for managing public and private keys. While 
the user-specified passphrase resides in memory as a printable string, 
our forensic analysis reveals that Monero CLI stores public and private 
keys as raw byte streams. Therefore, effective forensic investigation 
requires complementary strategies beyond string-based search ap
proaches. As outlined earlier, this complementary strategy is also 
applied to the forensic investigation of Monero GUI.
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Additionally, the wallet files of both Monero CLI and Monero GUI are 
analyzed. A single wallet comprises a pair of files: a keys file (wallet keys 
file, named 〈walletname〉.keys) and a cache file (wallet cache file, named 
〈walletname〉). While Monero CLI and a user-specified passphrase enable 
interpretation of the two files, the specific methodologies for decrypting 
and parsing these artifacts remain unaddressed. Monero uses spend keys 
to send funds and view keys to receive funds. The wallet keys file stores 
not only the SpendKeyprv but also the ViewKeyprv, SpendKeypub, and 
ViewKeypub. Transaction data sent and received by a wallet is cached in 
that wallet’s wallet cache file. Therefore, a proper understanding of these 
files is necessary.

Our contributions can be summarized as follows. 

• By analyzing the source code of Monero CLI, we investigate the 
mechanism for managing spend and view keys in a wallet. Because 
Monero CLI loads all the keys into memory as raw byte streams, we 
developed a scanning algorithm to identify memory-resident in
stances of the key management class. This algorithm can also suc
cessfully scan for keys within the memory processes of Monero GUI.

• We examine the wallet files used by Monero CLI and Monero GUI to 
store wallet data. Both files are serialized with key data and trans
action data, and then encrypted using a user-specified passphrase. 
We provide a method for decrypting and properly interpreting wallet 
files.

• We open-source a Volatility3 plugin, that scans memory dumps to 
identify instances managing Monero’s spend and view keys, and 
decryption scripts, that decrypt and interpret wallet keys file and 
wallet cache file (MoeyEx, 2025).

• By applying our scanning algorithm to other multi-wallet applica
tions that incorporate the Monero CLI source code, we demonstrate 
the coverage and versatility of our proposed approach.

This paper is organized as follows: Section 2 reviews existing work 
which aims to analyze cryptocurrency forensics. Section 3 provides an 
overview of the fundamental elements that constitute the Monero 
wallet, and clearly delineates the boundaries and objectives of this 
research. Section 4 details methods for (1) scanning memory to identify 
the C struct account_base, used by Monero to manage SpendKeypub, 
ViewKeypub, SpendKeyprv, and ViewKeyprv, and (2) decrypting and inter
preting wallet keys file and wallet cache file. Section 5 demonstrates the 
successful detection of account_base instances using a proof-of- 
concept plugin for the Volatility Framework and validates the accu
racy of the wallet keys file, wallet cache file decryption methodology. 
Moreover, Section 6, Section 7 present a detailed discussion of our re
sults and outline potential directions for future research, respectively.

2. Background and related work

2.1. Privacy cryptocurrency and transaction tracing

Monero uses a CryptoNote protocol to enhance a user’s privacy. For 
this reason, existing studies to address a Monero aim to analyze trace
ability on their blockchain (Möser et al., 2018; Kumar et al., 2017; 
Borggren et al., 2020; Hinteregger and Haslhofer, 2019). Monero re
cords a large number of decoy inputs on the blockchain to conceal the 

identity of the sender. This makes it impossible to know what is a real 
entity in a single transaction. However, Möser et al. (2018) described the 
possibility of identifying the real entity among Monero transaction in
puts prior to February 2017. Additionally, Kumar et al. (2017) evaluated 
the effectiveness of attacks on Monero’s untraceability and proposed 
mitigation strategies. Borggren et al. (2020) demonstrated the possi
bility of identifying individuals and groups using machine learning (ML) 
models trained on simulated blockchain datasets. On the other hand, 
Hinteregger and Haslhofer (2019) empirically demonstrated that while 
a significant portion of Monero transactions remained traceable up to 
2017, over 95 % of recent transactions became untraceable following 
protocol enhancements (RingCT, increased ring size).

This demonstrates that Monero’s security policy upgrades have 
effectively enhanced untraceability, rendering practical transaction 
tracing nearly impossible when relying solely on on-chain data. Conse
quently, as the limitations of on-chain analysis grow increasingly 
apparent, a comprehensive forensic strategy integrating off-chain data, 
such as wallet logs, coin service usage records, and cached artifacts, has 
become imperative. By leveraging off-chain data that captures real- 
world user behavior and system interactions, this work establishes a 
novel framework for advancing privacy coin tracing methodologies.

2.2. Existing studies on Monero wallet forensics

Recent digital forensics studies on cryptocurrency wallets demonstrate 
practical artifact extraction by systematically analyzing residual data in 
memory and storage across software/hardware implementations.

Compared to existing research focused on Bitcoin and Ethereum, 
there are relatively few studies targeting the Monero cryptocurrency. 
Koerhuis et al. (2020) conducted a comprehensive forensic analysis of 
artifacts generated by Monero wallet software across memory, disk 
storage, and network traffic. Experimental results revealed that memory 
analysis exposes critical plaintext artifacts essential for wallet recovery 
and fund tracing. While it is stated that private keys can be obtained 
from encrypted wallet files, no specific decryption method is described. 
Ali et al. (2018) proposed a methodology for directly extracting diverse 
protocol structures from the memory of Monero wallet processes 
implementing the CryptoNote protocol. This study empirically demon
strates that memory forensics can trace actual transaction inputs and 
wallet activities despite Monero’s on-chain anonymity design. However, 
the target of analysis is the old version of Monero (v0.11.0), and the 
latest RingCT update needs to be reflected.

2.3. Research gap in the existing literature

Table 1 compares the scope of analysis, addressed forensic artifacts, 
and contributions of prior studies by Ali et al. (2018), Koerhuis et al. 
(2020), and our work in the context of Monero wallet forensics. Our 
approach combines two forensic vectors: analyzing process memory and 
decrypting wallet files retained on disk storage. This dual methodology 
enables the extraction of public/private keys and transactional details, 
artifacts undetectable in prior studies, providing new pathways for 
cryptocurrency forensic analysis. This enables the tracing of crypto
currency transactions and the acquisition of critical evidence necessary 
for the criminal investigations.

Table 1 
Comparison with previous studies on Monero wallet forensics.

Work Memory Forensics Disk Forensics Decrypt wallet files Types of artifacts covered in research Version

PublicKeys PrivateKeys BlockHeight TxID TxKey TxTime

Ali et al. (2018) ✓ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯ ⨯ v0.11.0.0
Koerhuis et al. (2020) ✓ ✓ ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯ v0.12.0.0
Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ v0.18.3.4
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3. Components of Monero wallet and research scope

3.1. Components of Monero CLI and GUI wallets

Many cryptocurrency wallet applications store a mnemonic, which 
generates a seed to create private key, on the user’s device. Monero’s 
mnemonic consists of 25 words and is directly converted as a Spend
Keyprv. In other words, Monero creates a mnemonic word list from 
SpendKeyprv and shows it to the user. Because all keys used in Monero are 
derived from SpendKeyprv, it is possible to recover a Monero wallet, 
including ViewKeyprv, SpendKeypub, and ViewKeypub, if the SpendKeyprv is 
found. Fig. 1 illustrates a process to derive ViewKeyprv, SpendKeypub, 
ViewKeypub from SpendKeyprv.

3.1.1. From a memory forensics perspective
The Monero CLI handles four keys using the account_base class. 

When a user inputs the passphrase associated with the wallet they are 
trying to open, the Monero CLI attempts to decrypt the wallet keys file and 
copies all keys into memory buffers corresponding to the fields of the 
account_base instance (see the in-memory components illustrated in 
Fig. 2 (a)). These key streams are then loaded into the virtual address 
space of the Monero wallet process. Section 4.3 presents a technique for 
scanning account_base instances by analyzing the memory dump of a 
Monero CLI process. Note that the Monero GUI and CLI share the same 
core codebase. For example, since the account_base class used in the 
CLI is also used in the GUI, analysts can scan account_base instances 
from memory dumps of both Monero CLI and GUI processes. This finding 
suggests that other wallet applications, even those not based directly on 
the Monero CLI or GUI, may also utilize the Monero core code.

3.1.2. From a disk forensics perspective
As shown in Fig. 2 (b), when a wallet is created using the Monero CLI, 

two files are generated: a wallet cache file and a wallet keys file. The wallet 
cache file caches data generated during wallet usage, including 
transaction-related information such as incoming and outgoing 
amounts, fees, change, and the block height at which each transaction 
was confirmed. The wallet keys file stores all four types of keys used by 
Monero. Both files are encrypted with a user-specified passphrase and 
stored on the user’s device. Section 4.4 and 4.5 describe the procedure 
for properly interpreting these files.

3.2. Research scope and questions

Fig. 2 shows the components of a Monero wallet application and the 
target data addressed in our work. On disk, the wallet keys file and wallet 
cache file are encrypted using a user-specified passphrase. In particular, 
the SpendKeyprv and ViewKeyprv are doubly encrypted: these private keys 
are first obfuscated using an XOR operation before the wallet keys file is 
encrypted and stored. In contrast, in memory, analysts can scan not only 
wallet addresses but also the passphrase, transaction IDs, and more. 
However, the SpendKeyprv stored in memory is also encrypted and rep
resented as a raw byte stream.

The Monero CLI and Monero GUI generate precious artifacts in both 
memory and on disk. However, the public and private keys stored in 
their memory cannot be obtained using string searching-based analysis 
techniques. Additionally, methods for decrypting and interpreting the 
wallet keys file and wallet cache file have not been addressed. Private keys 
are essential for seizing illicit funds from suspects.

For this reason, we first analyze how the Monero CLI handles public 
and private keys. As previously explained, the account_base class 
contains these keys; therefore, we propose a novel approach to scan for 
account_base instances in memory. Furthermore, by analyzing the 
Monero CLI source code, we try to decrypt both the wallet keys file and 
wallet cache file.

To demonstrate the contributions of our work, we present the 
following research questions. 

• RQ1: How can raw byte stream components, such as an 
account_base instance of both Monero CLI and Monero GUI, be 
identified and decrypted from a memory dump?

• RQ2: How can the wallet keys file and wallet cache file be decrypted 
and meaningfully interpreted?

• RQ3: Can our proposed approach be applied to extract public and 
private keys from other cryptocurrency wallet applications that 
support Monero?

4. Off-chain artifacts of Monero wallet

4.1. Experimental setup

Our experiment was conducted on virtual machines configured with 
a 2-core CPU and varying amounts of RAM (4 GB, 8 GB, and 16 GB). The 
guest operating system was Windows 11 24H2 Pro (Build 26100.3775). 
Virtual machines were created using VMware Workstation 17 Pro 
(v17.5.2 build-23775571). The host system was equipped with an Intel 
Core i5-14600K CPU and 64 GB of RAM, running Windows 11 Pro 24H2 
(Build 26100.3915). We used Monero CLI and GUI version 0.18.3.4 to 
create cryptocurrency wallets.

4.2. Dataset creation

We attempted to simulate as many user activities as possible using 
Monero CLI to replicate real-world forensic scenarios. These simulated 
activities include wallet creation, sending and receiving Monero trans
actions, wallet backup/restoration, passphrase modification, and wallet 
locking/unlocking. The in-memory Monero component 

Fig. 1. Derivation of spend and view keys in Monero

Fig. 2. Components of Monero CLI/GUI in a digital forensics aspect.
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(account_base) was consistently found regardless of the user activity 
performed. The wallet cache file, which caches transaction data, had new 
data appended whenever Monero was sent or received. Table 2 lists the 
Monero transactions performed for dataset generation.

4.3. Volatile data: live memory instances

4.3.1. Understanding of account_base class used for managing spend and 
view keys

Monero manages the SpendKeypub, ViewKeypub, SpendKeyprv, and 
ViewKeyprv in memory through the account_base class, which belongs 
to the cryptonote namespace. The account_base class stores these 
four keys in its m_keys field. Listing 1 shows the prototype of the 
account_base class.

The m_keys field stores the SpendKeypub in m_spend_public_key 
and the ViewKeypub in m_view_public_key, respectively. In addition, 
the SpendKeyprv and ViewKeyprv are stored in m_spend_secret_key 
and m_view_secret_key, respectively. The crypto::public_key 
and crypto::secret_key types are arrays consisting of 32 one-byte 
elements. The m_encryption_iv is used for decrypting the Spend
Keyprv and is an array consisting of eight one-byte elements. Table 3
summarizes the object layout of account_base. 

Listing 1: account_base class

Fig. 3 shows an instance of account_base found in memory along 
with the actual key pairs. We identified discrepancies between the key 
pairs generated by Monero CLI and their in-memory instances. The 
SpendKeyprv stored in memory as a raw byte stream did not match the 
actual key value, unlike the SpendKeypub, ViewKeypub, ViewKeyprv. We 
identified a critical security mechanism in Monero CLI: only the 
SpendKeyprv is encrypted before being stored in memory, while other 
keys remain unencrypted. Notably, Monero GUI employs the same 
account_base class as its CLI counterpart but stores the SpendKeyprv in 
memory without encryption, unlike the CLI’s encrypted 
implementation.

4.3.2. Decryption of SpendKeyprv value of an active account_base instance
The source code of the Monero CLI explains how account_base 

obfuscates SpendKeyprv. As shown in Fig. 1, the SpendKeyprv serves as the 

Table 2 
Transaction list for creating dataset.

No. Transaction ID Sender Receiver Amount(XMR)

1 bb957ca1aa4a548fcb09f1ba70abc5cc90a4f85d15922bb13d40bab96cb66c6b Test_2 Test_1 0.00996928
2 ad49c70b4e05b9f956a99523068ab9b08229168befe0e2091c97dd83489b3a39 Test_1 Test_3 0.00900000
3 ee0f5701dafee5649eeadc4f2c1a7eaa85cdb73828010d5c3ff313882a987bb3 Test_1 Test_4 0.00030000
4 af7934453a430895b2a5b6d8cbcbf683c13893e8650f01f80304ccc3a391b9c2 Test_3 Test_1 0.00200000
5 f799a90e7c8518ef60aac07846064c40c8dc6d80f024f1e4d61758cf8883cba3 Test_4 Test_1 0.00010000

Table 3 
Object layout of the account_base class (based on 64-bits).

Offset Offset(h) Size Field

0 0x0 32 m_spend_public_key
32 0x20 32 m_view_public_key
64 0x40 32 m_spend_secret_key
96 0x60 32 m_view_secret_key
128 0x80 24 m_multisig_keys
152 0x98 8 m_device
160 0xA0 8 m_encryption_iv
168 0xA8 8 m_creation_timestamp

Fig. 3. Real keys and in-memory stored keys created and used by Monero; this figure shows that real SpendKeyprv and in-memory stored SpendKeyprv are different 
(they are marked by yellow-green triangle).
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root for deriving the remaining three keys. Monero CLI encrypts this 
sensitive data using a user-specified passphrase to ensure its protection. 
Fig. 4 illustrates the decryption process for the SpendKeyprv residing in 
memory. The passphrase is transformed into a cipher key using the 
CryptoNight Slow Hash-based Key Derivation Function (KDF). Then, a 
64-byte null-byte array is encrypted using ChaCha20 (Bernstein et al., 
2008). The Initialization Vector (IV) is generated by a Pseudo-Random 
Number Generator (PRNG) and stored in the m_encryption_iv field 
of the account_base class. The first 32 bytes of the encrypted 
null-byte array are utilized as the stream cipher key for XOR encryption. 
Finally, the SpendKeyprv is encrypted using the user-specified passphrase.

4.3.3. Method for efficient scanning of account_base instances

Algorithm 1. Algorithm to scan account_base instance 

The account_base class is aligned to multiples of 4 or 8 bytes in 
memory due to alignment rules. This alignment reduces the time 
required to locate account_base instances during memory scans. Al
gorithm 1 presents the pseudo-code for scanning memory-resident in
stances of the account_base. This algorithm was inspired by prior 
work that identifies in-memory instances based on the possibility to be 
the given objects (Choi et al., 2023; Qi et al., 2022).

Algorithm 1 takes a memory dump as input and iteratively shifts the 
offset by 4 or 8 bytes (depending on CPU architecture), reading chunks 
of data equivalent to the size of the account_base(line 7 of Algorithm 
1). The read data stream is reconstructed into an account_base object 
(line 8 of Algorithm 1).

Monero uses Ed25519 to generate wallets (Monero Community, 
2025). We note the characteristic of Ed25519 whereby the public key is 
deterministically derived from the private key. For a given private key 
candidate stream, the correct private key can be identified by deriving a 
candidate public key using Ed25519 and comparing it with the actual 
public key. For example, as shown in Fig. 3, to verify whether a View
Keyprv candidate found at offset 0x102C‘1C80 is the actual ViewKeyprv 
managed by Monero’s account_base, we derive a ViewKeypub candi
date from the ViewKeyprv candidate and compare it with the ViewKeypub 
located at offset 0x102C‘1C40. If the two values match, the 
account_base instance can be successfully identified. This process is 
outlined in lines 10–18 of Algorithm 1. Since the SpendKeyprv is 
encrypted, it must first be decrypted (line 11 of Algorithm 1). However, 
by validating the ViewKeypub derived from the ViewKeyprv alone, our al
gorithm can detect account_base instances even without requiring a 
passphrase.

The detection accuracy improves as more fields are validated. We 
additionally verify whether the m_creation_timestamp is later than 
Monero’s release date (lines 19–21 of Algorithm 1). Since Monero’s first 
block was generated on 2014-08-14, we confirm that the m_crea
tion_timestamp value is newer than this date. The m_creation_
timestamp stores the wallet creation time as a UNIX time.

4.4. Non-volatile data: wallet keys file internals

4.4.1. Decryption with a valid passphrase
The wallet keys file stores the four keys that make up a Monero wallet: 

SpendKeypub, ViewKeypub, SpendKeyprv, and ViewKeyprv. If the Monero CLI 
or GUI is not running, these keys must be obtained from the wallet keys 
file. This file is encrypted using a user-specified passphrase, and notably, 
both the SpendKeyprv and ViewKeyprv are encrypted twice. The wallet keys 
file is organized as follows: the first 8 bytes from offset 0 represent the IV, 
and the remaining bytes from offset 16 contain the encrypted content. A 
CryptoNight Slow Hash-based KDF is used to derive the encryption key 

Fig. 4. Decryption process of SpendKeyprv stored in the account_base instance.
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from the user-specified passphrase, and the content is then encrypted 
using the ChaCha20 cipher. The entire process for decrypting the wallet 
keys file is illustrated in Fig. 5.

4.4.2. Deserialization of key file format
If the decryption of the wallet keys file is successful, the resulting 

output is in JavaScript Object Notation (JSON) format. Among the many 
JSON properties, we focus on the ‘key_data’ property because it contains 
the serialized account_base instance. The value of ‘key_data’ is seri
alized using the Portable Storage (PS) format (Monero Project, 2025c). 
The PS format is composed of a header, a section, and multiple entries. 
The header includes Signature Part A (0x01011101), Signature Part B 
(0x01020101), and a version number (0x01). The section stores the 
number of entries represented as key–value pairs. Each entry consists of 
a key, which corresponds to a field name of a C struct/class, and a value, 
which represents the data stored in that field.

The ‘key_data’ contains the same data as the account_base 
instance. The name of each entries correspond to the name of the sub- 
fields of the account_base class: creation_timestamp, spend_
public_key, view_public_key, encryption_iv, spend_se
cret_key, and view_secret_key. It is important to note that even 
after decrypting the wallet keys file, the SpendKeyprv and ViewKeyprv 
remain encrypted. These private keys are obfuscated with the same 
encryption process illustrated in Fig. 4. Similar to how the in-memory 
SpendKeyprv is encrypted, the SpendKeyprv in the wallet keys file is 
XORed with a null-byte array encrypted using the user-specified pass
phrase. In contrast, the ViewKeyprv in the wallet keys file is XORed with a 
32-byte stream starting at offset 32 of the encrypted array. By re- 
applying the XOR operation, the plaintext private keys can be recovered.

4.5. Non-volatile data: wallet cache file internals

4.5.1. Decryption with a valid passphrase
The wallet cache file is a cache file that stores Monero transaction data 

generated by the wallet. Similar to the wallet keys file, the first 8 bytes at 
offset 0 serve as the Initialization Vector (IV) used to encrypt the wallet 
cache file. Next, the size of the encrypted wallet cache file contents is 
represented as a variable-length integer (Varint) type, followed by the 
encrypted data itself. The file is encrypted using ChaCha20, with the 
cipher key generated by combining a CryptoNight Slow Hash-based KDF 
and Fast Hash, using the user-specified passphrase as input. The 

decryption process for the wallet cache file is also illustrated in Fig. 5.

4.5.2. Deserialization of wallet file format
The decrypted wallet cache file contents consist of serialized binary 

data. “monero wallet cache” is a signature of the wallet cache file, fol
lowed by a one-byte version information field. The wallet cache file 
contains various fields, including those that store detailed transaction 
data. A full list of its fields is documented in the Appendix (Table. 8). 
Among these, we focus on the m_payments and m_confirmed_txs 
fields, which store incoming and outgoing transaction data, 
respectively.

The m_payments field provides the timestamp, block height, 
transaction ID, amount, and fee for incoming transactions. Table 4
summarizes the name and description of each field. By combining the 
m_amount and m_timestamp sub-fields, it is possible to determine 
when and how much Monero the user received.

Outgoing transaction data is provided by the m_confirmed_txs 
field. The data includes the timestamp, block height, transaction ID, 
amount, fee, change, and destination address. The names and de
scriptions of each field are listed in Table 5. To prove an arbitrary 
transaction in Monero, the transaction ID and the recipient’s Monero 
wallet address are required. By combining the m_dests sub-field of 
m_confirmed_txs with the m_tx_keys field, the transaction can be 
verified on the Monero blockchain explorer.

5. Implementation and demonstration

5.1. MoeyEx: A Volatility3 plugin for extracting Monero’s account_base 
instances

To demonstrate the scanning approach proposed in Section 4.3, we 
developed a plugin for Volatility 3, a well-known memory forensic 
framework (Volatility Foundation, 2025). This proof-of-concept plugin 
scans a given memory dump for account_base instances using Algo
rithm 1. The source code and datasets developed for this study have been 
uploaded to GitHub and are publicly available (MoeyEx, 2025).

5.2. Usage and results

Our proof-of-concept Volatility3 plugin attempts to decrypt the 
SpendKeyprv using the inputed passphrase. When a valid account_base 

Fig. 5. Diagram of wallet keys file and wallet cache file decryption process.
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instance is found, the plugin outputs the SpendKeypub, ViewKeypub, 
SpendKeyprv, ViewKeyprv, and the creation timestamp. Fig. 6 illustrates 
the output generated by our plugin, while Table 6 presents the execution 
times corresponding to different memory dump sizes. Our algorithm 
reconstructs the ED25519 public key from private key candidates and 
compares it with the public keys stored in memory. The probability that 
a random candidate matches is approximately one in 2256. Hence, if an 
account_base instance exists in memory, our method can reliably 
detect it. In addition to the plugin from a memory forensics perspective, 
as described in Section 4.4 and 4.5, we also developed proof-of-concept 
scripts to decrypt and interpret the contents of the wallet keys file and 
wallet cache file from a disk forensics perspective. Both scripts take a 
user-specified passphrase and the corresponding wallet keys/cache file 
as input. As shown in Fig. 7, the wallet keys file decryption script decrypts 
the file using the given passphrase and presents the four keys to the 
investigator. The wallet cache file decryption script attempts to decrypt 
the file using the provided passphrase. If decryption is successful, it in
terprets the serialized binary data and outputs Monero transaction data. 
Fig. 8 shows the output of the wallet cache file decryption script, 
including the transaction type (incoming/outgoing), timestamp, block 
height, transaction ID, transaction key, amount, fee, change, destination 
address and public key.

6. Discussion

6.1. Implications of findings

Our findings not only provide precious artifacts that string-search 
approaches may overlook, but also help analysts in identifying a valid 
passphrase associated with a wallet. For example, if an analyst tries to 
recover a passphrase from a suspect’s device memory dump, by 

attempting to decrypt the SpendKeyprv using candidate passphrases 
extracted from the Monero CLI/GUI memory dump and verifying 
whether the derived public key matches, the correct user-specified 
passphrase can potentially be identified (see lines 10–15 of Algorithm 
1). Moreover, since a Monero wallet address is constructed by 
combining the SpendKeypub and ViewKeypub, a valid wallet address can be 
distinguished from among multiple candidate strings. By properly un
derstanding how data is handled by the Monero CLI/GUI, our approach 
helps analysts avoid unnecessary or irrelevant data.

6.1.1. Answer to RQ1: memory forensics for Monero
During analysis of the Monero CLI source code, we discovered that 

the code refers to the account_base class whenever private keys are 
used. This observation suggests that an instance of account_base is 
always created in the process memory space while the Monero CLI or 
GUI is running. Inspired by the object layout-based instance search 
approach employed in prior works (Choi et al., 2023; Qi et al., 2022), we 
developed an algorithm (Algorithm 1) to locate volatile components of 
the Monero wallet in memory. While the Monero CLI encrypts the 
SpendKeyprv and stores it within the account_base object, the Monero 
GUI does not. The SpendKeyprv is encrypted using an XOR stream key 
derived from a user-specified passphrase. However, since the passphrase 
can often be easily discovered (Koerhuis et al., 2020), the correct pass
phrase may be identified by attempting to decrypt the SpendKeyprv using 
candidate passphrases retrieved from memory.

6.1.2. Answer to RQ2: disk forensics for Monero
By analyzing the Monero CLI source code, we discovered a method to 

decrypt both the wallet keys file and the wallet cache file. Although these 
files are encrypted with a user-specified passphrase, analysts may infer 
the passphrase by leveraging various sources, such as user passwords 
stored in web browser login data. Both files are encrypted using Cha
Cha20 with a cipher key derived from the user-specified passphrase. 
Decrypting the wallet keys file yields data in JSON format; however, the 
key_data containing all key information is serialized in the PS format, 
so all keys can be recovered through deserialization. The wallet cache file 
has a very complex structure but contains the full history of Monero 
transactions sent or received by the user. This enables extraction of more 
detailed information than the transaction history displayed by the 
Monero CLI or GUI. For example, the m_transfers field in the wallet 
cache file includes the RingCT mask value, which conceals the amount in 
outgoing transactions. However, the Monero CLI does not provide an 
option to output this mask value.

Table 4 
Incoming transaction-related sub-fields in m_payments

Field Name Size(bytes) Description

m_tx_hash 32 Transaction hash(tx id)
m_amount varint(1–10) Received amount(in piconero)
m_fee varint(1–10) Transaction fee
m_block_height varint(1–10) Block height
m_timestamp varint(1–10) Block creation timestamp

Table 5 
Outgoing transaction-related sub-fields in m_confirmed_txs

Field Name Size(bytes) Description

m_tx variable Transaction header
m_amount_in varint(1–10) Before sending amount
m_amount_out varint(1–10) Amount after subtracting fee
m_change varint(1–10) Change
m_block_height varint(1–10) Block height
m_dests variable Destination address etc.
m_timestamp varint(1–10) Block creation timestamp

Fig. 6. An example output of MoeyEx, our proof-of-concept Volatility plugin.

Table 6 
Runtime duration of our proof-of-concept implementation.

Memory Dump Size (GB) Runtime (Second)

4 357
8 1,012
16 2,351
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6.1.3. Answer to RQ3: coverage of our work
Various multi-cryptocurrency wallet applications support the func

tionality for Monero transactions. Based on this, we hypothesized that 
some of these wallets may incorporate the Monero CLI source code to 
enable such functionality. To validate this hypothesis, we examined 
several Monero-supporting wallet applications, including Feather, 
MyMonero, Exodus, and Guarda, and successfully located account_
base instances within Feather’s memory space. For example, Fig. 9 il
lustrates an account_base instance identified in a memory dump of 
the experimental system where the Feather wallet application was 
executed. Notably, when examining a newly created Feather wallet, the 
timestamp field consistently appears as the fixed value ‘2014-06-07 
15:00:00’. Consequently, these findings suggest that our proposed 
approach can be effectively applied to analyze other Monero-supporting 
wallets for identifying the public and private keys used in Monero 
transactions.

6.2. Limitations

First, our study revealed that the account_base instance could no 
longer be found immediately after the Monero CLI terminated. The 
crypto::secret_key used by the Monero CLI to store private keys is 

protected from being paged out via the epee::mlocked class and is 
zeroized through the tools::scrubbed class during the destruction of 
the account_base object. This indicates that our forensic approach is 
only applicable while the Monero CLI or GUI is still running and its 
memory remains resident in the system. However, the passphrase may 
still be retrievable even after the Monero GUI has been closed, meaning 
that the wallet keys file can still be decrypted despite the inability to scan 
the account_base instance. Therefore, investigators should consider 
appropriate strategies, such as collecting a physical memory image, 
when analyzing a suspect’s device.

Second, when a wallet is restored, the wallet cache file only contains 
transaction data from after the specified restore height. As a result, in
formation from before the restore height may not be included, which 
means this approach has a limitation.

Third, both volatile and non-volatile data are stored in encrypted 
form. Identifying the correct passphrase required for decryption remains 
a persistent challenge in digital forensic investigations. We consider the 
possibility of using a brute-force attack to discover a valid passphrase by 
decrypting the encrypted private key and verifying it through public key 
derivation. However, this approach falls outside the scope of our current 
study. The proposed verification algorithm could be extended to create 
an efficient brute-force attack system.

Fig. 7. An example output of wallet keys file decryption script included in our implementation.

Fig. 8. An example output of wallet cache file decryption script included in our implementation.

Fig. 9. An example output that shows an account_base instance of the Feather wallet application identified in a memory dump.
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In addition, for reference, all experiments in this study were con
ducted within a single primary account, focusing on extracting public 
and private keys (rather than addresses). Since Monero subaddresses are 
derived from the primary account’s private keys, investigators can 
generate them directly without needing to extract them explicitly from 
memory.

7. Conclusion and future directions

In this work, we identified the mechanisms by which the Monero CLI 
handles public and private keys through analysis of its source code. For 
volatile data analysis, we developed an algorithm and a proof-of-concept 
tool, named MoeyEx, to scan and decrypt account_base instances 
from memory dumps. Since both Monero GUI and Feather wallet ap
plications import core modules from Monero CLI, the proposed instance- 
scanning approach can successfully detect the target account_base 
instance within the memory areas of both wallet applications. Addi
tionally, our analysis of non-volatile storage demonstrates methods for 

decrypting and accurately interpreting the contents of wallet keys file and 
wallet cache file. Using these techniques, analysts can not only recover all 
relevant keys but also extract more detailed Monero transaction data.

For future work, we plan to conduct a more in-depth analysis of the 
wallet file structure, particularly in scenarios involving multisignature 
and subaddress features. Additionally, we aim to extend our imple
mentation to support various operating systems and versions, such as 
Linux and macOS. This enhancement will enable broader data extraction 
and further improve the comprehensiveness of our study.
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Appendix. Monero wallet’s keys and cache files

Table. 7 
Detailed storage format and example data of ‘key_data’ value stored in a decrypted wallet keys file

Hex Description

14 Length of next section key (20)
6D 5F 63 72 65 61 74 69 6F 6E 5F 74 69 6D 65 73 74 61 6D 70 Section key (”m_creation_timestamp”)
05 Type code (UINT64)
29 F4 01 68 00 00 00 00 Little-Endian (2025-04-18 06:41:45.0000000 Z)
06 Length of next section key (6)
6D 5F 6B 65 79 73 Section key (”m_keys”)
0C Type code (OBJECT)
10 Number of inner section entries (4)
11 Length of first inner section key (6)
6D 5F 61 63 63 6F 75 6E 74 5F 61 64 64 72 65 73 73 Section key (”m_account_address”)
0C Type code (OBJECT)
08 Number of inner section entries (2)
12 Length of first inner section key (18)
6D 5F 73 70 65 6E 64 5F 70 75 62 6C 69 63 5F 6B 65 79 Section key (”m_spend_public_key”)
0A Type code (STRING)
80 Length of string (32)
32 46 B6 5A 87 F1 4E 4C 1E 08 AC 02 CD AC FB 02 B4 3D 86 85 58 A3 40 4C 4F 90 F4 26 13 8C 4E ED Key of Public Spend Key
11 Length of second inner section key (17)
6D 5F 76 69 65 77 5F 70 75 62 6C 69 63 5F 6B 65 79 Section key (”m_view_public_key”)
0A Type code (STRING)
80 Length of string (32)
24 B7 14 6B E8 6D 34 7F 54 DF B0 10 AB 91 DB 7B B0 71 3C 3B EA 76 34 48 63 12 2E ED E4 2F B5 03 Key of Public View Key
0F Length of second inner section key (15)
6D 5F 65 6E 63 72 79 70 74 69 6F 6E 5F 69 76 Section key (”m_encryption_iv”)
0A Type code (STRING)
20 Length of string (8)
CE 0A FC CD 8F AB 5A AA Encryption of IV
12 Length of third inner section key (18)
6D 5F 73 70 65 6E 64 5F 73 65 63 72 65 74 5F 6B 65 79 Section key (”m_spend_secret_key”)
0A Type code (STRING)
80 Length of string (32)
2B 5C EC 6B 59 8C 60 80 66 08 D6 0A 12 47 E9 5B F7 D0 3A 6B E8 49 8F C6 8B 0F BF 6D E9 B1 36 B0 Key of Private Spend Key
11 Length of fourth inner section key (17)
6D 5F 76 69 65 77 5F 73 65 63 72 65 74 5F 6B 65 79 Section key (”m_view_secret_key”)
0A Type code (STRING)
80 Length of string (32)
D4 3E A4 BC 68 BB F1 B4 09 59 AF 7A 49 59 77 16 0D 3E 2F 4C A2 0C 86 73 CF 22 39C0 6D 52 30C8 Key of Private View Key
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Table. 8 
Top-level root fields of wallet cache file

Field Name size(bytes) Description

MAGIC_FIELD(”monero wallet cache”) 20 Magic string ”monero wallet cache”
VERSION_FIELD(2) 1 Cache version (currently 2)
m_blockchain variable Blockchain hash list
m_transfers variable List of outputs owned
m_account_public_address 64 Public spend/view key
m_key_images variable Key image map
m_unconfirmed_txs variable Unconfirmed outgoing transaction map
m_payments variable Confirmed incoming transaction map
m_tx_keys variable Outgoing transaction key map
m_confirmed_txs variable Confirmed outcoming transaction map
m_tx_notes variable Transaction description map
m_unconfirmed_payments variable Unconfirmed incoming transaction map
m_pub_keys variable Public key map
m_address_book variable Address book map
m_scanned_pool_txs[0] variable Scanned mempool transaction
m_scanned_pool_txs[1] variable Scanned mempool transaction
m_subaddresses variable Subaddress index list(major index, minor index)
m_subaddress_labels variable Subaddress label map
m_additional_tx_keys variable Additional transaction key
m_attributes variable Wallet attributes
m_account_tags variable Account labels
m_ring_history_saved variable Ring signature history
m_last_block_reward 8 Last mining reward
m_tx_device variable Hardware wallet transaction data
m_device_last_keysync 8 Hardware wallet last key image synchronization time
m_cold_key_images variable Cold wallet key image map
m_has_ever_refreshed_from_node 1 Node synchronization status
m_background_sync_data variable Background synchronization data
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