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A B S T R A C T

Flash-Friendly File System (F2FS) is a file system optimized for flash memory-based storage devices and is used in 
a wide range of devices including Android smartphones, drones, in-vehicle infotainment systems and embedded 
devices. Therefore, from a digital forensic perspective, a recovery technology for deleted file data in F2FS is 
needed. However, as far as research on deleted data recovery from F2FS is concerned, only basic research has 
been conducted on deleted data recovery from F2FS, and no specific recovery algorithms have been published. 
Even in the case of tools that support deleted file data recovery from F2FS, a significant proportion of deleted file 
data could not be recovered in tests, which limits their usefulness in real-world digital forensic investigations. 
Therefore, this paper proposes a deleted file data recovery algorithm based on file system metadata carving and 
virtual address table creation to overcome the limitations of existing research and tools. The proposed recovery 
algorithm is implemented as a recovery tool and used for performance evaluation with existing forensic and data 
recovery tools. The performance evaluation results proved the superiority of the recovery algorithm, with the 
proposed algorithm showing superior recovery performance compared to existing tools.

1. Introduction

Flash-Friendly File System (F2FS) is a file system based on the log- 
structured file system (Rosenblum, 1991) developed by Samsung and 
is optimized for flash memory-based storage devices (Lee et al., 2015). 
As a result, F2FS is used in a variety of devices that use flash 
memory-based storage, such as Android smartphones, drones, in-vehicle 
infotainment systems, and embedded devices (Matei, 2019; Azjar et al., 
2018; Shin et al., 2022).

Therefore, when conducting digital forensic investigations on these 
devices, recovery techniques for deleted data in F2FS are required. 
However, only basic research on deleted data recovery for F2FS has been 
conducted, and no specific recovery algorithm has been published. 
Furthermore, tools that support deleted file data recovery for F2FS failed 
to recover a significant portion of deleted file data in recovery tests, 
making them of limited use in real-world digital forensic investigations.

In this paper, we studied a deleted file data recovery algorithm based 
on file system metadata carving and virtual address table creation to 
overcome the limitations of existing research and tools. To this end, we 
developed a detailed non-allocated area creation algorithm, a metadata 
carving algorithm, and a virtual address table creation algorithm and 
designed a deletion data recovery algorithm by integrating these 
detailed algorithms. To test the performance of the recovery algorithm, 

we implemented it as a tool and conducted performance evaluation 
against existing forensic and data recovery tools. The performance test 
results showed that the algorithm recovered fragmented deleted file 
data and deleted file path information that were difficult to recover with 
existing tools, demonstrating superior performance compared to exist
ing tools.

The contributions of this paper are as follows. 

- Proposed an advanced metadata-based recovery algorithm for F2FS. 
This enables the recovery of deleted file data that is fragmented, has 
duplicated metadata, or the path information of deleted files, all of 
which are difficult to recover with existing tools.

- Presented the recovery performance of existing tools for F2FS and 
conducted a comparative evaluation with the proposed algorithm.

The rest of this paper is organized as follows: Chapter 2 reviews 
existing research related to F2FS, and Chapter 3 provides background 
knowledge to understand the recovery algorithm proposed in this paper. 
Chapter 4 proposes a detailed algorithm for deleted file data recovery, 
and Chapter 5 describes the experimental design and experimental re
sults for testing the performance of the proposed recovery algorithm. 
Chapter 6 describes various considerations related to the recovery al
gorithm presented in this paper. Finally, Chapter 7 summarizes the 
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results of this study.

2. Related works

Currier (2022) performed an analysis of the F2FS basic structure and 
metadata from a digital forensic perspective and an analysis of the 
metadata that are changed when a file is deleted. In addition, he created 
test cases for deleted file recovery and performed recovery tests using 
the XRY tool (MSAB). However, the author did not present a specific 
algorithm for deleted file recovery.

Tools that support deleted file recovery in F2FS include XRY (MSAB), 
a mobile forensic tool, and UFS Explorer Professional Recovery (SysDev 
Laboratories), a file recovery tool. Although the detailed method used 
for deleted file recovery is not disclosed for either tool, it appears that 
recovery is performed based on file system metadata rather than on the 
carving technique because metadata (filename, timestamp) for deleted 
files is recovered. However, neither tool can recover the full path of the 
deleted file, and the results of the recovery tests described in this paper 
showed that these tools failed to properly recover a substantial pro
portion of deleted files.

Looking at the research to date on deleted file recovery for F2FS, only 
basic research has been conducted, and no research on specific recovery 
algorithms has been published. In addition, tools that support F2FS 
deleted file recovery also fail to recover the full path of deleted files. In 
the recovery tests performed in this paper, a significant number of 
deleted files were not properly recovered, indicating that these tools are 
insufficient for use in actual digital forensic investigations.

Therefore, this paper proposes a deleted file data recovery algorithm 
based on file system metadata carving and virtual address table creation 
that can overcome these limitations of existing research and tools. As for 
carving-based recovery, the proposed technique can be used regardless 
of the file system, and because carving-based techniques cannot recover 
fragmented files and cannot recover several important pieces of infor
mation (file name, timestamp, full path, etc.), recovery using these 
techniques was excluded from this study.

3. Background knowledge

This section provides background knowledge to understand the re
covery algorithms studied in this paper.

3.1. Overall layout

The data units used in F2FS are as follows (Lee et al., 2015).
Block: Basic unit of data storage (Default: 4 KB).
Segment: A collection of blocks (Default:512 blocks, 2 MB).
Section: A collection of segments.
Zone: A collection of sections.
The overall structure of F2FS is shown in Fig. 1. The superblock 

stores basic information about the file system, such as area partitioning 
details and internal parameter values. The checkpoint area stores the 
current state of the file system, including block allocation, node 

allocation, and the status of currently active segments. The Segment 
Information Table (SIT) contains bitmap information that identifies used 
and unused blocks in the main area. The Node Address Table (NAT) is a 
structure used to manage nodes, consisting of a table with the physical 
addresses of nodes. The Segment Summary Area (SSA) is used to manage 
mapping between physical and logical addresses. The main area is 
composed of data blocks and node blocks; data blocks contain directory 
information or user file data, whereas node blocks store inodes or indices 
of data blocks (Lee et al., 2015).

3.2. F2FS allocation management

The SIT stores block allocation information for the main area, where 
the actual file metadata and data of F2FS are stored. The location of the 
SIT can be found using the block address stored in the sit_blkaddr field 
within the superblock. The SIT is organized in block units, and each 
block is composed of entries. Each entry stores the allocation informa
tion of 512 blocks, which make up a single segment in the main area in 
the form of a bitmap. If the checkpoint area is in compact mode, an 
additional structure called the SIT journal is used to record the most 
recent changes in allocation information (Lee et al., 2015). Fig. 2 shows 
the overall structure of the SIT.

3.3. Building a file/directory tree

The main area is composed of data blocks and node blocks. Data 
blocks store the actual file data, whereas node blocks store inode in
formation on files and directories or index information of file data. The 
inode information consists of metadata such as the file/directory name, 

Fig. 1. Overall layout of F2FS.

Fig. 2. Structure of segment information table.
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file data size, and timestamps. In addition, in the case of directory ino
des, the inode numbers of child files and directories are stored using a 
dentry structure. The dentry structure stores the inode number infor
mation (ino) of each child file/directory in units of f2fs_dir_entry entries, 
and the activation/deactivation status of each entry is recorded in a 
bitmap format using the dentry_bitmap (Lee et al., 2015).

The NAT is a table that maps the node identifier (nid) to the corre
sponding block address of the node block. Similarly to the SIT, the NAT 
is organized in blocks, and each block consists of entries. Each entry is 
assigned a nid in sequential order; however, this value is not stored as a 
field within the entry itself. Instead, the position of the entry within the 
NAT determines its nid. For example, the first entry in the first block of 
the NAT represents the entry with nid 0. Each NAT entry stores the inode 
number of the associated file or directory, as well as the block address of 
the corresponding node block. If the metadata of a specific file span 
multiple node blocks, the NAT entries for those node blocks will share 
the same inode number. If the checkpoint area is in compact mode, an 
additional structure called the NAT journal is used to store the most 
recent changes in mapping information. Fig. 3 shows the overall struc
ture of the NAT (Lee et al., 2015).

The method for constructing the file/directory tree in F2FS is as 
follows. First, the inode number of the root directory is obtained using 
the root_ino field in the superblock. Once the inode number of the root 
directory is obtained, it is used as the nid to locate the corresponding 
NAT entry in the NAT. From this NAT entry, the node block address is 
retrieved, and the inode information of the root directory located at that 
block address can be accessed. Because the inode information of a 
directory contains the inode numbers of its child files and folders, the 
same procedure is repeated using the NAT to obtain the inode infor
mation for those child files and folders. By repeating this process, a file/ 
directory tree structure starting from the root directory can be con
structed. In addition, if a NAT journal exists, the NAT entries in the 
journal are used with higher priority to retrieve inode information (Lee 
et al., 2015). Fig. 4 illustrates the overall process of constructing the 
file/directory tree.

3.4. Structure of file data

The structure for storing file data is largely divided into inline data 
and file data block addresses. Inline data is a method of storing file data 
within an inode when the file data size is smaller than the free space 
excluding the basic metadata (file name, file size, timestamp, etc.) in the 
inode. The file data block address is a structure that stores the addresses 
of the blocks in which the file data are stored if the file data are too large 
to be stored as inline data. This structure is largely divided into direct 
pointers and file data index structures. Direct pointers is a structure in 

which the list of block addresses where file data are stored is kept 
directly within the inode. If the file data are too large to be stored in the 
direct pointers structure, the file data index structure from single- 
indirect to triple-indirect is used in order. In the file data index struc
ture, the direct node block stores a list of block addresses where file data 
are stored, and the indirect node block stores a list of nids of direct node 
blocks or indirect node blocks. The locations of direct node blocks and 
indirect node blocks can be found by converting the nid value to a block 
address using the NAT (Lee et al., 2015). Fig. 5 shows the structure for 
storing file data.

4. Deleted file and directory recovery

This section describes how to recover data from deleted files and 
directories. First, before explaining the detailed recovery algorithm, we 
will look at the metadata that are changed by the deletion operation and 
explain the analysis of the unallocated area required for the recovery 
algorithm. Then, based on this, we will explain the detailed recovery 
algorithm.

4.1. Metadata changes of the delete operation

When a file or directory is deleted, the bit of the corresponding 
f2fs_dir_entry entry for the deleted file or directory in the dentry_bitmap of 
the dentry structure within the parent directory’s inode is set to 0, 
deactivating the associated f2fs_dir_entry entry entry. However, the 
f2fs_dir_entry entry data of the deleted file or directory is not reinitialized 
and remains intact. In the case of the NAT, the NAT entries that stored 
the mapping information of the deleted file or directory are reinitialized 
by setting the values of the block_addr fields to 0, as shown in Fig. 6. 
Finally, the inode block, data blocks, and direct/indirect node blocks of 
the deleted file or directory are marked as unallocated areas, but the 
actual data within these blocks remain intact until F2FS garbage 
collection is performed.

Therefore, when a file or directory is deleted, it is possible to obtain 
the inode number information of the deleted child file/directory from 

Fig. 3. Structure of node address table.

Fig. 4. Process of building a file/directory tree.

Fig. 5. Structure of file data.
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the parent directory’s dentry structure. However, the block_addr value in 
the corresponding NAT entry has been reinitialized, making it impos
sible to determine the block address where the inode is stored. Even if 
the inode block is carved from the unallocated area, if the file size ex
ceeds a certain threshold (approximately 3.7 MB), the file uses a data 
index structure. In such cases, if the block_addr value of the NAT entry 
has been reinitialized, the data in the deleted file cannot be properly 
recovered.

4.2. Recovery algorithm

The process of recovering deleted files/directories is as follows.

4.2.1. STEP 1: Collecting information on unallocated areas
The first step is to collect information on unallocated areas within the 

main area. Collecting information on unallocated areas is a task of 
analyzing SIT to obtain information on unused blocks within the main 
area. The process of obtaining information on unallocated areas is as 
follows. First, the block address where the SIT data are located is ob
tained through the value of the sit_blkaddr field of the superblock. Next, 
the SIT data located at the corresponding block address are accessed in 
blocks, and the bitmap information of the valid_map field of the SIT entry 
in the block is analyzed. The valid_map field is 64 bytes in size and stores 
512 bits. Therefore, one SIT entry has allocation/non-allocation infor
mation for 512 blocks in the main area. Because a segment is generally 
composed of 512 blocks, one SIT entry can be considered to manage the 
block allocation/non-allocation information of one segment in the Main 
Area. In addition, the bitmap information in the valid_map field is stored 
in the Big Endian format. Finally, after the bitmap information of all 
blocks in the main area has been analyzed, information about unallo
cated blocks is collected to obtain unallocated area information. In 
addition, if there is an SIT journal, the unallocated area information is 
obtained by adding the most recent unallocated block information of the 
SIT journal entry to the unallocated block information generated earlier. 
Fig. 7 shows the process of obtaining unallocated area information.

The unallocated area information collected in this way can be used to 

specify the area to be processed in the next step, which is node block 
carving, and can also be used to recover deleted file data through the 
carving technique.

4.2.2. STEP 2: Carving node blocks
The second step is to perform node block carving using the collected 

unallocated area information. To carve a node block in unallocated area, 
the node footer located at the end of the node block must be checked. As 
shown in Fig. 8, the node footer is 24 bytes of data located at the end of 
the node block and uses the node_footer structure.

Therefore, by examining the last 24 bytes of a block where the node 
footer is located, and verifying that all conditions listed in Table 1 are 
satisfied, it can be determined whether the block is a node block.

The node_footer.cp_ver value is the checkpoint version at the time the 
corresponding node block was modified. This value cannot be 0 and 
cannot be greater than the checkpoint_ver value in the header of the 
current checkpoint. Note that if the CP_CRC_RECOVERY_FLAG (0x40) 
bit is set in the ckpt_flags field of the checkpoint header, the upper 32 bits 
of the node_footer.cp_ver value are set to the CRC32 value for the current 
checkpoint, while only the lower 32 bits are used [2]. Therefore, the 
node_footer.cp_ver value can be compared with the checkpoint_ver value in 
the header of the checkpoint only when the CP_CRC_RECOVERY_FLAG 
bit is not set. In addition, even if the CP_CRC_RECOVERY_FLAG bit is set, 
if the checkpoint_ver value of the current checkpoint header is less than or 
equal to the 32-bit maximum value (0xFFFFFFFF), the condition can be 
used because it can be compared with the lower 32-bit value of node_
footer.cp_ver. Algorithm 1 is a pseudo-code that compares node_footer. 
cp_ver with the checkpoint_ver of the current checkpoint header. 

Algorithm 1. Checking node_footer.cp_ver in Node Block Carving 

The node_footer.nid means the nid of the current node block, which is 
larger than the nid (0–3) value used by default when formatting and 
cannot be larger than the maximum nid value in the current file system. 
The maximum nid can be calculated as shown in the following equation 
using the number of NAT segments, block size, and NAT entry size (9 
bytes) obtained from the segment_count_nat field in the superblock: 

Max nid = ((NAT Segment Count/2)*512*(Block Size)) / 9                  

The node_footer.ino refers to the inode number of the file/directory 
associated with the current node block and must be greater than the ino 
(0–3) value used by default when formatting. node_footer.next_blkaddr is 
the block number of the next node block, which cannot be zero and 
cannot be greater than the maximum block number in the current file 
system. The maximum block number can be found in the block_count 

Fig. 6. Changes in NAT entries caused by delete operations.

Fig. 7. Collecting information on unallocated areas. Fig. 8. Node footer & node_footer structure.
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field of the superblock.

4.2.3. STEP 3: inode identification
The third step is to identify the inode block among the carved node 

blocks. To determine whether the carved node block is the block with 
inode data, the conditions of the field values of the f2fs_inode structure 
used by the inode must be checked. Table 2 shows the conditions for 
identifying the inode block.

The f2fs_inode.i_mode field represents the file type and follows the 
standard Linux file types. When a bitwise AND operation is performed 
with i_mode and S_IFMT, the result will be one of the following values: 
S_IFIFO, S_IFCHR, S_IFDIR, S_IFBLK, S_IFREG, S_IFLNK, S_IFSOCK, or 
S_IFWHT (Linux, b). f2fs_inode.ilinks refers to the number of links in the 
target file/directory. For a file, the ilinks value is always greater than or 
equal to 1. For a directory, the ilinks value is always greater than or 
equal to 2 because the number of subdirectories is stored as the number 
of links, and two subdirectories, ‘.’ and ‘.’, always exist. f2fs_inode. 
namelen gives the length of the file/directory name, and because the size 
of f2fs_inode.i_name[] in which the file/directory name is stored is 255 
bytes, it can have a value in the range of 1–254. In addition, the actual 
length of the name of the stored file/directory in f2fs_inode.i_name[] 
must match f2fs_inode.namelen. Therefore, if the carved node block sat
isfies all the conditions in Table 2, the target node block is assumed to be 
an inode node block.

4.2.4. STEP 4: node block deduplication
The fourth step is to remove any duplicates of the carved node 

blocks. When a node block is carved based on the node footer infor
mation, several node blocks with the same nid and ino can be carved in 
the unallocated area. This occurs because when data are changed in 
F2FS, a new block is allocated using the Copy-On-Write method to save 
the changed data, and the block containing the existing data is deal
located. When recovering a file/directory, if there are multiple node 
blocks with the same nid and ino, the most recently saved node block 
should be used. To identify the most recently saved node block among 
the node blocks with the same nid and ino, use the cp_ver in the node 
footer. In this case, if the CP_CRC_RECOVERY_FLAG bit is not set in the 
ckpt_flags field of the Checkpoint header as described above, the node 
block with the largest cp_ver value is assumed to be the most recently 
changed node block. On the contrary, if the CP_CRC_RECOVERY_FLAG 
bit is set, only the lower 32-bit value of cp_ver is compared to determine 
the node block with the largest value as the most recently changed node 
block. The reason why only the lower 32-bit value of cp_ver can be used is 

that F2FS performs garbage collection periodically, so that the node 
blocks with the same nid and ino remaining in the unallocated area do 
not have enough cp_ver difference to use the upper 32-bit part of cp_ver. 
Algorithm 2 is a pseudo-code that uses node_footer.cp_ver to identify the 
most recently changed node block.

By applying the method in Algorithm 2, the most recently modified 
node blocks among those with identical nid and ino values are identified 
from the carved node blocks, and the remaining node blocks are 
discarded. 

Algorithm 2. Finding the Latest Node Block in Carved Node Blocks 
with Same nid and ino 

4.2.5. STEP 5: Generating virtual NAT
The fifth step is to create a virtual NAT using the carved node blocks 

that have been deduplicated. As explained earlier, when a file/directory 
is deleted, all the block address information of the NAT entry related to 
the deleted file/directory is reinitialized. Therefore, to recover the 
deleted file/directory, information to replace the reinitialized NAT en
tries is needed. In this paper, a virtual NAT is created using the nid and 
ino information stored in the node footer of the carved node block and 
the location information of the carved node block. The created virtual 
NAT consists of key and value mapping information, using the nid + ino 
value as the key information and the address of the carved node block as 
the value information. The mapping information of the virtual NAT 
created in this way replaces the information in the reinitialized NAT 
entries when recovering deleted files/directories. Fig. 9 shows the 
overall process of creating a virtual NAT.

The detailed process of recovering deleted files and directories using 
the mapping information of the virtual NAT will be explained in the 
following step.

4.2.6. STEP 6: directory & file recovery
The sixth step involves recovering the deleted files and directories 

based on the various pieces of information generated in the previous 

Table 1 
Conditions for carving node blocks.

No Conditions

1 node_footer.cp_ver != 0
2 node_footer.cp_ver <= Current Checkpoint Version
3 node_footer.nid >= 3
4 node_footer.nid <= Max nid
5 node_footer.ino >= 3
6 node_footer.next_blkaddr != 0
7 node_footer.next_blkaddr <= Max Block Number

Table 2 
Conditions for identifying inode blocks.

No Conditions

1 (f2fs_inode.i_mode & S_IFMT) in {S_IFIFO, S_IFC
​ HR, S_IFDIR, S_IFBLK, S_IFREG, S_IFLNK, S_IFS
​ OCK, S_IFWHT}
2 f2fs_inode.i_links >= 1
3 if (f2fs_inode.i_mode & S_IFMT) == S_IFDIR, then
​ f2fs_inode.i_links >= 2
4 1 <= f2fs_inode.namelen <= 254
5 len(f2fs_inode.i_name) == f2fs_inode.namelen Fig. 9. Generating virtual NAT.
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steps. The recovery process for the deleted files and directories is as 
follows.

The first task is to traverse the file system tree and analyze the dentry 
structures within directories to identify inactive f2fs_dir_entry entries. 
These inactive entries contain inode number information corresponding 
to deleted files or directories. Once an inactive f2fs_dir_entry is found, its 
inode number is used as both the nid and ino to generate a nid + ino key. 
This nid + ino key is then used to retrieve the corresponding value, the 
block address, from the virtual NAT generated in the previous step. If the 
data located at the retrieved block address are inode data, it must be 
verified whether these data truly correspond to the inode of the deleted 
file or directory. This verification process uses the file_type, name_len, and 
hash_code fields of the f2fs_dir_entry entry. First, the file type obtained 
from the i_mode field of the inode is compared with the file_type value of 
the f2fs_dir_entry. Next, the i_namelen value from the inode is compared 
with the name_len field of the f2fs_dir_entry. As for the hash_code field, it 
represents a hash value of the file name and is calculated using the 
f2fs_dentry_hash() function (Google). Therefore, the hash value of the file 
name stored in the inode is computed and compared with the hash_code 
field. If all three comparisons match, the inode corresponds to the 
deleted file or directory originally pointed to by the inactive 
f2fs_dir_entry.

If the acquired inode data represent a file, file data recovery proceeds 
in the following steps. First, if the file data size is small and the file data 
are in the inline data format (about 3 KB or less) or the direct pointer 
format (about 3.6 MB or less), file data recovery is possible using only 
the data in the inode (file data or block address). However, if the file 
data size is larger, the file data index structure must be analyzed. At this 
time, the nid corresponding to the direct/indirect node block to be 
searched and the inode information of the file to be recovered are used 
as ino to create the nid + ino key, and then the block addresses mapped 
in the virtual NAT created in the previous step are obtained. If all the file 
data index structures of the target file can be analyzed with the block 
addresses obtained through the virtual NAT, then the entire file data can 
be recovered. On the other hand, if all the file data index structures 
cannot be analyzed, recovery is performed with only the analyzed file 
data block addresses, and the unanalyzed parts are treated as sparse 
areas. Finally, if the file data index structure cannot be analyzed at all, 
recovery is started using the block addresses at the beginning of the file 
stored in the inode, and then the remaining part is assumed to be in a 
non-fragmented state and is recovered by sequentially reading it as 
much as the file size. The reason for performing this recovery method is 
that F2FS is a log-structured file system (Rosenblum, 1991) that uses a 
policy of minimizing file data fragmentation (Currier, 2022). A file that 
has been completely recovered in this way can know its full path because 
it can know the parent directory exactly.

If the acquired inode data is a directory, all child files and directories 
have been deleted, so all f2fs_dir_entry entries in the dentry structure of 
the inode data are analyzed, and the inode data of the deleted child files 

and directories are acquired through the virtual NAT. After this, the 
recovery operation is performed by recursively repeating the method 
described above. Similarly, because the restored directory knows the 
exact parent directory, it can know its full path.

Finally, if the recovery operation is completed by traversing all the 
file system trees, the recovery operation is performed on the inode 
blocks that have not yet been recovered in the carved node block. In this 
case, the recovered file/directory is set to the orphaned file/directory 
state because the exact path is unknown. Fig. 10 shows the process of 
recovering deleted files/directories using the virtual NAT.

Fig. 11 illustrates the overall process of the recovery algorithm as a 
flowchart based on the descriptions provided so far.

5. Experiment and evaluation

This section describes the experiments and evaluation results used to 
assess the performance of the recovery algorithm proposed in this paper.

Fig. 10. Process of recovering deleted file and directory using virtual NAT.

Fig. 11. Flowchart of the recovery algorithm.
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5.1. Experiment design

The performance evaluation experiment for the recovery algorithm 
proposed in this paper was conducted as follows. First, on a Linux system 
using the Ubuntu 22.04.5 LTS operating system, a 4 GB USB storage 
device was formatted with F2FS, and 10 test files were created in the 
‘test_folder_1’ and ‘test_folder_2’ directories, as shown in Table 3. Test 
files are named in the format ‘test[N]_[FileSize].txt’ and are configured 
to use various inline data, direct pointers, direct node blocks, and in
direct node blocks, which are methods used by F2FS to store file data. 
The ‘File Data Storage Method’ column in Table 3 indicates which 
storage method is used for each test file, and in the case of direct and 
indirect node blocks, it additionally indicates the number of blocks used 
to store file data. This makes it possible to identify each file data storage 
method in the recovery test and to verify whether the file data have been 
recovered properly. The data in the test files were saved in text format 
(file name without extension) to avoid recovery through the carving 
method; this enables testing of file data recovery through F2FS metadata 
analysis. Next, deletion of the test files was performed by deleting all test 
files using the ‘rm’ (Linux, a) command, which is the delete command in 
the Linux system shell. In the deletion process, the files under the 
‘test_folder_1’ folder were deleted without deleting the parent folder, 
and the files under the ‘test_folder_2’ folder were deleted along with the 
parent directory, ‘test_folder_2’. This makes it possible to verify that the 
directory is being restored and to test whether the path information of 
the restored files can be obtained. Next, after the deletion process was 
complete, the USB storage device was unmounted and then connected to 
the recovery test system through Tableau Forensic (OpenText, b), which 
is a write blocker, An image file for the USB storage device was also 
created in raw format using the FTK Imager (Exterro, a). Finally, the 
recovery test was performed using the image file created, and if the 
image file input was not supported (e.g., XRY), the recovery test was 
performed using the USB storage device directly. This experiment aims 
to test the recoverability of deleted files under different data storage 
methods. Cases in which metadata and data of deleted files remaining in 
unallocated area are overwritten in real-world scenarios are not 
considered. In other words, the experiment tests whether deleted files 
can be fully recovered when both their metadata and data remain intact 
in the unallocated area. To this end, the file system was unmounted 
immediately after deleting files and directories, without performing any 
further operations. Table 3 shows the file name, path, file data storage 

method, number of file data fragments, number of inode blocks, and 
whether the parent directory was deleted for the test files deleted from 
USB storage media formatted with F2FS. The number of inode blocks 
refers to the number of such blocks identified when the inode block of 
the file is searched in an image file.

The recovery algorithm proposed in this paper was implemented 
with the F2FS_Recover tool, and existing forensic and recovery programs 
were used to compare and evaluate its performance. The existing 
forensic and recovery tools used in the experiment were the following: 

- Encase Forensic v24.4 (OpenText, a)
- Magnet AXIOM v8.8 (Magnet Forensics)
- X-Ways Forensics v21.3 (X-Ways)
- FTK v8.1 (Exterro, b)
- Autopsy v4.21 (Sleuth Kit Labs)
- Cellebrite Inseyets PA v10.5 (Cellebrite)
- XRY v10.12 (MSAB)
- UFS Explorer 10.11 (SysDev Laboratories)

5.2. Evaluation

The results of evaluating the performance of each tool through the 
deleted file recovery experiment are shown in Table 4. First, among the 
world’s most widely used forensic tools, including Encase Forensic, 
Magnet AXIOM, X-Ways Forensics, FTK, Autopsy, and Cellebrite 
Inseyets PA, none supported analysis and recovery of F2FS, except for 
Magnet AXIOM. In the case of Magnet AXIOM, it only supports file 
system tree analysis for F2FS and creation of unallocated area and does 
not support recovery of deleted files.

XRY supports file system tree analysis and deleted file recovery, but 
does not support the generation of unallocated area. The deleted file 
recovery function recovered all metadata (file name, timestamp, etc.) 
for 20 deleted test files, but it failed to recover any data for nine files in 
which multiple inode blocks were identified. The data sizes of the nine 
files were zero. In addition, XRY does not support deleted file path in
formation recovery or directory recovery.

UFS Explorer, like XRY, provides file system tree analysis and deleted 
file recovery, but does not support generation of unallocated area. The 
deleted file data recovery function supports metadata recovery and file 
data recovery for non-fragmented files only. Accordingly, recovery was 
performed only for the 14 files among the test files that had not been 

Table 3 
Test files for deleted file recovery experiment.

No File Name File Path File Data Storage Method Fragment 
Count

Inode 
Block 
Count

Parent 
Directory 
Deletion 
Status

Inline 
Data

Direct 
Pointers

Direct 
Node 
Block

Indirect 
Node 
Block

1 test1_3 KB.txt /test_folder_1/test1_3 KB.txt O X X X 1 1 Not Deleted
2 test2_1 MB.txt /test_folder_1/test2_1 MB.txt X O X X 1 1 Not Deleted
3 test3_5 MB.txt /test_folder_1/test3_5 MB.txt X O O (1) X 2 1 Not Deleted
4 test4_10 MB.txt /test_folder_1/test4_10 MB.txt X O O (2) X 1 1 Not Deleted
5 test5_20 MB.txt /test_folder_1/test5_20 MB.txt X O O (5) O (1) 1 2 Not Deleted
6 test6_30 MB.txt /test_folder_1/test6_30 MB.txt X O O (7) O (1) 2 2 Not Deleted
7 test7_40 MB.txt /test_folder_1/test7_40 MB.txt X O O (10) O (1) 10 2 Not Deleted
8 test8_50 MB.txt /test_folder_1/test8_50 MB.txt X O O (12) O (1) 13 2 Not Deleted
9 test9_60 MB.txt /test_folder_1/test9_60 MB.txt X O O (14) O (1) 15 2 Not Deleted
10 test10_70 MB.txt /test_folder_1/test10_70 MB.txt X O O (17) O (1) 15 2 Not Deleted
11 test11_3 KB.txt /test_folder_2/test11_3 KB.txt O X X X 1 1 Deleted
12 test12_1 MB.txt /test_folder_2/test12_1 MB.txt X O X X 1 1 Deleted
13 test13_5 MB.txt /test_folder_2/test13_5 MB.txt X O O (1) X 1 1 Deleted
14 test14_10 MB.txt /test_folder_2/test14_10 MB.txt X O O (2) X 1 1 Deleted
15 test15_20 MB.txt /test_folder_2/test15_20 MB.txt X O O (5) O (1) 1 1 Deleted
16 test16_30 MB.txt /test_folder_2/test16_30 MB.txt X O O (7) O (1) 1 1 Deleted
17 test17_40 MB.txt /test_folder_2/test17_40 MB.txt X O O (10) O (1) 1 2 Deleted
18 test18_50 MB.txt /test_folder_2/test18_50 MB.txt X O O (12) O (1) 1 2 Deleted
19 test19_60 MB.txt /test_folder_2/test19_60 MB.txt X O O (14) O (1) 1 2 Deleted
20 test20_70 MB.txt /test_folder_2/test20_70 MB.txt X O O (17) O (1) 1 2 Deleted
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fragmented. In addition, path information recovery and directory re
covery of deleted files are not supported.

In contrast, F2FS_Recover, which implements the recovery algorithm 
proposed in this paper, supports all key functionalities including file 
system tree analysis, creation of unallocated area, deleted file recovery, 
recovery of deleted file paths, and recovery of deleted directories. In the 
deleted file recovery test, it successfully recovered both the metadata 
and file data for all 20 deleted test files, regardless of the number of data 
fragments or identified inode blocks. Moreover, by recovering the path 
information of deleted files, it could accurately determine their original 
locations. Deleted directories were also successfully recovered, enabling 
restoration of full paths for files that were deleted along with their 
parent directories. Fig. 12 shows the deleted file recovery results of the 
F2FS_Recover tool. The detailed recovery results for each test file using 
XRY, UFS Explorer, and F2FS_Recover are provided in Table 5.

6. Discussion & limitation

6.1. Garbage collection

F2FS performs garbage collection to improve file system perfor
mance. F2FS’s garbage collection task selects the target section based on 
information such as the number of valid blocks or block age, moves the 
data of allocated blocks within the section, and registers the target 
section as a free section. Sections registered as free sections are set as 
unallocated space, enabling new data to be written. Garbage collection 
operations can be performed by the user in device settings, when free 
space is insufficient, or periodically as a background task. In the case of 
background garbage collection operations, the execution interval varies 
depending on the system’s resource status and file system usage patterns 
(Currier, 2022). The recovery algorithm proposed in this paper has the 
limitation that it performs recovery operations only on data remaining 
in unallocated areas before garbage collection is performed.

6.2. Fragmentation

In F2FS, file data fragmentation varies depending on the logging 
mode. F2FS uses two logging modes: append logging and thread logging. 
The append logging mode writes data sequentially to clean segments, 
whereas the thread logging mode writes data by locating unallocated 
blocks. As a result, file data are not fragmented in append logging mode, 
but fragmentation occurs in thread logging mode. Typically, when suf
ficient free space is available on the storage device, append logging 
mode is used; otherwise, thread logging mode is applied (Currier, 2022). 
Therefore, in most cases, file data are stored contiguously without 
fragmentation in Append Logging mode. For this reason, the recovery 
algorithm proposed in this paper adopts a method that sequentially re
covers data from the starting location of the file over the size of the file, 
in cases where the data location of the deleted file cannot be accurately 
determined due to damage of the metadata left in the unallocated area.

7. Conclusion

F2FS is a file system optimized for flash memory-based storage de
vices and is used in various devices such as Android smartphones, 
drones, IVI, and embedded equipment. Therefore, from a digital foren
sics investigation perspective, recovery techniques for deleted data 
within F2FS are necessary. However, only basic research on deleted data 
recovery in F2FS has been published, and existing tools that support 
recovery of deleted file data from F2FS have demonstrated poor per
formance in recovery tests, failing to recover a significant portion of 
deleted data.

Therefore, this paper proposes a deleted file data recovery algorithm 
based on file system metadata carving and virtual address table gener
ation to overcome the limitations of existing research and tools. The 
proposed algorithm was implemented as a tool and used in performance 
comparison experiments with existing forensic and recovery tools. In 
these experiments, the implemented tool demonstrated superior 

Table 4 
Performance evaluation results.

Encase 
Forensic 
v24.4

Magnet AXIOM 
v8.8

X-Ways 
Forensics 
v21.3

FTK 
v8.1

Autopsy 
v4.21

Cellebrite 
Inspect PA 
v10.5

XRY 
v10.12

UFS 
Explorer 
10.11

F2FS_Recover (Our 
tool)

Filesystem tree analysis X O X X X X O O O
Unallocated area 

generation
X O X X X X X X O

Deleted file’s metadata 
recovery

X X X X X X O (20/20) △ (14/ 
20)

O (20/20)

Deleted file’s data 
recovery

X X X X X X △ (11/ 
20)

△ (14/ 
20)

O (20/20)

Deleted file’s path 
recovery

X X X X X X X X O

Deleted directory 
recovery

X X X X X X X X O

Fig. 12. Recovery result of F2FS_Recover.
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performance compared to existing tools that support F2FS deleted file 
recovery, thereby proving the effectiveness of the proposed recovery 
algorithm. Consequently, the recovery algorithm presented in this paper 
is expected to be highly beneficial for recovering deleted data from 
devices using F2FS in the context of digital forensic investigations.
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