

Advanced forensic recovery of deleted file data in F2FS

By:

Junghoon Oh, Hyunuk Hwang

From the proceedings of
The Digital Forensic Research Conference

DFRWS APAC 2025
Nov 10-12, 2025

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.
https://dfrws.org

DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC

Advanced forensic recovery of deleted file data in F2FS

Junghoon Oh * , Hyunuk Hwang
The Affiliated Institute of ETRI, 1559 Yuseong-daero, Yuseong-Gu, Daejeon, South Korea

A R T I C L E I N F O

Keywords:
F2FS
Deleted file
Forensic recovery

A B S T R A C T

Flash-Friendly File System (F2FS) is a file system optimized for flash memory-based storage devices and is used in
a wide range of devices including Android smartphones, drones, in-vehicle infotainment systems and embedded
devices. Therefore, from a digital forensic perspective, a recovery technology for deleted file data in F2FS is
needed. However, as far as research on deleted data recovery from F2FS is concerned, only basic research has
been conducted on deleted data recovery from F2FS, and no specific recovery algorithms have been published.
Even in the case of tools that support deleted file data recovery from F2FS, a significant proportion of deleted file
data could not be recovered in tests, which limits their usefulness in real-world digital forensic investigations.
Therefore, this paper proposes a deleted file data recovery algorithm based on file system metadata carving and
virtual address table creation to overcome the limitations of existing research and tools. The proposed recovery
algorithm is implemented as a recovery tool and used for performance evaluation with existing forensic and data
recovery tools. The performance evaluation results proved the superiority of the recovery algorithm, with the
proposed algorithm showing superior recovery performance compared to existing tools.

1. Introduction

Flash-Friendly File System (F2FS) is a file system based on the log-
structured file system (Rosenblum, 1991) developed by Samsung and
is optimized for flash memory-based storage devices (Lee et al., 2015).
As a result, F2FS is used in a variety of devices that use flash
memory-based storage, such as Android smartphones, drones, in-vehicle
infotainment systems, and embedded devices (Matei, 2019; Azjar et al.,
2018; Shin et al., 2022).

Therefore, when conducting digital forensic investigations on these
devices, recovery techniques for deleted data in F2FS are required.
However, only basic research on deleted data recovery for F2FS has been
conducted, and no specific recovery algorithm has been published.
Furthermore, tools that support deleted file data recovery for F2FS failed
to recover a significant portion of deleted file data in recovery tests,
making them of limited use in real-world digital forensic investigations.

In this paper, we studied a deleted file data recovery algorithm based
on file system metadata carving and virtual address table creation to
overcome the limitations of existing research and tools. To this end, we
developed a detailed non-allocated area creation algorithm, a metadata
carving algorithm, and a virtual address table creation algorithm and
designed a deletion data recovery algorithm by integrating these
detailed algorithms. To test the performance of the recovery algorithm,

we implemented it as a tool and conducted performance evaluation
against existing forensic and data recovery tools. The performance test
results showed that the algorithm recovered fragmented deleted file
data and deleted file path information that were difficult to recover with
existing tools, demonstrating superior performance compared to exist
ing tools.

The contributions of this paper are as follows.

- Proposed an advanced metadata-based recovery algorithm for F2FS.
This enables the recovery of deleted file data that is fragmented, has
duplicated metadata, or the path information of deleted files, all of
which are difficult to recover with existing tools.

- Presented the recovery performance of existing tools for F2FS and
conducted a comparative evaluation with the proposed algorithm.

The rest of this paper is organized as follows: Chapter 2 reviews
existing research related to F2FS, and Chapter 3 provides background
knowledge to understand the recovery algorithm proposed in this paper.
Chapter 4 proposes a detailed algorithm for deleted file data recovery,
and Chapter 5 describes the experimental design and experimental re
sults for testing the performance of the proposed recovery algorithm.
Chapter 6 describes various considerations related to the recovery al
gorithm presented in this paper. Finally, Chapter 7 summarizes the

* Corresponding author.
E-mail addresses: blueangel@nsr.re.kr (J. Oh), hhu@nsr.re.kr (H. Hwang).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301976

Forensic Science International: Digital Investigation 54 (2025) 301976

Available online 3 November 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://orcid.org/0000-0002-6194-8044
https://orcid.org/0000-0002-6194-8044
mailto:blueangel@nsr.re.kr
mailto:hhu@nsr.re.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301976
https://doi.org/10.1016/j.fsidi.2025.301976
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301976&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

results of this study.

2. Related works

Currier (2022) performed an analysis of the F2FS basic structure and
metadata from a digital forensic perspective and an analysis of the
metadata that are changed when a file is deleted. In addition, he created
test cases for deleted file recovery and performed recovery tests using
the XRY tool (MSAB). However, the author did not present a specific
algorithm for deleted file recovery.

Tools that support deleted file recovery in F2FS include XRY (MSAB),
a mobile forensic tool, and UFS Explorer Professional Recovery (SysDev
Laboratories), a file recovery tool. Although the detailed method used
for deleted file recovery is not disclosed for either tool, it appears that
recovery is performed based on file system metadata rather than on the
carving technique because metadata (filename, timestamp) for deleted
files is recovered. However, neither tool can recover the full path of the
deleted file, and the results of the recovery tests described in this paper
showed that these tools failed to properly recover a substantial pro
portion of deleted files.

Looking at the research to date on deleted file recovery for F2FS, only
basic research has been conducted, and no research on specific recovery
algorithms has been published. In addition, tools that support F2FS
deleted file recovery also fail to recover the full path of deleted files. In
the recovery tests performed in this paper, a significant number of
deleted files were not properly recovered, indicating that these tools are
insufficient for use in actual digital forensic investigations.

Therefore, this paper proposes a deleted file data recovery algorithm
based on file system metadata carving and virtual address table creation
that can overcome these limitations of existing research and tools. As for
carving-based recovery, the proposed technique can be used regardless
of the file system, and because carving-based techniques cannot recover
fragmented files and cannot recover several important pieces of infor
mation (file name, timestamp, full path, etc.), recovery using these
techniques was excluded from this study.

3. Background knowledge

This section provides background knowledge to understand the re
covery algorithms studied in this paper.

3.1. Overall layout

The data units used in F2FS are as follows (Lee et al., 2015).
Block: Basic unit of data storage (Default: 4 KB).
Segment: A collection of blocks (Default:512 blocks, 2 MB).
Section: A collection of segments.
Zone: A collection of sections.
The overall structure of F2FS is shown in Fig. 1. The superblock

stores basic information about the file system, such as area partitioning
details and internal parameter values. The checkpoint area stores the
current state of the file system, including block allocation, node

allocation, and the status of currently active segments. The Segment
Information Table (SIT) contains bitmap information that identifies used
and unused blocks in the main area. The Node Address Table (NAT) is a
structure used to manage nodes, consisting of a table with the physical
addresses of nodes. The Segment Summary Area (SSA) is used to manage
mapping between physical and logical addresses. The main area is
composed of data blocks and node blocks; data blocks contain directory
information or user file data, whereas node blocks store inodes or indices
of data blocks (Lee et al., 2015).

3.2. F2FS allocation management

The SIT stores block allocation information for the main area, where
the actual file metadata and data of F2FS are stored. The location of the
SIT can be found using the block address stored in the sit_blkaddr field
within the superblock. The SIT is organized in block units, and each
block is composed of entries. Each entry stores the allocation informa
tion of 512 blocks, which make up a single segment in the main area in
the form of a bitmap. If the checkpoint area is in compact mode, an
additional structure called the SIT journal is used to record the most
recent changes in allocation information (Lee et al., 2015). Fig. 2 shows
the overall structure of the SIT.

3.3. Building a file/directory tree

The main area is composed of data blocks and node blocks. Data
blocks store the actual file data, whereas node blocks store inode in
formation on files and directories or index information of file data. The
inode information consists of metadata such as the file/directory name,

Fig. 1. Overall layout of F2FS.

Fig. 2. Structure of segment information table.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

2

file data size, and timestamps. In addition, in the case of directory ino
des, the inode numbers of child files and directories are stored using a
dentry structure. The dentry structure stores the inode number infor
mation (ino) of each child file/directory in units of f2fs_dir_entry entries,
and the activation/deactivation status of each entry is recorded in a
bitmap format using the dentry_bitmap (Lee et al., 2015).

The NAT is a table that maps the node identifier (nid) to the corre
sponding block address of the node block. Similarly to the SIT, the NAT
is organized in blocks, and each block consists of entries. Each entry is
assigned a nid in sequential order; however, this value is not stored as a
field within the entry itself. Instead, the position of the entry within the
NAT determines its nid. For example, the first entry in the first block of
the NAT represents the entry with nid 0. Each NAT entry stores the inode
number of the associated file or directory, as well as the block address of
the corresponding node block. If the metadata of a specific file span
multiple node blocks, the NAT entries for those node blocks will share
the same inode number. If the checkpoint area is in compact mode, an
additional structure called the NAT journal is used to store the most
recent changes in mapping information. Fig. 3 shows the overall struc
ture of the NAT (Lee et al., 2015).

The method for constructing the file/directory tree in F2FS is as
follows. First, the inode number of the root directory is obtained using
the root_ino field in the superblock. Once the inode number of the root
directory is obtained, it is used as the nid to locate the corresponding
NAT entry in the NAT. From this NAT entry, the node block address is
retrieved, and the inode information of the root directory located at that
block address can be accessed. Because the inode information of a
directory contains the inode numbers of its child files and folders, the
same procedure is repeated using the NAT to obtain the inode infor
mation for those child files and folders. By repeating this process, a file/
directory tree structure starting from the root directory can be con
structed. In addition, if a NAT journal exists, the NAT entries in the
journal are used with higher priority to retrieve inode information (Lee
et al., 2015). Fig. 4 illustrates the overall process of constructing the
file/directory tree.

3.4. Structure of file data

The structure for storing file data is largely divided into inline data
and file data block addresses. Inline data is a method of storing file data
within an inode when the file data size is smaller than the free space
excluding the basic metadata (file name, file size, timestamp, etc.) in the
inode. The file data block address is a structure that stores the addresses
of the blocks in which the file data are stored if the file data are too large
to be stored as inline data. This structure is largely divided into direct
pointers and file data index structures. Direct pointers is a structure in

which the list of block addresses where file data are stored is kept
directly within the inode. If the file data are too large to be stored in the
direct pointers structure, the file data index structure from single-
indirect to triple-indirect is used in order. In the file data index struc
ture, the direct node block stores a list of block addresses where file data
are stored, and the indirect node block stores a list of nids of direct node
blocks or indirect node blocks. The locations of direct node blocks and
indirect node blocks can be found by converting the nid value to a block
address using the NAT (Lee et al., 2015). Fig. 5 shows the structure for
storing file data.

4. Deleted file and directory recovery

This section describes how to recover data from deleted files and
directories. First, before explaining the detailed recovery algorithm, we
will look at the metadata that are changed by the deletion operation and
explain the analysis of the unallocated area required for the recovery
algorithm. Then, based on this, we will explain the detailed recovery
algorithm.

4.1. Metadata changes of the delete operation

When a file or directory is deleted, the bit of the corresponding
f2fs_dir_entry entry for the deleted file or directory in the dentry_bitmap of
the dentry structure within the parent directory’s inode is set to 0,
deactivating the associated f2fs_dir_entry entry entry. However, the
f2fs_dir_entry entry data of the deleted file or directory is not reinitialized
and remains intact. In the case of the NAT, the NAT entries that stored
the mapping information of the deleted file or directory are reinitialized
by setting the values of the block_addr fields to 0, as shown in Fig. 6.
Finally, the inode block, data blocks, and direct/indirect node blocks of
the deleted file or directory are marked as unallocated areas, but the
actual data within these blocks remain intact until F2FS garbage
collection is performed.

Therefore, when a file or directory is deleted, it is possible to obtain
the inode number information of the deleted child file/directory from

Fig. 3. Structure of node address table.

Fig. 4. Process of building a file/directory tree.

Fig. 5. Structure of file data.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

3

the parent directory’s dentry structure. However, the block_addr value in
the corresponding NAT entry has been reinitialized, making it impos
sible to determine the block address where the inode is stored. Even if
the inode block is carved from the unallocated area, if the file size ex
ceeds a certain threshold (approximately 3.7 MB), the file uses a data
index structure. In such cases, if the block_addr value of the NAT entry
has been reinitialized, the data in the deleted file cannot be properly
recovered.

4.2. Recovery algorithm

The process of recovering deleted files/directories is as follows.

4.2.1. STEP 1: Collecting information on unallocated areas
The first step is to collect information on unallocated areas within the

main area. Collecting information on unallocated areas is a task of
analyzing SIT to obtain information on unused blocks within the main
area. The process of obtaining information on unallocated areas is as
follows. First, the block address where the SIT data are located is ob
tained through the value of the sit_blkaddr field of the superblock. Next,
the SIT data located at the corresponding block address are accessed in
blocks, and the bitmap information of the valid_map field of the SIT entry
in the block is analyzed. The valid_map field is 64 bytes in size and stores
512 bits. Therefore, one SIT entry has allocation/non-allocation infor
mation for 512 blocks in the main area. Because a segment is generally
composed of 512 blocks, one SIT entry can be considered to manage the
block allocation/non-allocation information of one segment in the Main
Area. In addition, the bitmap information in the valid_map field is stored
in the Big Endian format. Finally, after the bitmap information of all
blocks in the main area has been analyzed, information about unallo
cated blocks is collected to obtain unallocated area information. In
addition, if there is an SIT journal, the unallocated area information is
obtained by adding the most recent unallocated block information of the
SIT journal entry to the unallocated block information generated earlier.
Fig. 7 shows the process of obtaining unallocated area information.

The unallocated area information collected in this way can be used to

specify the area to be processed in the next step, which is node block
carving, and can also be used to recover deleted file data through the
carving technique.

4.2.2. STEP 2: Carving node blocks
The second step is to perform node block carving using the collected

unallocated area information. To carve a node block in unallocated area,
the node footer located at the end of the node block must be checked. As
shown in Fig. 8, the node footer is 24 bytes of data located at the end of
the node block and uses the node_footer structure.

Therefore, by examining the last 24 bytes of a block where the node
footer is located, and verifying that all conditions listed in Table 1 are
satisfied, it can be determined whether the block is a node block.

The node_footer.cp_ver value is the checkpoint version at the time the
corresponding node block was modified. This value cannot be 0 and
cannot be greater than the checkpoint_ver value in the header of the
current checkpoint. Note that if the CP_CRC_RECOVERY_FLAG (0x40)
bit is set in the ckpt_flags field of the checkpoint header, the upper 32 bits
of the node_footer.cp_ver value are set to the CRC32 value for the current
checkpoint, while only the lower 32 bits are used [2]. Therefore, the
node_footer.cp_ver value can be compared with the checkpoint_ver value in
the header of the checkpoint only when the CP_CRC_RECOVERY_FLAG
bit is not set. In addition, even if the CP_CRC_RECOVERY_FLAG bit is set,
if the checkpoint_ver value of the current checkpoint header is less than or
equal to the 32-bit maximum value (0xFFFFFFFF), the condition can be
used because it can be compared with the lower 32-bit value of node_
footer.cp_ver. Algorithm 1 is a pseudo-code that compares node_footer.
cp_ver with the checkpoint_ver of the current checkpoint header.

Algorithm 1. Checking node_footer.cp_ver in Node Block Carving

The node_footer.nid means the nid of the current node block, which is
larger than the nid (0–3) value used by default when formatting and
cannot be larger than the maximum nid value in the current file system.
The maximum nid can be calculated as shown in the following equation
using the number of NAT segments, block size, and NAT entry size (9
bytes) obtained from the segment_count_nat field in the superblock:

Max nid = ((NAT Segment Count/2)*512*(Block Size)) / 9

The node_footer.ino refers to the inode number of the file/directory
associated with the current node block and must be greater than the ino
(0–3) value used by default when formatting. node_footer.next_blkaddr is
the block number of the next node block, which cannot be zero and
cannot be greater than the maximum block number in the current file
system. The maximum block number can be found in the block_count

Fig. 6. Changes in NAT entries caused by delete operations.

Fig. 7. Collecting information on unallocated areas. Fig. 8. Node footer & node_footer structure.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

4

field of the superblock.

4.2.3. STEP 3: inode identification
The third step is to identify the inode block among the carved node

blocks. To determine whether the carved node block is the block with
inode data, the conditions of the field values of the f2fs_inode structure
used by the inode must be checked. Table 2 shows the conditions for
identifying the inode block.

The f2fs_inode.i_mode field represents the file type and follows the
standard Linux file types. When a bitwise AND operation is performed
with i_mode and S_IFMT, the result will be one of the following values:
S_IFIFO, S_IFCHR, S_IFDIR, S_IFBLK, S_IFREG, S_IFLNK, S_IFSOCK, or
S_IFWHT (Linux, b). f2fs_inode.ilinks refers to the number of links in the
target file/directory. For a file, the ilinks value is always greater than or
equal to 1. For a directory, the ilinks value is always greater than or
equal to 2 because the number of subdirectories is stored as the number
of links, and two subdirectories, ‘.’ and ‘.’, always exist. f2fs_inode.
namelen gives the length of the file/directory name, and because the size
of f2fs_inode.i_name[] in which the file/directory name is stored is 255
bytes, it can have a value in the range of 1–254. In addition, the actual
length of the name of the stored file/directory in f2fs_inode.i_name[]
must match f2fs_inode.namelen. Therefore, if the carved node block sat
isfies all the conditions in Table 2, the target node block is assumed to be
an inode node block.

4.2.4. STEP 4: node block deduplication
The fourth step is to remove any duplicates of the carved node

blocks. When a node block is carved based on the node footer infor
mation, several node blocks with the same nid and ino can be carved in
the unallocated area. This occurs because when data are changed in
F2FS, a new block is allocated using the Copy-On-Write method to save
the changed data, and the block containing the existing data is deal
located. When recovering a file/directory, if there are multiple node
blocks with the same nid and ino, the most recently saved node block
should be used. To identify the most recently saved node block among
the node blocks with the same nid and ino, use the cp_ver in the node
footer. In this case, if the CP_CRC_RECOVERY_FLAG bit is not set in the
ckpt_flags field of the Checkpoint header as described above, the node
block with the largest cp_ver value is assumed to be the most recently
changed node block. On the contrary, if the CP_CRC_RECOVERY_FLAG
bit is set, only the lower 32-bit value of cp_ver is compared to determine
the node block with the largest value as the most recently changed node
block. The reason why only the lower 32-bit value of cp_ver can be used is

that F2FS performs garbage collection periodically, so that the node
blocks with the same nid and ino remaining in the unallocated area do
not have enough cp_ver difference to use the upper 32-bit part of cp_ver.
Algorithm 2 is a pseudo-code that uses node_footer.cp_ver to identify the
most recently changed node block.

By applying the method in Algorithm 2, the most recently modified
node blocks among those with identical nid and ino values are identified
from the carved node blocks, and the remaining node blocks are
discarded.

Algorithm 2. Finding the Latest Node Block in Carved Node Blocks
with Same nid and ino

4.2.5. STEP 5: Generating virtual NAT
The fifth step is to create a virtual NAT using the carved node blocks

that have been deduplicated. As explained earlier, when a file/directory
is deleted, all the block address information of the NAT entry related to
the deleted file/directory is reinitialized. Therefore, to recover the
deleted file/directory, information to replace the reinitialized NAT en
tries is needed. In this paper, a virtual NAT is created using the nid and
ino information stored in the node footer of the carved node block and
the location information of the carved node block. The created virtual
NAT consists of key and value mapping information, using the nid + ino
value as the key information and the address of the carved node block as
the value information. The mapping information of the virtual NAT
created in this way replaces the information in the reinitialized NAT
entries when recovering deleted files/directories. Fig. 9 shows the
overall process of creating a virtual NAT.

The detailed process of recovering deleted files and directories using
the mapping information of the virtual NAT will be explained in the
following step.

4.2.6. STEP 6: directory & file recovery
The sixth step involves recovering the deleted files and directories

based on the various pieces of information generated in the previous

Table 1
Conditions for carving node blocks.

No Conditions

1 node_footer.cp_ver != 0
2 node_footer.cp_ver <= Current Checkpoint Version
3 node_footer.nid >= 3
4 node_footer.nid <= Max nid
5 node_footer.ino >= 3
6 node_footer.next_blkaddr != 0
7 node_footer.next_blkaddr <= Max Block Number

Table 2
Conditions for identifying inode blocks.

No Conditions

1 (f2fs_inode.i_mode & S_IFMT) in {S_IFIFO, S_IFC
​ HR, S_IFDIR, S_IFBLK, S_IFREG, S_IFLNK, S_IFS
​ OCK, S_IFWHT}
2 f2fs_inode.i_links >= 1
3 if (f2fs_inode.i_mode & S_IFMT) == S_IFDIR, then
​ f2fs_inode.i_links >= 2
4 1 <= f2fs_inode.namelen <= 254
5 len(f2fs_inode.i_name) == f2fs_inode.namelen Fig. 9. Generating virtual NAT.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

5

steps. The recovery process for the deleted files and directories is as
follows.

The first task is to traverse the file system tree and analyze the dentry
structures within directories to identify inactive f2fs_dir_entry entries.
These inactive entries contain inode number information corresponding
to deleted files or directories. Once an inactive f2fs_dir_entry is found, its
inode number is used as both the nid and ino to generate a nid + ino key.
This nid + ino key is then used to retrieve the corresponding value, the
block address, from the virtual NAT generated in the previous step. If the
data located at the retrieved block address are inode data, it must be
verified whether these data truly correspond to the inode of the deleted
file or directory. This verification process uses the file_type, name_len, and
hash_code fields of the f2fs_dir_entry entry. First, the file type obtained
from the i_mode field of the inode is compared with the file_type value of
the f2fs_dir_entry. Next, the i_namelen value from the inode is compared
with the name_len field of the f2fs_dir_entry. As for the hash_code field, it
represents a hash value of the file name and is calculated using the
f2fs_dentry_hash() function (Google). Therefore, the hash value of the file
name stored in the inode is computed and compared with the hash_code
field. If all three comparisons match, the inode corresponds to the
deleted file or directory originally pointed to by the inactive
f2fs_dir_entry.

If the acquired inode data represent a file, file data recovery proceeds
in the following steps. First, if the file data size is small and the file data
are in the inline data format (about 3 KB or less) or the direct pointer
format (about 3.6 MB or less), file data recovery is possible using only
the data in the inode (file data or block address). However, if the file
data size is larger, the file data index structure must be analyzed. At this
time, the nid corresponding to the direct/indirect node block to be
searched and the inode information of the file to be recovered are used
as ino to create the nid + ino key, and then the block addresses mapped
in the virtual NAT created in the previous step are obtained. If all the file
data index structures of the target file can be analyzed with the block
addresses obtained through the virtual NAT, then the entire file data can
be recovered. On the other hand, if all the file data index structures
cannot be analyzed, recovery is performed with only the analyzed file
data block addresses, and the unanalyzed parts are treated as sparse
areas. Finally, if the file data index structure cannot be analyzed at all,
recovery is started using the block addresses at the beginning of the file
stored in the inode, and then the remaining part is assumed to be in a
non-fragmented state and is recovered by sequentially reading it as
much as the file size. The reason for performing this recovery method is
that F2FS is a log-structured file system (Rosenblum, 1991) that uses a
policy of minimizing file data fragmentation (Currier, 2022). A file that
has been completely recovered in this way can know its full path because
it can know the parent directory exactly.

If the acquired inode data is a directory, all child files and directories
have been deleted, so all f2fs_dir_entry entries in the dentry structure of
the inode data are analyzed, and the inode data of the deleted child files

and directories are acquired through the virtual NAT. After this, the
recovery operation is performed by recursively repeating the method
described above. Similarly, because the restored directory knows the
exact parent directory, it can know its full path.

Finally, if the recovery operation is completed by traversing all the
file system trees, the recovery operation is performed on the inode
blocks that have not yet been recovered in the carved node block. In this
case, the recovered file/directory is set to the orphaned file/directory
state because the exact path is unknown. Fig. 10 shows the process of
recovering deleted files/directories using the virtual NAT.

Fig. 11 illustrates the overall process of the recovery algorithm as a
flowchart based on the descriptions provided so far.

5. Experiment and evaluation

This section describes the experiments and evaluation results used to
assess the performance of the recovery algorithm proposed in this paper.

Fig. 10. Process of recovering deleted file and directory using virtual NAT.

Fig. 11. Flowchart of the recovery algorithm.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

6

5.1. Experiment design

The performance evaluation experiment for the recovery algorithm
proposed in this paper was conducted as follows. First, on a Linux system
using the Ubuntu 22.04.5 LTS operating system, a 4 GB USB storage
device was formatted with F2FS, and 10 test files were created in the
‘test_folder_1’ and ‘test_folder_2’ directories, as shown in Table 3. Test
files are named in the format ‘test[N]_[FileSize].txt’ and are configured
to use various inline data, direct pointers, direct node blocks, and in
direct node blocks, which are methods used by F2FS to store file data.
The ‘File Data Storage Method’ column in Table 3 indicates which
storage method is used for each test file, and in the case of direct and
indirect node blocks, it additionally indicates the number of blocks used
to store file data. This makes it possible to identify each file data storage
method in the recovery test and to verify whether the file data have been
recovered properly. The data in the test files were saved in text format
(file name without extension) to avoid recovery through the carving
method; this enables testing of file data recovery through F2FS metadata
analysis. Next, deletion of the test files was performed by deleting all test
files using the ‘rm’ (Linux, a) command, which is the delete command in
the Linux system shell. In the deletion process, the files under the
‘test_folder_1’ folder were deleted without deleting the parent folder,
and the files under the ‘test_folder_2’ folder were deleted along with the
parent directory, ‘test_folder_2’. This makes it possible to verify that the
directory is being restored and to test whether the path information of
the restored files can be obtained. Next, after the deletion process was
complete, the USB storage device was unmounted and then connected to
the recovery test system through Tableau Forensic (OpenText, b), which
is a write blocker, An image file for the USB storage device was also
created in raw format using the FTK Imager (Exterro, a). Finally, the
recovery test was performed using the image file created, and if the
image file input was not supported (e.g., XRY), the recovery test was
performed using the USB storage device directly. This experiment aims
to test the recoverability of deleted files under different data storage
methods. Cases in which metadata and data of deleted files remaining in
unallocated area are overwritten in real-world scenarios are not
considered. In other words, the experiment tests whether deleted files
can be fully recovered when both their metadata and data remain intact
in the unallocated area. To this end, the file system was unmounted
immediately after deleting files and directories, without performing any
further operations. Table 3 shows the file name, path, file data storage

method, number of file data fragments, number of inode blocks, and
whether the parent directory was deleted for the test files deleted from
USB storage media formatted with F2FS. The number of inode blocks
refers to the number of such blocks identified when the inode block of
the file is searched in an image file.

The recovery algorithm proposed in this paper was implemented
with the F2FS_Recover tool, and existing forensic and recovery programs
were used to compare and evaluate its performance. The existing
forensic and recovery tools used in the experiment were the following:

- Encase Forensic v24.4 (OpenText, a)
- Magnet AXIOM v8.8 (Magnet Forensics)
- X-Ways Forensics v21.3 (X-Ways)
- FTK v8.1 (Exterro, b)
- Autopsy v4.21 (Sleuth Kit Labs)
- Cellebrite Inseyets PA v10.5 (Cellebrite)
- XRY v10.12 (MSAB)
- UFS Explorer 10.11 (SysDev Laboratories)

5.2. Evaluation

The results of evaluating the performance of each tool through the
deleted file recovery experiment are shown in Table 4. First, among the
world’s most widely used forensic tools, including Encase Forensic,
Magnet AXIOM, X-Ways Forensics, FTK, Autopsy, and Cellebrite
Inseyets PA, none supported analysis and recovery of F2FS, except for
Magnet AXIOM. In the case of Magnet AXIOM, it only supports file
system tree analysis for F2FS and creation of unallocated area and does
not support recovery of deleted files.

XRY supports file system tree analysis and deleted file recovery, but
does not support the generation of unallocated area. The deleted file
recovery function recovered all metadata (file name, timestamp, etc.)
for 20 deleted test files, but it failed to recover any data for nine files in
which multiple inode blocks were identified. The data sizes of the nine
files were zero. In addition, XRY does not support deleted file path in
formation recovery or directory recovery.

UFS Explorer, like XRY, provides file system tree analysis and deleted
file recovery, but does not support generation of unallocated area. The
deleted file data recovery function supports metadata recovery and file
data recovery for non-fragmented files only. Accordingly, recovery was
performed only for the 14 files among the test files that had not been

Table 3
Test files for deleted file recovery experiment.

No File Name File Path File Data Storage Method Fragment
Count

Inode
Block
Count

Parent
Directory
Deletion
Status

Inline
Data

Direct
Pointers

Direct
Node
Block

Indirect
Node
Block

1 test1_3 KB.txt /test_folder_1/test1_3 KB.txt O X X X 1 1 Not Deleted
2 test2_1 MB.txt /test_folder_1/test2_1 MB.txt X O X X 1 1 Not Deleted
3 test3_5 MB.txt /test_folder_1/test3_5 MB.txt X O O (1) X 2 1 Not Deleted
4 test4_10 MB.txt /test_folder_1/test4_10 MB.txt X O O (2) X 1 1 Not Deleted
5 test5_20 MB.txt /test_folder_1/test5_20 MB.txt X O O (5) O (1) 1 2 Not Deleted
6 test6_30 MB.txt /test_folder_1/test6_30 MB.txt X O O (7) O (1) 2 2 Not Deleted
7 test7_40 MB.txt /test_folder_1/test7_40 MB.txt X O O (10) O (1) 10 2 Not Deleted
8 test8_50 MB.txt /test_folder_1/test8_50 MB.txt X O O (12) O (1) 13 2 Not Deleted
9 test9_60 MB.txt /test_folder_1/test9_60 MB.txt X O O (14) O (1) 15 2 Not Deleted
10 test10_70 MB.txt /test_folder_1/test10_70 MB.txt X O O (17) O (1) 15 2 Not Deleted
11 test11_3 KB.txt /test_folder_2/test11_3 KB.txt O X X X 1 1 Deleted
12 test12_1 MB.txt /test_folder_2/test12_1 MB.txt X O X X 1 1 Deleted
13 test13_5 MB.txt /test_folder_2/test13_5 MB.txt X O O (1) X 1 1 Deleted
14 test14_10 MB.txt /test_folder_2/test14_10 MB.txt X O O (2) X 1 1 Deleted
15 test15_20 MB.txt /test_folder_2/test15_20 MB.txt X O O (5) O (1) 1 1 Deleted
16 test16_30 MB.txt /test_folder_2/test16_30 MB.txt X O O (7) O (1) 1 1 Deleted
17 test17_40 MB.txt /test_folder_2/test17_40 MB.txt X O O (10) O (1) 1 2 Deleted
18 test18_50 MB.txt /test_folder_2/test18_50 MB.txt X O O (12) O (1) 1 2 Deleted
19 test19_60 MB.txt /test_folder_2/test19_60 MB.txt X O O (14) O (1) 1 2 Deleted
20 test20_70 MB.txt /test_folder_2/test20_70 MB.txt X O O (17) O (1) 1 2 Deleted

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

7

fragmented. In addition, path information recovery and directory re
covery of deleted files are not supported.

In contrast, F2FS_Recover, which implements the recovery algorithm
proposed in this paper, supports all key functionalities including file
system tree analysis, creation of unallocated area, deleted file recovery,
recovery of deleted file paths, and recovery of deleted directories. In the
deleted file recovery test, it successfully recovered both the metadata
and file data for all 20 deleted test files, regardless of the number of data
fragments or identified inode blocks. Moreover, by recovering the path
information of deleted files, it could accurately determine their original
locations. Deleted directories were also successfully recovered, enabling
restoration of full paths for files that were deleted along with their
parent directories. Fig. 12 shows the deleted file recovery results of the
F2FS_Recover tool. The detailed recovery results for each test file using
XRY, UFS Explorer, and F2FS_Recover are provided in Table 5.

6. Discussion & limitation

6.1. Garbage collection

F2FS performs garbage collection to improve file system perfor
mance. F2FS’s garbage collection task selects the target section based on
information such as the number of valid blocks or block age, moves the
data of allocated blocks within the section, and registers the target
section as a free section. Sections registered as free sections are set as
unallocated space, enabling new data to be written. Garbage collection
operations can be performed by the user in device settings, when free
space is insufficient, or periodically as a background task. In the case of
background garbage collection operations, the execution interval varies
depending on the system’s resource status and file system usage patterns
(Currier, 2022). The recovery algorithm proposed in this paper has the
limitation that it performs recovery operations only on data remaining
in unallocated areas before garbage collection is performed.

6.2. Fragmentation

In F2FS, file data fragmentation varies depending on the logging
mode. F2FS uses two logging modes: append logging and thread logging.
The append logging mode writes data sequentially to clean segments,
whereas the thread logging mode writes data by locating unallocated
blocks. As a result, file data are not fragmented in append logging mode,
but fragmentation occurs in thread logging mode. Typically, when suf
ficient free space is available on the storage device, append logging
mode is used; otherwise, thread logging mode is applied (Currier, 2022).
Therefore, in most cases, file data are stored contiguously without
fragmentation in Append Logging mode. For this reason, the recovery
algorithm proposed in this paper adopts a method that sequentially re
covers data from the starting location of the file over the size of the file,
in cases where the data location of the deleted file cannot be accurately
determined due to damage of the metadata left in the unallocated area.

7. Conclusion

F2FS is a file system optimized for flash memory-based storage de
vices and is used in various devices such as Android smartphones,
drones, IVI, and embedded equipment. Therefore, from a digital foren
sics investigation perspective, recovery techniques for deleted data
within F2FS are necessary. However, only basic research on deleted data
recovery in F2FS has been published, and existing tools that support
recovery of deleted file data from F2FS have demonstrated poor per
formance in recovery tests, failing to recover a significant portion of
deleted data.

Therefore, this paper proposes a deleted file data recovery algorithm
based on file system metadata carving and virtual address table gener
ation to overcome the limitations of existing research and tools. The
proposed algorithm was implemented as a tool and used in performance
comparison experiments with existing forensic and recovery tools. In
these experiments, the implemented tool demonstrated superior

Table 4
Performance evaluation results.

Encase
Forensic
v24.4

Magnet AXIOM
v8.8

X-Ways
Forensics
v21.3

FTK
v8.1

Autopsy
v4.21

Cellebrite
Inspect PA
v10.5

XRY
v10.12

UFS
Explorer
10.11

F2FS_Recover (Our
tool)

Filesystem tree analysis X O X X X X O O O
Unallocated area

generation
X O X X X X X X O

Deleted file’s metadata
recovery

X X X X X X O (20/20) △ (14/
20)

O (20/20)

Deleted file’s data
recovery

X X X X X X △ (11/
20)

△ (14/
20)

O (20/20)

Deleted file’s path
recovery

X X X X X X X X O

Deleted directory
recovery

X X X X X X X X O

Fig. 12. Recovery result of F2FS_Recover.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

8

performance compared to existing tools that support F2FS deleted file
recovery, thereby proving the effectiveness of the proposed recovery
algorithm. Consequently, the recovery algorithm presented in this paper
is expected to be highly beneficial for recovering deleted data from
devices using F2FS in the context of digital forensic investigations.

References

Azjar, M., et al., 2018. Drone forensic analysis using open source tools. Journal of Digital
Forensics, Security and Law 13. URL: https://commons.erau.edu/cgi/viewcontent.
cgi?params=/context/jdfsl/article/1513/path_info=V13N1_03_Azhar.pdf.

Cellebrite. Cellebrite inseyets pa. https://cellebrite.com/en/cellebrite-inseyets-powere
d-by-pa. (Accessed 30 July 2025).

Currier, C., 2022. The flash-friendly file system (f2fs). In: Mobile Forensics - the File
Format Handbook. Springer, pp. 69–118. URL: https://link.springer.com/chapter/
10.1007/978-3-030-98467-0_3.

Exterro, a. Accessed: 2025-July-30.
Exterro, b. Forensic toolkit. https://www.exterro.com/digital-forensics-software/forensi

c-toolkit. (Accessed 30 July 2025).
Google. Google, hash.c. https://android.googlesource.com/kernel/msm/+/android-8.1.

0_r0.17/fs/f2fs/hash.c. (Accessed 30 July 2025).
Lee, C., et al., 2015. F2fs: a new file system for flash storage. In: 13th USENIX Conference

on File and Storage Technologies (FAST 15). URL: https://www.usenix.org/conf
erence/fast15/technical-sessions/presentation/lee.

Linux, a. Linux manual page, rm(1). https://man7.org/linux/man-pages/man1/rm.1.
html. (Accessed 30 July 2025).

Linux, b. Linux, stat.h. https://github.com/torvalds/linux/blob/master/include/u
api/linux/stat.h. (Accessed 30 July 2025).

Magnet Forensics. Magnet axiom. https://www.magnetforensics.com/products/magn
et-axiom/. (Accessed 30 July 2025).

Matei, M., 2019. Galaxy note 10 uses f2fs, not ext4 file system: what’s the difference?
URL: https://www.sammobile.com/news/galaxy-note-10-uses-f2fs-not-ext4-file
-system-whats-the-difference/. online article.

MSAB. Xry. https://www.msab.com/product/xry-extract/xry-pro/. (Accessed 30 July
2025).

OpenText, a. Encase forensic. https://www.opentext.com/products/forensic. (Accessed
30 July 2025).

OpenText, b. Tableau forensic. https://www.opentext.com/products/tableau-forensic.
(Accessed 30 July 2025).

Rosenblum, M.O.J., 1991. The design and implementation of a log-structured file system.
In: SOSP ’91: Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, pp. 1–15. URL: https://dl.acm.org/doi/abs/10.1145/121132.121137.

Shin, Y., et al., 2022. Digital forensic case studies for in-vehicle infotainment systems
using android auto and apple carplay. Sensors 22, 7196. URL: https://www.mdpi.
com/1424-8220/22/19/7196.

Sleuth Kit Labs. Autopsy. https://www.autopsy.com/. (Accessed 30 July 2025).
SysDev Laboratories. Ufs explorer professional recovery. https://www.sysdevlabs.

com/product.php?id=ufsxpuser_cat=techos=win. (Accessed 30 July 2025).
X-Ways. X-ways forensics. https://www.x-ways.net/forensics/. (Accessed 30 July 2025).

Table 5
Detailed recovery result of tools supporting F2FS deleted file recovery.

J. Oh and H. Hwang Forensic Science International: Digital Investigation 54 (2025) 301976

9

https://commons.erau.edu/cgi/viewcontent.cgi?params=/context/jdfsl/article/1513/path_info=V13N1_03_Azhar.pdf
https://commons.erau.edu/cgi/viewcontent.cgi?params=/context/jdfsl/article/1513/path_info=V13N1_03_Azhar.pdf
https://cellebrite.com/en/cellebrite-inseyets-powered-by-pa
https://cellebrite.com/en/cellebrite-inseyets-powered-by-pa
https://link.springer.com/chapter/10.1007/978-3-030-98467-0_3
https://link.springer.com/chapter/10.1007/978-3-030-98467-0_3
https://www.exterro.com/digital-forensics-software/forensic-toolkit
https://www.exterro.com/digital-forensics-software/forensic-toolkit
https://android.googlesource.com/kernel/msm/+/android-8.1.0_r0.17/fs/f2fs/hash.c
https://android.googlesource.com/kernel/msm/+/android-8.1.0_r0.17/fs/f2fs/hash.c
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://man7.org/linux/man-pages/man1/rm.1.html
https://man7.org/linux/man-pages/man1/rm.1.html
https://github.com/torvalds/linux/blob/master/include/uapi/linux/stat.h
https://github.com/torvalds/linux/blob/master/include/uapi/linux/stat.h
https://www.magnetforensics.com/products/magnet-axiom/
https://www.magnetforensics.com/products/magnet-axiom/
https://www.sammobile.com/news/galaxy-note-10-uses-f2fs-not-ext4-file-system-whats-the-difference/
https://www.sammobile.com/news/galaxy-note-10-uses-f2fs-not-ext4-file-system-whats-the-difference/
https://www.msab.com/product/xry-extract/xry-pro/
https://www.opentext.com/products/forensic
https://www.opentext.com/products/tableau-forensic
https://dl.acm.org/doi/abs/10.1145/121132.121137
https://www.mdpi.com/1424-8220/22/19/7196
https://www.mdpi.com/1424-8220/22/19/7196
https://www.autopsy.com/
https://www.sysdevlabs.com/product.php?id=ufsxpuser_cat=techos=win
https://www.sysdevlabs.com/product.php?id=ufsxpuser_cat=techos=win
https://www.x-ways.net/forensics/

	Advanced forensic recovery of deleted file data in F2FS
	1 Introduction
	2 Related works
	3 Background knowledge
	3.1 Overall layout
	3.2 F2FS allocation management
	3.3 Building a file/directory tree
	3.4 Structure of file data

	4 Deleted file and directory recovery
	4.1 Metadata changes of the delete operation
	4.2 Recovery algorithm
	4.2.1 STEP 1: Collecting information on unallocated areas
	4.2.2 STEP 2: Carving node blocks
	4.2.3 STEP 3: inode identification
	4.2.4 STEP 4: node block deduplication
	4.2.5 STEP 5: Generating virtual NAT
	4.2.6 STEP 6: directory & file recovery

	5 Experiment and evaluation
	5.1 Experiment design
	5.2 Evaluation

	6 Discussion & limitation
	6.1 Garbage collection
	6.2 Fragmentation

	7 Conclusion
	References

