

Advanced Monero wallet forensics: Demystifying off-
chain artifacts to trace privacy-preserving

cryptocurrency transactions

By:

Jeongin Lee, Geunyeong Choi, Jihyo Han, Jungheum Park

From the proceedings of
The Digital Forensic Research Conference

DFRWS APAC 2025
Nov 10-12, 2025

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.
https://dfrws.org

DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC

Advanced Monero wallet forensics: Demystifying off-chain artifacts to trace
privacy-preserving cryptocurrency transactions

Jeongin Lee, Geunyeong Choi, Jihyo Han, Jungheum Park *

School of Cybersecurity, Korea University, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Digital forensics
Live forensics
Memory forensics
Cryptocurrency
Transaction tracing
Monero
Forensic tool development

A B S T R A C T

Monero, a privacy-preserving cryptocurrency, employs advanced cryptographic techniques to obfuscate trans
action participants and amounts, thereby achieving strong untraceability. However, digital forensic approach can
still reveal sensitive information by examining off-chain artifacts such as memory and wallet files. In this work,
we conduct an in-depth forensic analysis of Monero’s wallet application, focusing on the handling of public and
private keys and the wallet’s data storage formats. We reveal how these keys are managed in memory and
develop a memory scanning algorithm capable of identifying key-related data structures. Furthermore, we
analyze the wallet keys and cache files, presenting a method for decrypting and interpreting serialized keys and
transaction data encrypted with a user-specified passphrase. Our approach is implemented as an open-source
Volatility3 plugin and a set of decryption scripts. Finally, we discuss the applicability of our methodology to
multi-cryptocurrency wallets that incorporate Monero components, thereby validating the generalizability of our
techniques.

1. Introduction

Cryptocurrencies do not reveal the connection between wallet owner
entity and wallet address. Despite all transactions being recorded on a
public blockchain ledger, this principle ensures cryptocurrency untra
ceability. The entity can prove ownership of his/her wallet at any time
by utilizing their private key. However, entity recognition is possible by
leveraging transaction properties, behavioral patterns, and off-chain
data (Wu et al., 2021).

Dark coins maximize anonymity by encrypting transaction data
before storing it on the public ledger. In particular, Monero, a type of
dark coin, encrypts the sender, receiver, and transaction amount before
storing them on the Monero blockchain. Monero’s untraceability en
sures that only the parties involved in a transaction can read its data.
Attempts to spoil Monero’s untraceability (Kumar et al., 2017; Hinter
egger and Haslhofer, 2019; Möser et al., 2018) discovered the possibility
of identifying sender entities, but could not fully track the Monero
transaction.

Digital forensic approaches are employed to seize cryptocurrencies,
including Monero, and to trace the transaction flow. Koerhuis et al.
(2020) conducted a forensic analysis of artifacts generated by Monero
and Verge cryptocurrency wallets, identifying and analyzing residual

data critical for transaction tracing. Because cryptocurrency wallet ap
plications store not only transaction data but also private keys on the
user’s device, a suspect’s device serves as a valuable source of evidence
in illegal transaction investigations. An investigator can use the private
keys obtained from a suspect’s device to prevent further movement or
laundering of illicit proceeds.

The Monero project maintains two wallet applications: Command
Line Interface (CLI) (Monero Project, 2025a) and Graphical User Inter
face (GUI) (Monero Project, 2025b). The source code of Monero CLI
contains the core components necessary for Monero transactions, while
Monero GUI provides enhanced usability for users. It is noteworthy that
Monero GUI imports parts of the Monero CLI source code. This indicates
that digital forensic approaches applicable to Monero CLI can also be
applied to Monero GUI.

In this work, we analyze the source code of the Monero CLI to
investigate its mechanisms for managing public and private keys. While
the user-specified passphrase resides in memory as a printable string,
our forensic analysis reveals that Monero CLI stores public and private
keys as raw byte streams. Therefore, effective forensic investigation
requires complementary strategies beyond string-based search ap
proaches. As outlined earlier, this complementary strategy is also
applied to the forensic investigation of Monero GUI.

* Corresponding author.
E-mail addresses: jjeongin@korea.ac.kr (J. Lee), geunyeong@korea.ac.kr (G. Choi), hanjihyo@korea.ac.kr (J. Han), jungheumpark@korea.ac.kr (J. Park).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301988

Forensic Science International: Digital Investigation 54 (2025) 301988

2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jjeongin@korea.ac.kr
mailto:geunyeong@korea.ac.kr
mailto:hanjihyo@korea.ac.kr
mailto:jungheumpark@korea.ac.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301988
https://doi.org/10.1016/j.fsidi.2025.301988
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301988&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Additionally, the wallet files of both Monero CLI and Monero GUI are
analyzed. A single wallet comprises a pair of files: a keys file (wallet keys
file, named 〈walletname〉.keys) and a cache file (wallet cache file, named
〈walletname〉). While Monero CLI and a user-specified passphrase enable
interpretation of the two files, the specific methodologies for decrypting
and parsing these artifacts remain unaddressed. Monero uses spend keys
to send funds and view keys to receive funds. The wallet keys file stores
not only the SpendKeyprv but also the ViewKeyprv, SpendKeypub, and
ViewKeypub. Transaction data sent and received by a wallet is cached in
that wallet’s wallet cache file. Therefore, a proper understanding of these
files is necessary.

Our contributions can be summarized as follows.

• By analyzing the source code of Monero CLI, we investigate the
mechanism for managing spend and view keys in a wallet. Because
Monero CLI loads all the keys into memory as raw byte streams, we
developed a scanning algorithm to identify memory-resident in
stances of the key management class. This algorithm can also suc
cessfully scan for keys within the memory processes of Monero GUI.

• We examine the wallet files used by Monero CLI and Monero GUI to
store wallet data. Both files are serialized with key data and trans
action data, and then encrypted using a user-specified passphrase.
We provide a method for decrypting and properly interpreting wallet
files.

• We open-source a Volatility3 plugin, that scans memory dumps to
identify instances managing Monero’s spend and view keys, and
decryption scripts, that decrypt and interpret wallet keys file and
wallet cache file (MoeyEx, 2025).

• By applying our scanning algorithm to other multi-wallet applica
tions that incorporate the Monero CLI source code, we demonstrate
the coverage and versatility of our proposed approach.

This paper is organized as follows: Section 2 reviews existing work
which aims to analyze cryptocurrency forensics. Section 3 provides an
overview of the fundamental elements that constitute the Monero
wallet, and clearly delineates the boundaries and objectives of this
research. Section 4 details methods for (1) scanning memory to identify
the C struct account_base, used by Monero to manage SpendKeypub,
ViewKeypub, SpendKeyprv, and ViewKeyprv, and (2) decrypting and inter
preting wallet keys file and wallet cache file. Section 5 demonstrates the
successful detection of account_base instances using a proof-of-
concept plugin for the Volatility Framework and validates the accu
racy of the wallet keys file, wallet cache file decryption methodology.
Moreover, Section 6, Section 7 present a detailed discussion of our re
sults and outline potential directions for future research, respectively.

2. Background and related work

2.1. Privacy cryptocurrency and transaction tracing

Monero uses a CryptoNote protocol to enhance a user’s privacy. For
this reason, existing studies to address a Monero aim to analyze trace
ability on their blockchain (Möser et al., 2018; Kumar et al., 2017;
Borggren et al., 2020; Hinteregger and Haslhofer, 2019). Monero re
cords a large number of decoy inputs on the blockchain to conceal the

identity of the sender. This makes it impossible to know what is a real
entity in a single transaction. However, Möser et al. (2018) described the
possibility of identifying the real entity among Monero transaction in
puts prior to February 2017. Additionally, Kumar et al. (2017) evaluated
the effectiveness of attacks on Monero’s untraceability and proposed
mitigation strategies. Borggren et al. (2020) demonstrated the possi
bility of identifying individuals and groups using machine learning (ML)
models trained on simulated blockchain datasets. On the other hand,
Hinteregger and Haslhofer (2019) empirically demonstrated that while
a significant portion of Monero transactions remained traceable up to
2017, over 95 % of recent transactions became untraceable following
protocol enhancements (RingCT, increased ring size).

This demonstrates that Monero’s security policy upgrades have
effectively enhanced untraceability, rendering practical transaction
tracing nearly impossible when relying solely on on-chain data. Conse
quently, as the limitations of on-chain analysis grow increasingly
apparent, a comprehensive forensic strategy integrating off-chain data,
such as wallet logs, coin service usage records, and cached artifacts, has
become imperative. By leveraging off-chain data that captures real-
world user behavior and system interactions, this work establishes a
novel framework for advancing privacy coin tracing methodologies.

2.2. Existing studies on Monero wallet forensics

Recent digital forensics studies on cryptocurrency wallets demonstrate
practical artifact extraction by systematically analyzing residual data in
memory and storage across software/hardware implementations.

Compared to existing research focused on Bitcoin and Ethereum,
there are relatively few studies targeting the Monero cryptocurrency.
Koerhuis et al. (2020) conducted a comprehensive forensic analysis of
artifacts generated by Monero wallet software across memory, disk
storage, and network traffic. Experimental results revealed that memory
analysis exposes critical plaintext artifacts essential for wallet recovery
and fund tracing. While it is stated that private keys can be obtained
from encrypted wallet files, no specific decryption method is described.
Ali et al. (2018) proposed a methodology for directly extracting diverse
protocol structures from the memory of Monero wallet processes
implementing the CryptoNote protocol. This study empirically demon
strates that memory forensics can trace actual transaction inputs and
wallet activities despite Monero’s on-chain anonymity design. However,
the target of analysis is the old version of Monero (v0.11.0), and the
latest RingCT update needs to be reflected.

2.3. Research gap in the existing literature

Table 1 compares the scope of analysis, addressed forensic artifacts,
and contributions of prior studies by Ali et al. (2018), Koerhuis et al.
(2020), and our work in the context of Monero wallet forensics. Our
approach combines two forensic vectors: analyzing process memory and
decrypting wallet files retained on disk storage. This dual methodology
enables the extraction of public/private keys and transactional details,
artifacts undetectable in prior studies, providing new pathways for
cryptocurrency forensic analysis. This enables the tracing of crypto
currency transactions and the acquisition of critical evidence necessary
for the criminal investigations.

Table 1
Comparison with previous studies on Monero wallet forensics.

Work Memory Forensics Disk Forensics Decrypt wallet files Types of artifacts covered in research Version

PublicKeys PrivateKeys BlockHeight TxID TxKey TxTime

Ali et al. (2018) ✓ ⨯ ⨯ ⨯ ⨯ ✓ ✓ ⨯ ⨯ v0.11.0.0
Koerhuis et al. (2020) ✓ ✓ ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯ v0.12.0.0
Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ v0.18.3.4

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

2

3. Components of Monero wallet and research scope

3.1. Components of Monero CLI and GUI wallets

Many cryptocurrency wallet applications store a mnemonic, which
generates a seed to create private key, on the user’s device. Monero’s
mnemonic consists of 25 words and is directly converted as a Spend
Keyprv. In other words, Monero creates a mnemonic word list from
SpendKeyprv and shows it to the user. Because all keys used in Monero are
derived from SpendKeyprv, it is possible to recover a Monero wallet,
including ViewKeyprv, SpendKeypub, and ViewKeypub, if the SpendKeyprv is
found. Fig. 1 illustrates a process to derive ViewKeyprv, SpendKeypub,
ViewKeypub from SpendKeyprv.

3.1.1. From a memory forensics perspective
The Monero CLI handles four keys using the account_base class.

When a user inputs the passphrase associated with the wallet they are
trying to open, the Monero CLI attempts to decrypt the wallet keys file and
copies all keys into memory buffers corresponding to the fields of the
account_base instance (see the in-memory components illustrated in
Fig. 2 (a)). These key streams are then loaded into the virtual address
space of the Monero wallet process. Section 4.3 presents a technique for
scanning account_base instances by analyzing the memory dump of a
Monero CLI process. Note that the Monero GUI and CLI share the same
core codebase. For example, since the account_base class used in the
CLI is also used in the GUI, analysts can scan account_base instances
from memory dumps of both Monero CLI and GUI processes. This finding
suggests that other wallet applications, even those not based directly on
the Monero CLI or GUI, may also utilize the Monero core code.

3.1.2. From a disk forensics perspective
As shown in Fig. 2 (b), when a wallet is created using the Monero CLI,

two files are generated: a wallet cache file and a wallet keys file. The wallet
cache file caches data generated during wallet usage, including
transaction-related information such as incoming and outgoing
amounts, fees, change, and the block height at which each transaction
was confirmed. The wallet keys file stores all four types of keys used by
Monero. Both files are encrypted with a user-specified passphrase and
stored on the user’s device. Section 4.4 and 4.5 describe the procedure
for properly interpreting these files.

3.2. Research scope and questions

Fig. 2 shows the components of a Monero wallet application and the
target data addressed in our work. On disk, the wallet keys file and wallet
cache file are encrypted using a user-specified passphrase. In particular,
the SpendKeyprv and ViewKeyprv are doubly encrypted: these private keys
are first obfuscated using an XOR operation before the wallet keys file is
encrypted and stored. In contrast, in memory, analysts can scan not only
wallet addresses but also the passphrase, transaction IDs, and more.
However, the SpendKeyprv stored in memory is also encrypted and rep
resented as a raw byte stream.

The Monero CLI and Monero GUI generate precious artifacts in both
memory and on disk. However, the public and private keys stored in
their memory cannot be obtained using string searching-based analysis
techniques. Additionally, methods for decrypting and interpreting the
wallet keys file and wallet cache file have not been addressed. Private keys
are essential for seizing illicit funds from suspects.

For this reason, we first analyze how the Monero CLI handles public
and private keys. As previously explained, the account_base class
contains these keys; therefore, we propose a novel approach to scan for
account_base instances in memory. Furthermore, by analyzing the
Monero CLI source code, we try to decrypt both the wallet keys file and
wallet cache file.

To demonstrate the contributions of our work, we present the
following research questions.

• RQ1: How can raw byte stream components, such as an
account_base instance of both Monero CLI and Monero GUI, be
identified and decrypted from a memory dump?

• RQ2: How can the wallet keys file and wallet cache file be decrypted
and meaningfully interpreted?

• RQ3: Can our proposed approach be applied to extract public and
private keys from other cryptocurrency wallet applications that
support Monero?

4. Off-chain artifacts of Monero wallet

4.1. Experimental setup

Our experiment was conducted on virtual machines configured with
a 2-core CPU and varying amounts of RAM (4 GB, 8 GB, and 16 GB). The
guest operating system was Windows 11 24H2 Pro (Build 26100.3775).
Virtual machines were created using VMware Workstation 17 Pro
(v17.5.2 build-23775571). The host system was equipped with an Intel
Core i5-14600K CPU and 64 GB of RAM, running Windows 11 Pro 24H2
(Build 26100.3915). We used Monero CLI and GUI version 0.18.3.4 to
create cryptocurrency wallets.

4.2. Dataset creation

We attempted to simulate as many user activities as possible using
Monero CLI to replicate real-world forensic scenarios. These simulated
activities include wallet creation, sending and receiving Monero trans
actions, wallet backup/restoration, passphrase modification, and wallet
locking/unlocking. The in-memory Monero component

Fig. 1. Derivation of spend and view keys in Monero

Fig. 2. Components of Monero CLI/GUI in a digital forensics aspect.

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

3

(account_base) was consistently found regardless of the user activity
performed. The wallet cache file, which caches transaction data, had new
data appended whenever Monero was sent or received. Table 2 lists the
Monero transactions performed for dataset generation.

4.3. Volatile data: live memory instances

4.3.1. Understanding of account_base class used for managing spend and
view keys

Monero manages the SpendKeypub, ViewKeypub, SpendKeyprv, and
ViewKeyprv in memory through the account_base class, which belongs
to the cryptonote namespace. The account_base class stores these
four keys in its m_keys field. Listing 1 shows the prototype of the
account_base class.

The m_keys field stores the SpendKeypub in m_spend_public_key
and the ViewKeypub in m_view_public_key, respectively. In addition,
the SpendKeyprv and ViewKeyprv are stored in m_spend_secret_key
and m_view_secret_key, respectively. The crypto::public_key
and crypto::secret_key types are arrays consisting of 32 one-byte
elements. The m_encryption_iv is used for decrypting the Spend
Keyprv and is an array consisting of eight one-byte elements. Table 3
summarizes the object layout of account_base.

Listing 1: account_base class

Fig. 3 shows an instance of account_base found in memory along
with the actual key pairs. We identified discrepancies between the key
pairs generated by Monero CLI and their in-memory instances. The
SpendKeyprv stored in memory as a raw byte stream did not match the
actual key value, unlike the SpendKeypub, ViewKeypub, ViewKeyprv. We
identified a critical security mechanism in Monero CLI: only the
SpendKeyprv is encrypted before being stored in memory, while other
keys remain unencrypted. Notably, Monero GUI employs the same
account_base class as its CLI counterpart but stores the SpendKeyprv in
memory without encryption, unlike the CLI’s encrypted
implementation.

4.3.2. Decryption of SpendKeyprv value of an active account_base instance
The source code of the Monero CLI explains how account_base

obfuscates SpendKeyprv. As shown in Fig. 1, the SpendKeyprv serves as the

Table 2
Transaction list for creating dataset.

No. Transaction ID Sender Receiver Amount(XMR)

1 bb957ca1aa4a548fcb09f1ba70abc5cc90a4f85d15922bb13d40bab96cb66c6b Test_2 Test_1 0.00996928
2 ad49c70b4e05b9f956a99523068ab9b08229168befe0e2091c97dd83489b3a39 Test_1 Test_3 0.00900000
3 ee0f5701dafee5649eeadc4f2c1a7eaa85cdb73828010d5c3ff313882a987bb3 Test_1 Test_4 0.00030000
4 af7934453a430895b2a5b6d8cbcbf683c13893e8650f01f80304ccc3a391b9c2 Test_3 Test_1 0.00200000
5 f799a90e7c8518ef60aac07846064c40c8dc6d80f024f1e4d61758cf8883cba3 Test_4 Test_1 0.00010000

Table 3
Object layout of the account_base class (based on 64-bits).

Offset Offset(h) Size Field

0 0x0 32 m_spend_public_key
32 0x20 32 m_view_public_key
64 0x40 32 m_spend_secret_key
96 0x60 32 m_view_secret_key
128 0x80 24 m_multisig_keys
152 0x98 8 m_device
160 0xA0 8 m_encryption_iv
168 0xA8 8 m_creation_timestamp

Fig. 3. Real keys and in-memory stored keys created and used by Monero; this figure shows that real SpendKeyprv and in-memory stored SpendKeyprv are different
(they are marked by yellow-green triangle).

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

4

root for deriving the remaining three keys. Monero CLI encrypts this
sensitive data using a user-specified passphrase to ensure its protection.
Fig. 4 illustrates the decryption process for the SpendKeyprv residing in
memory. The passphrase is transformed into a cipher key using the
CryptoNight Slow Hash-based Key Derivation Function (KDF). Then, a
64-byte null-byte array is encrypted using ChaCha20 (Bernstein et al.,
2008). The Initialization Vector (IV) is generated by a Pseudo-Random
Number Generator (PRNG) and stored in the m_encryption_iv field
of the account_base class. The first 32 bytes of the encrypted
null-byte array are utilized as the stream cipher key for XOR encryption.
Finally, the SpendKeyprv is encrypted using the user-specified passphrase.

4.3.3. Method for efficient scanning of account_base instances

Algorithm 1. Algorithm to scan account_base instance

The account_base class is aligned to multiples of 4 or 8 bytes in
memory due to alignment rules. This alignment reduces the time
required to locate account_base instances during memory scans. Al
gorithm 1 presents the pseudo-code for scanning memory-resident in
stances of the account_base. This algorithm was inspired by prior
work that identifies in-memory instances based on the possibility to be
the given objects (Choi et al., 2023; Qi et al., 2022).

Algorithm 1 takes a memory dump as input and iteratively shifts the
offset by 4 or 8 bytes (depending on CPU architecture), reading chunks
of data equivalent to the size of the account_base(line 7 of Algorithm
1). The read data stream is reconstructed into an account_base object
(line 8 of Algorithm 1).

Monero uses Ed25519 to generate wallets (Monero Community,
2025). We note the characteristic of Ed25519 whereby the public key is
deterministically derived from the private key. For a given private key
candidate stream, the correct private key can be identified by deriving a
candidate public key using Ed25519 and comparing it with the actual
public key. For example, as shown in Fig. 3, to verify whether a View
Keyprv candidate found at offset 0x102C‘1C80 is the actual ViewKeyprv
managed by Monero’s account_base, we derive a ViewKeypub candi
date from the ViewKeyprv candidate and compare it with the ViewKeypub
located at offset 0x102C‘1C40. If the two values match, the
account_base instance can be successfully identified. This process is
outlined in lines 10–18 of Algorithm 1. Since the SpendKeyprv is
encrypted, it must first be decrypted (line 11 of Algorithm 1). However,
by validating the ViewKeypub derived from the ViewKeyprv alone, our al
gorithm can detect account_base instances even without requiring a
passphrase.

The detection accuracy improves as more fields are validated. We
additionally verify whether the m_creation_timestamp is later than
Monero’s release date (lines 19–21 of Algorithm 1). Since Monero’s first
block was generated on 2014-08-14, we confirm that the m_crea
tion_timestamp value is newer than this date. The m_creation_
timestamp stores the wallet creation time as a UNIX time.

4.4. Non-volatile data: wallet keys file internals

4.4.1. Decryption with a valid passphrase
The wallet keys file stores the four keys that make up a Monero wallet:

SpendKeypub, ViewKeypub, SpendKeyprv, and ViewKeyprv. If the Monero CLI
or GUI is not running, these keys must be obtained from the wallet keys
file. This file is encrypted using a user-specified passphrase, and notably,
both the SpendKeyprv and ViewKeyprv are encrypted twice. The wallet keys
file is organized as follows: the first 8 bytes from offset 0 represent the IV,
and the remaining bytes from offset 16 contain the encrypted content. A
CryptoNight Slow Hash-based KDF is used to derive the encryption key

Fig. 4. Decryption process of SpendKeyprv stored in the account_base instance.

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

5

from the user-specified passphrase, and the content is then encrypted
using the ChaCha20 cipher. The entire process for decrypting the wallet
keys file is illustrated in Fig. 5.

4.4.2. Deserialization of key file format
If the decryption of the wallet keys file is successful, the resulting

output is in JavaScript Object Notation (JSON) format. Among the many
JSON properties, we focus on the ‘key_data’ property because it contains
the serialized account_base instance. The value of ‘key_data’ is seri
alized using the Portable Storage (PS) format (Monero Project, 2025c).
The PS format is composed of a header, a section, and multiple entries.
The header includes Signature Part A (0x01011101), Signature Part B
(0x01020101), and a version number (0x01). The section stores the
number of entries represented as key–value pairs. Each entry consists of
a key, which corresponds to a field name of a C struct/class, and a value,
which represents the data stored in that field.

The ‘key_data’ contains the same data as the account_base
instance. The name of each entries correspond to the name of the sub-
fields of the account_base class: creation_timestamp, spend_
public_key, view_public_key, encryption_iv, spend_se
cret_key, and view_secret_key. It is important to note that even
after decrypting the wallet keys file, the SpendKeyprv and ViewKeyprv
remain encrypted. These private keys are obfuscated with the same
encryption process illustrated in Fig. 4. Similar to how the in-memory
SpendKeyprv is encrypted, the SpendKeyprv in the wallet keys file is
XORed with a null-byte array encrypted using the user-specified pass
phrase. In contrast, the ViewKeyprv in the wallet keys file is XORed with a
32-byte stream starting at offset 32 of the encrypted array. By re-
applying the XOR operation, the plaintext private keys can be recovered.

4.5. Non-volatile data: wallet cache file internals

4.5.1. Decryption with a valid passphrase
The wallet cache file is a cache file that stores Monero transaction data

generated by the wallet. Similar to the wallet keys file, the first 8 bytes at
offset 0 serve as the Initialization Vector (IV) used to encrypt the wallet
cache file. Next, the size of the encrypted wallet cache file contents is
represented as a variable-length integer (Varint) type, followed by the
encrypted data itself. The file is encrypted using ChaCha20, with the
cipher key generated by combining a CryptoNight Slow Hash-based KDF
and Fast Hash, using the user-specified passphrase as input. The

decryption process for the wallet cache file is also illustrated in Fig. 5.

4.5.2. Deserialization of wallet file format
The decrypted wallet cache file contents consist of serialized binary

data. “monero wallet cache” is a signature of the wallet cache file, fol
lowed by a one-byte version information field. The wallet cache file
contains various fields, including those that store detailed transaction
data. A full list of its fields is documented in the Appendix (Table. 8).
Among these, we focus on the m_payments and m_confirmed_txs
fields, which store incoming and outgoing transaction data,
respectively.

The m_payments field provides the timestamp, block height,
transaction ID, amount, and fee for incoming transactions. Table 4
summarizes the name and description of each field. By combining the
m_amount and m_timestamp sub-fields, it is possible to determine
when and how much Monero the user received.

Outgoing transaction data is provided by the m_confirmed_txs
field. The data includes the timestamp, block height, transaction ID,
amount, fee, change, and destination address. The names and de
scriptions of each field are listed in Table 5. To prove an arbitrary
transaction in Monero, the transaction ID and the recipient’s Monero
wallet address are required. By combining the m_dests sub-field of
m_confirmed_txs with the m_tx_keys field, the transaction can be
verified on the Monero blockchain explorer.

5. Implementation and demonstration

5.1. MoeyEx: A Volatility3 plugin for extracting Monero’s account_base
instances

To demonstrate the scanning approach proposed in Section 4.3, we
developed a plugin for Volatility 3, a well-known memory forensic
framework (Volatility Foundation, 2025). This proof-of-concept plugin
scans a given memory dump for account_base instances using Algo
rithm 1. The source code and datasets developed for this study have been
uploaded to GitHub and are publicly available (MoeyEx, 2025).

5.2. Usage and results

Our proof-of-concept Volatility3 plugin attempts to decrypt the
SpendKeyprv using the inputed passphrase. When a valid account_base

Fig. 5. Diagram of wallet keys file and wallet cache file decryption process.

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

6

instance is found, the plugin outputs the SpendKeypub, ViewKeypub,
SpendKeyprv, ViewKeyprv, and the creation timestamp. Fig. 6 illustrates
the output generated by our plugin, while Table 6 presents the execution
times corresponding to different memory dump sizes. Our algorithm
reconstructs the ED25519 public key from private key candidates and
compares it with the public keys stored in memory. The probability that
a random candidate matches is approximately one in 2256. Hence, if an
account_base instance exists in memory, our method can reliably
detect it. In addition to the plugin from a memory forensics perspective,
as described in Section 4.4 and 4.5, we also developed proof-of-concept
scripts to decrypt and interpret the contents of the wallet keys file and
wallet cache file from a disk forensics perspective. Both scripts take a
user-specified passphrase and the corresponding wallet keys/cache file
as input. As shown in Fig. 7, the wallet keys file decryption script decrypts
the file using the given passphrase and presents the four keys to the
investigator. The wallet cache file decryption script attempts to decrypt
the file using the provided passphrase. If decryption is successful, it in
terprets the serialized binary data and outputs Monero transaction data.
Fig. 8 shows the output of the wallet cache file decryption script,
including the transaction type (incoming/outgoing), timestamp, block
height, transaction ID, transaction key, amount, fee, change, destination
address and public key.

6. Discussion

6.1. Implications of findings

Our findings not only provide precious artifacts that string-search
approaches may overlook, but also help analysts in identifying a valid
passphrase associated with a wallet. For example, if an analyst tries to
recover a passphrase from a suspect’s device memory dump, by

attempting to decrypt the SpendKeyprv using candidate passphrases
extracted from the Monero CLI/GUI memory dump and verifying
whether the derived public key matches, the correct user-specified
passphrase can potentially be identified (see lines 10–15 of Algorithm
1). Moreover, since a Monero wallet address is constructed by
combining the SpendKeypub and ViewKeypub, a valid wallet address can be
distinguished from among multiple candidate strings. By properly un
derstanding how data is handled by the Monero CLI/GUI, our approach
helps analysts avoid unnecessary or irrelevant data.

6.1.1. Answer to RQ1: memory forensics for Monero
During analysis of the Monero CLI source code, we discovered that

the code refers to the account_base class whenever private keys are
used. This observation suggests that an instance of account_base is
always created in the process memory space while the Monero CLI or
GUI is running. Inspired by the object layout-based instance search
approach employed in prior works (Choi et al., 2023; Qi et al., 2022), we
developed an algorithm (Algorithm 1) to locate volatile components of
the Monero wallet in memory. While the Monero CLI encrypts the
SpendKeyprv and stores it within the account_base object, the Monero
GUI does not. The SpendKeyprv is encrypted using an XOR stream key
derived from a user-specified passphrase. However, since the passphrase
can often be easily discovered (Koerhuis et al., 2020), the correct pass
phrase may be identified by attempting to decrypt the SpendKeyprv using
candidate passphrases retrieved from memory.

6.1.2. Answer to RQ2: disk forensics for Monero
By analyzing the Monero CLI source code, we discovered a method to

decrypt both the wallet keys file and the wallet cache file. Although these
files are encrypted with a user-specified passphrase, analysts may infer
the passphrase by leveraging various sources, such as user passwords
stored in web browser login data. Both files are encrypted using Cha
Cha20 with a cipher key derived from the user-specified passphrase.
Decrypting the wallet keys file yields data in JSON format; however, the
key_data containing all key information is serialized in the PS format,
so all keys can be recovered through deserialization. The wallet cache file
has a very complex structure but contains the full history of Monero
transactions sent or received by the user. This enables extraction of more
detailed information than the transaction history displayed by the
Monero CLI or GUI. For example, the m_transfers field in the wallet
cache file includes the RingCT mask value, which conceals the amount in
outgoing transactions. However, the Monero CLI does not provide an
option to output this mask value.

Table 4
Incoming transaction-related sub-fields in m_payments

Field Name Size(bytes) Description

m_tx_hash 32 Transaction hash(tx id)
m_amount varint(1–10) Received amount(in piconero)
m_fee varint(1–10) Transaction fee
m_block_height varint(1–10) Block height
m_timestamp varint(1–10) Block creation timestamp

Table 5
Outgoing transaction-related sub-fields in m_confirmed_txs

Field Name Size(bytes) Description

m_tx variable Transaction header
m_amount_in varint(1–10) Before sending amount
m_amount_out varint(1–10) Amount after subtracting fee
m_change varint(1–10) Change
m_block_height varint(1–10) Block height
m_dests variable Destination address etc.
m_timestamp varint(1–10) Block creation timestamp

Fig. 6. An example output of MoeyEx, our proof-of-concept Volatility plugin.

Table 6
Runtime duration of our proof-of-concept implementation.

Memory Dump Size (GB) Runtime (Second)

4 357
8 1,012
16 2,351

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

7

6.1.3. Answer to RQ3: coverage of our work
Various multi-cryptocurrency wallet applications support the func

tionality for Monero transactions. Based on this, we hypothesized that
some of these wallets may incorporate the Monero CLI source code to
enable such functionality. To validate this hypothesis, we examined
several Monero-supporting wallet applications, including Feather,
MyMonero, Exodus, and Guarda, and successfully located account_
base instances within Feather’s memory space. For example, Fig. 9 il
lustrates an account_base instance identified in a memory dump of
the experimental system where the Feather wallet application was
executed. Notably, when examining a newly created Feather wallet, the
timestamp field consistently appears as the fixed value ‘2014-06-07
15:00:00’. Consequently, these findings suggest that our proposed
approach can be effectively applied to analyze other Monero-supporting
wallets for identifying the public and private keys used in Monero
transactions.

6.2. Limitations

First, our study revealed that the account_base instance could no
longer be found immediately after the Monero CLI terminated. The
crypto::secret_key used by the Monero CLI to store private keys is

protected from being paged out via the epee::mlocked class and is
zeroized through the tools::scrubbed class during the destruction of
the account_base object. This indicates that our forensic approach is
only applicable while the Monero CLI or GUI is still running and its
memory remains resident in the system. However, the passphrase may
still be retrievable even after the Monero GUI has been closed, meaning
that the wallet keys file can still be decrypted despite the inability to scan
the account_base instance. Therefore, investigators should consider
appropriate strategies, such as collecting a physical memory image,
when analyzing a suspect’s device.

Second, when a wallet is restored, the wallet cache file only contains
transaction data from after the specified restore height. As a result, in
formation from before the restore height may not be included, which
means this approach has a limitation.

Third, both volatile and non-volatile data are stored in encrypted
form. Identifying the correct passphrase required for decryption remains
a persistent challenge in digital forensic investigations. We consider the
possibility of using a brute-force attack to discover a valid passphrase by
decrypting the encrypted private key and verifying it through public key
derivation. However, this approach falls outside the scope of our current
study. The proposed verification algorithm could be extended to create
an efficient brute-force attack system.

Fig. 7. An example output of wallet keys file decryption script included in our implementation.

Fig. 8. An example output of wallet cache file decryption script included in our implementation.

Fig. 9. An example output that shows an account_base instance of the Feather wallet application identified in a memory dump.

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

8

In addition, for reference, all experiments in this study were con
ducted within a single primary account, focusing on extracting public
and private keys (rather than addresses). Since Monero subaddresses are
derived from the primary account’s private keys, investigators can
generate them directly without needing to extract them explicitly from
memory.

7. Conclusion and future directions

In this work, we identified the mechanisms by which the Monero CLI
handles public and private keys through analysis of its source code. For
volatile data analysis, we developed an algorithm and a proof-of-concept
tool, named MoeyEx, to scan and decrypt account_base instances
from memory dumps. Since both Monero GUI and Feather wallet ap
plications import core modules from Monero CLI, the proposed instance-
scanning approach can successfully detect the target account_base
instance within the memory areas of both wallet applications. Addi
tionally, our analysis of non-volatile storage demonstrates methods for

decrypting and accurately interpreting the contents of wallet keys file and
wallet cache file. Using these techniques, analysts can not only recover all
relevant keys but also extract more detailed Monero transaction data.

For future work, we plan to conduct a more in-depth analysis of the
wallet file structure, particularly in scenarios involving multisignature
and subaddress features. Additionally, we aim to extend our imple
mentation to support various operating systems and versions, such as
Linux and macOS. This enhancement will enable broader data extraction
and further improve the comprehensiveness of our study.

Acknowledgements

This work was supported by Institute of Information & communi
cations Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.RS-2024-00460321, Development of
Digital Asset Transaction Tracking Technology to Prevent Malicious
Financial Conduct in the Digital Asset Market).

Appendix. Monero wallet’s keys and cache files

Table. 7
Detailed storage format and example data of ‘key_data’ value stored in a decrypted wallet keys file

Hex Description

14 Length of next section key (20)
6D 5F 63 72 65 61 74 69 6F 6E 5F 74 69 6D 65 73 74 61 6D 70 Section key (”m_creation_timestamp”)
05 Type code (UINT64)
29 F4 01 68 00 00 00 00 Little-Endian (2025-04-18 06:41:45.0000000 Z)
06 Length of next section key (6)
6D 5F 6B 65 79 73 Section key (”m_keys”)
0C Type code (OBJECT)
10 Number of inner section entries (4)
11 Length of first inner section key (6)
6D 5F 61 63 63 6F 75 6E 74 5F 61 64 64 72 65 73 73 Section key (”m_account_address”)
0C Type code (OBJECT)
08 Number of inner section entries (2)
12 Length of first inner section key (18)
6D 5F 73 70 65 6E 64 5F 70 75 62 6C 69 63 5F 6B 65 79 Section key (”m_spend_public_key”)
0A Type code (STRING)
80 Length of string (32)
32 46 B6 5A 87 F1 4E 4C 1E 08 AC 02 CD AC FB 02 B4 3D 86 85 58 A3 40 4C 4F 90 F4 26 13 8C 4E ED Key of Public Spend Key
11 Length of second inner section key (17)
6D 5F 76 69 65 77 5F 70 75 62 6C 69 63 5F 6B 65 79 Section key (”m_view_public_key”)
0A Type code (STRING)
80 Length of string (32)
24 B7 14 6B E8 6D 34 7F 54 DF B0 10 AB 91 DB 7B B0 71 3C 3B EA 76 34 48 63 12 2E ED E4 2F B5 03 Key of Public View Key
0F Length of second inner section key (15)
6D 5F 65 6E 63 72 79 70 74 69 6F 6E 5F 69 76 Section key (”m_encryption_iv”)
0A Type code (STRING)
20 Length of string (8)
CE 0A FC CD 8F AB 5A AA Encryption of IV
12 Length of third inner section key (18)
6D 5F 73 70 65 6E 64 5F 73 65 63 72 65 74 5F 6B 65 79 Section key (”m_spend_secret_key”)
0A Type code (STRING)
80 Length of string (32)
2B 5C EC 6B 59 8C 60 80 66 08 D6 0A 12 47 E9 5B F7 D0 3A 6B E8 49 8F C6 8B 0F BF 6D E9 B1 36 B0 Key of Private Spend Key
11 Length of fourth inner section key (17)
6D 5F 76 69 65 77 5F 73 65 63 72 65 74 5F 6B 65 79 Section key (”m_view_secret_key”)
0A Type code (STRING)
80 Length of string (32)
D4 3E A4 BC 68 BB F1 B4 09 59 AF 7A 49 59 77 16 0D 3E 2F 4C A2 0C 86 73 CF 22 39C0 6D 52 30C8 Key of Private View Key

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

9

Table. 8
Top-level root fields of wallet cache file

Field Name size(bytes) Description

MAGIC_FIELD(”monero wallet cache”) 20 Magic string ”monero wallet cache”
VERSION_FIELD(2) 1 Cache version (currently 2)
m_blockchain variable Blockchain hash list
m_transfers variable List of outputs owned
m_account_public_address 64 Public spend/view key
m_key_images variable Key image map
m_unconfirmed_txs variable Unconfirmed outgoing transaction map
m_payments variable Confirmed incoming transaction map
m_tx_keys variable Outgoing transaction key map
m_confirmed_txs variable Confirmed outcoming transaction map
m_tx_notes variable Transaction description map
m_unconfirmed_payments variable Unconfirmed incoming transaction map
m_pub_keys variable Public key map
m_address_book variable Address book map
m_scanned_pool_txs[0] variable Scanned mempool transaction
m_scanned_pool_txs[1] variable Scanned mempool transaction
m_subaddresses variable Subaddress index list(major index, minor index)
m_subaddress_labels variable Subaddress label map
m_additional_tx_keys variable Additional transaction key
m_attributes variable Wallet attributes
m_account_tags variable Account labels
m_ring_history_saved variable Ring signature history
m_last_block_reward 8 Last mining reward
m_tx_device variable Hardware wallet transaction data
m_device_last_keysync 8 Hardware wallet last key image synchronization time
m_cold_key_images variable Cold wallet key image map
m_has_ever_refreshed_from_node 1 Node synchronization status
m_background_sync_data variable Background synchronization data

References

Ali, S.S., ElAshmawy, A., Shosha, A.F., 2018. Memory forensics methodology for
investigating cryptocurrency protocols. In: Proceedings of the International
Conference on Security and Management (SAM), the Steering Committee of the
World Congress in Computer Science, Computer, pp. 153–159.

Bernstein, D.J., et al., 2008. Chacha, a variant of salsa20. In: Workshop Record of SASC,
Lausanne, Switzerland, pp. 3–5.

Borggren, N., Kim, H.y., Yao, L., Koplik, G., 2020. Simulated blockchains for machine
learning traceability and transaction values in the monero network. arXiv preprint
arXiv:2001.03937.

Choi, G., Bang, J., Lee, S., Park, J., 2023. Chracer: memory analysis of Chromium-based
browsers. Forensic Sci. Int.: Digit. Invest. 46, 301613.

Hinteregger, A., Haslhofer, B., 2019. An empirical analysis of monero cross-chain
traceability. arXiv:1812.02808.

Koerhuis, W., Kechadi, T., Le-Khac, N.A., 2020. Forensic analysis of privacy-oriented
cryptocurrencies. Forensic Sci. Int.: Digit. Invest. 33, 200891.

Kumar, A., Fischer, C., Tople, S., Saxena, P., 2017. A traceability analysis of monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (Eds.), Computer Security –
ESORICS 2017. Springer International Publishing, Cham, pp. 153–173.

MoeyEx, 2025. Moeyex. URL: https://github.com/jeong0000/MoeyEx.
Monero Community, 2025. Edwards25519 Elliptic Curve. URL: https://docs.getmonero.

org/cryptography/asymmetric/edwards25519/.
Monero Project, 2025a. monero. URL: https://github.com/monero-project/monero.
Monero Project, 2025b. monero-gui. URL: https://github.com/monero-project/monero

-gui.
Monero Project, 2025c. Portable storage format. URL: https://github.com/monero-proje

ct/monero/blob/master/docs/PORTABLE_STORAGE.md.
Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K.,

Hennessey, J., Miller, A., Narayanan, A., Christin, N., 2018. An empirical analysis of
traceability in the monero blockchain. arXiv:1704.04299.

Qi, Z., Qu, Y., Yin, H., 2022. LogicMem: Automatic profile generation for binary-only
memory forensics via logic inference. In: Proceedings of the Annual Network and
Distributed System Security Symposium. NDSS’22).

Volatility Foundation, 2025. Volatility 3. URL: https://github.com/volatilityfoundatio
n/volatility3.

Wu, J., Liu, J., Zhao, Y., Zheng, Z., 2021. Analysis of cryptocurrency transactions from a
network perspective: an overview. J. Netw. Comput. Appl. 190, 103139.

J. Lee et al. Forensic Science International: Digital Investigation 54 (2025) 301988

10

http://refhub.elsevier.com/S2666-2817(25)00128-3/sref1
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref1
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref1
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref1
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref2
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref2
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref3
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref3
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref3
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref4
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref4
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref5
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref5
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref6
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref6
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref7
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref7
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref7
https://github.com/jeong0000/MoeyEx
https://docs.getmonero.org/cryptography/asymmetric/edwards25519/
https://docs.getmonero.org/cryptography/asymmetric/edwards25519/
https://github.com/monero-project/monero
https://github.com/monero-project/monero-gui
https://github.com/monero-project/monero-gui
https://github.com/monero-project/monero/blob/master/docs/PORTABLE_STORAGE.md
https://github.com/monero-project/monero/blob/master/docs/PORTABLE_STORAGE.md
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref13
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref13
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref13
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref14
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref14
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref14
https://github.com/volatilityfoundation/volatility3
https://github.com/volatilityfoundation/volatility3
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref16
http://refhub.elsevier.com/S2666-2817(25)00128-3/sref16

	Advanced Monero wallet forensics: Demystifying off-chain artifacts to trace privacy-preserving cryptocurrency transactions
	1 Introduction
	2 Background and related work
	2.1 Privacy cryptocurrency and transaction tracing
	2.2 Existing studies on Monero wallet forensics
	2.3 Research gap in the existing literature

	3 Components of Monero wallet and research scope
	3.1 Components of Monero CLI and GUI wallets
	3.1.1 From a memory forensics perspective
	3.1.2 From a disk forensics perspective

	3.2 Research scope and questions

	4 Off-chain artifacts of Monero wallet
	4.1 Experimental setup
	4.2 Dataset creation
	4.3 Volatile data: live memory instances
	4.3.1 Understanding of account_base class used for managing spend and view keys
	4.3.2 Decryption of SpendKeyprv value of an active account_base instance
	4.3.3 Method for efficient scanning of account_base instances

	4.4 Non-volatile data: wallet keys file internals
	4.4.1 Decryption with a valid passphrase
	4.4.2 Deserialization of key file format

	4.5 Non-volatile data: wallet cache file internals
	4.5.1 Decryption with a valid passphrase
	4.5.2 Deserialization of wallet file format

	5 Implementation and demonstration
	5.1 MoeyEx: A Volatility3 plugin for extracting Monero’s account_base instances
	5.2 Usage and results

	6 Discussion
	6.1 Implications of findings
	6.1.1 Answer to RQ1: memory forensics for Monero
	6.1.2 Answer to RQ2: disk forensics for Monero
	6.1.3 Answer to RQ3: coverage of our work

	6.2 Limitations

	7 Conclusion and future directions
	Acknowledgements
	Appendix Monero wallet’s keys and cache files
	References

