

All your TLS keys are belong to Us: A novel approach to
live memory forensic key extraction

By:

Daniel Baier, Martin Lambertz

From the proceedings of
The Digital Forensic Research Conference

DFRWS APAC 2025
Nov 10-12, 2025

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.
https://dfrws.org

DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC

All your TLS keys are belong to Us: A novel approach to live memory
forensic key extraction

Daniel Baier *, Martin Lambertz
Fraunhofer FKIE, Zanderstr. 5, 53177, Bonn, Germany

A R T I C L E I N F O

Keywords:
TLS
Transport layer security
Memory forensics
Live forensics
Malware analysis
Network forensics

A B S T R A C T

Extracting TLS key material remains a critical challenge in live memory forensics, particularly for forensic in
vestigators and law enforcement seeking to decrypt network traffic for investigative purposes. Existing methods
focus on TLS 1.2 and rely on manual processes limited to specific implementations, leaving gaps in scalability
and support for TLS 1.3.

This research introduces a novel approach that automates key aspects of identifying and extracting TLS key
material across all major TLS implementations. Our approach leverages unique strings defined by TLS standards
to identify key derivation functions, eliminating the need for manual identification and ensuring adaptability to
evolving libraries.

We validate our methodology using a ground truth dataset of major TLS libraries and real-world applications,
dynamically intercepting the identified functions to extract session keys. While initially implemented on Linux,
the underlying concept of our approach is platform-agnostic and broadly applicable.

This work bridges a critical gap in live memory forensics by introducing a scalable framework that auto
matically locates TLS key derivation functions and uses this information in library-specific hooks, enabling
efficient decryption of secure communications. These findings offer significant advancements for forensic
practitioners, law enforcement, and cybersecurity professionals.

1. Introduction

Recent studys show that a vast majority of Internet traffic is now
encrypted (Gigamon, 2023; Google Transparency Report, 2024). While
encryption enhances privacy and secures data, it also poses substantial
challenges for forensic investigators and law enforcement agencies,
particularly in live memory forensics where the extraction of crypto
graphic key material is critical for decrypting network traffic
(Lindenmeier et al., 2024).

Memory forensics is commonly associated with acquiring full
memory dumps for later analysis. However, this approach is inadequate
when decryption of network traffic is required, as key material may be
transient. In such cases, key extraction-based lawful inter
ception—focusing solely on recovering cryptographic keys from a
monitored device—offers a more effective solution (Lindenmeier et al.,
2024; Stoykova, 2023).

The significance of Transport Layer Security (TLS) decryption in

digital forensics cannot be overstated. As cyber threats become
increasingly sophisticated, forensic analysts frequently encounter
encrypted network data during their investigations (Papadogiannaki
and Ioannidis, 2021). Thus, the ability to decrypt this traffic is essential
for conducting thorough and accurate forensic examinations.

The evolution from TLS 1.2 to TLS 1.3 has fundamentally altered the
protocol’s key schedule (cf. Section 2.2), leaving most established
forensic methods, which primarily target TLS 1.2 and focus on extract
ing only the master secret, unable to accommodate the restructured
derivation process of TLS 1.3 (Baier et al., 2024). Existing approaches
illustrate these constraints (cf. Section 3): Neither of these approaches
achieves universal cross-platform coverage for TLS 1.3 sessions. As TLS
1.3 becomes the default for major web services (Warburton and Vinberg,
2021), forensic investigators find themselves ill-equipped to handle the
altered secret generation model of TLS 1.3 (Baier et al., 2024), creating a
widening gap in analyzing encrypted network traffic.

This paper proposes an approach that extends previous work to

* Corresponding author.
E-mail addresses: daniel.baier@fkie.fraunhofer.de (D. Baier), martin.lambertz@fkie.fraunhofer.de (M. Lambertz).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301975

Forensic Science International: Digital Investigation 54 (2025) 301975

Available online 3 November 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:daniel.baier@fkie.fraunhofer.de
mailto:martin.lambertz@fkie.fraunhofer.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301975
https://doi.org/10.1016/j.fsidi.2025.301975
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301975&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

extracting the key material required to decrypt TLS traffic consisting of
two complementary phases (cf. Fig. 1). In the first phase (detailed in
Section 5), we use automated static analysis to identify the TLS key
derivation functions and extract their fingerprint signatures. Our
approach considers specifically the Pseudo-Random Function (PRF) in
TLS 1.2 and the HMAC-based Key Derivation Function (HKDF) in TLS
1.3. Once we have these fingerprints, we use them in the second phase
(cf. Section 6), where live forensic analysis is applied to perform the
actual TLS key extraction. To the best of our knowledge, no prior
research has systematically addressed the identification of these TLS
primitives to facilitate key material extraction by intercepting them
during runtime.

In summary, this paper makes the following contributions:

• We present TLSKeyHunter, a framework that is able to identify the
PRF and HKDF in an automated manner and extract signatures that
can be used for hooking them during live forensics.

• We provide a ground truth dataset for all major libraries described in
Baier et al. (2024), establishing standardized baselines for future
research on TLS 1.2/1.3 decryption.

• We showcase how to utilize the hooking of the HKDF to identify and
extract TLS key material.

• We provide Frida scripts for each TLS library to facilitate the TLS key
extraction for TLS 1.2 and TLS 1.3 during live forensics.

The implementation of our approach and the ground truth dataset of
TLS libraries are publicly available.1

The remainder of this paper is structured as follows: Section 2 recaps
TLS fundamentals followed by a related work section; Section 4 for
malizes our static analysis; Section 5 details the implementation; Section
6 explains the live extraction; Section 7 introduces our dataset; Section 8
presents our evaluation; Section 9 concludes.

2. TLS fundamentals

TLS is a widely adopted protocol designed to secure communications
between clients and servers over untrusted networks such as the
Internet. TLS guarantees data confidentiality, integrity, and authenti
cation (with optional client authentication) for exchanged information.
It underpins a broad range of applications including HTTPS (Rescorla,

2000), QUIC (Thomson et al., 2021), HTTP/3 (Bishop, 2022), virtual
private networks (e.g. OpenVPN (OpenVPN, Inc., 2017)), and industrial
control systems (e.g., Modbus TCP Security (Modbus Organization,
2018)).

TLS has evolved considerably since its introduction. TLS 1.0, intro
duced in 1999 as an enhancement to SSLv3, was followed by TLS 1.1
(2006), TLS 1.2 (2008), and most recently TLS 1.3 (2018). Current best
practices strongly recommend the use of TLS 1.2 and TLS 1.3, as earlier
versions are deprecated and unsupported by modern web browsers (cf.
SSL.com (2023); Internet Engineering Task Force (2021)).

A typical TLS session begins with a handshake that establishes a
shared secret between the communicating parties. During the hand
shake, the client issues a ClientHello message, which advertises sup
ported TLS versions, supplies a random nonce (the client random), and
lists supported cipher suites. The server responds with a ServerHello
message that indicates the negotiated TLS version, provides its own
random nonce (the server random), and selects the cipher suite. Subse
quent handshake messages are protected by keys derived—often via an
Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) exchange—from
these nonces. Following certificate-based authentication of the server,
the handshake is concluded by the client with a Finished message, and
application data is exchanged using keys derived during the handshake.

The remainder of this section outlines the keying material used to
secure TLS 1.2 and TLS 1.3 traffic, including an in-depth description of
the key schedule—an essential foundation for the discussion of our
developed framework to automatically identify the key derivation
function (cf. Section 5).

2.1. Traffic decryption keys

In TLS 1.2, all keys necessary for encrypting and decrypting traffic
are derived from a single master secret.

This secret is computed from the PreMasterSecret (PMS) in
conjunction with the client and server random values. Once established,
the master secret is expanded into a key block that is segmented into the
client write key, server write key, MAC keys, and—if applica
ble—initiali-zation vectors (IVs). Hence, knowledge of the master secret
yields the complete keying material needed to decrypt TLS 1.2 traffic
(see Fig. 2a).

In contrast, TLS 1.3 relies on a multi-layered key derivation process
in which decrypting recorded application data demands the recovery of
specific secrets beyond the master secret (see Fig. 2b). The decryption of
application messages requires the client and server application traffic
secrets, whereas the decryption of handshake messages requires the
client and server handshake traffic secrets. These handshake secrets also
facilitate the derivation of subsequent application secrets. Consequently,
obtaining only the master secret is insufficient for decrypting all TLS 1.3
traffic. Instead, each stage of the TLS 1.3 handshake generates context
specific secrets that must be collected to enable full decryption.

Fig. 1. TLS key extraction via intercepted key derivation.

Fig. 2. TLS decryption keys in versions 1.2 and 1.3.1 https://github.com/monkeywave/TLSKeyHunter.

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

2

https://github.com/monkeywave/TLSKeyHunter

2.2. Key schedule

The TLS key schedule defines a sequence of operations that generate
cryptographic keys from initial input secrets. This design is central to
ensuring that every session produces unique keying material, even when
certain inputs, such as a pre-shared key, are reused.

2.2.1. TLS 1.2 key schedule
TLS 1.2 employs a two-stage key derivation process based on a PRF,

as specified in RFC 5246 (Rescorla and Dierks, 2008a). In the first stage,
the master secret is derived from the PMS together with a seed. The PMS,
which may be a fixed 48-byte value (e.g., in RSA key exchange) or an
(EC)DHE-derived secret of variable length, is combined with the label
“master secret” and the concatenation of the client random and server
random values. A label is a fixed, context-specific string to ensure that
each derived key is uniquely bound to its intended purpose (cf. Section
4). This two-stage key derivation proces is illustrated in Listing 1.

Listing 1. Master Secret derivation using the PRF in TLS ≤1.2 (Rescorla and
Dierks, 2008a).

When the extended master secret mechanism is employed (cf. RFC
7627 (Bhargavan et al., 2015)), the seed for the PRF is taken from a hash
of the complete handshake transcript, rather than from the client and
server random values.

Once the master secret is computed, the PMS is discarded. In all key
exchange methods, the master secret has a fixed length of 48 bytes, as
stated in Section 8.1 of RFC 5246 (Rescorla and Dierks, 2008b).

After the master secret is generated, a second PRF invocation is used
for key expansion. This step uses the label “key expansion” and a seed
composed of the random values. The resulting key block is then parti
tioned into the client and server write keys, MAC keys (for non-AEAD
ciphers), and any required initialization vectors. Fig. 3 provides a vi
sual summary of this two-stage process.

Internally, the PRF in TLS 1.2 is implemented through an iterative
construct known as P_<hash>, which is based on the HMAC algorithm
and employs a hash function determined by the cipher suite.

Through this mechanism, the PRF furnishes both the master secret
and the expanded key block, ensuring that the final keying material is
cryptographically bound to the handshake parameters. In this way, the
PRF acts as the key derivation function in TLS 1.2.

2.2.2. TLS 1.3 key schedule
TLS 1.3 fundamentally redefines key derivation by replacing TLS

1.2’s PRF with a layered HKDF-based model as specified in RFC 8446

(Rescorla, 2018). While both protocols employ key derivation functions,
their mechanisms diverge critically in structure. In TLS 1.2, a single PRF
generates all secrets through repeated invocations with varying labels.
Conversely, TLS 1.3 decouples key derivation into two distinct HKDF
phases: HKDF-Extract for entropy concentration and HKDF-Expand for
context-specific key generation, as formalized in RFC 5869 (Krawczyk
and Eronen, 2010). Fig. 4 depicts the overall TLS 1.3 key schedule,
showing how secrets are computed.

The TLS 1.3 key schedule initiates with the Early Secret, derived via
HKDF-Extract using either a pre-shared key (PSK) or a zero-length input
keying material (IKM) if no PSK is available. This secret enables 0-RTT
data encryption in PSK-based sessions but is computed in all hand
shakes to maintain protocol uniformity.

Subsequent secrets are chained cryptographically: the Handshake
Secret is computed by applying HKDF-Extract to a derived salt (from the
Early Secret) and the ephemeral Diffie-Hellman shared secret. From this,
the handshake traffic secrets are generated using the Derive-Secret
function which is a thin wrapper around HKDF-Expand-Label,
ensuring encryption of handshake messages. Finally, the application
secrets (client/server traffic secrets, resumption master secret) are
derived similarly, with each step cryptographically isolated through
unique labels and handshake transcript hashes.

Listing 2. Definition of Derive-Secret in TLS 1.3 (Rescorla, 2018).

Listing 2 formalizes the Derive-Secret mechanism. The Tran
script-Hash parameter, a hash of all preceding handshake messages,
cryptographically binds derived secrets to the specific protocol execu
tion. This ensures keys are invalidated if messages are reordered,
modified, or replayed, mitigating downgrade and replay attacks. In
contrast, the Label parameter guarantees role separation by algorith
mically distinguishing secrets used for different purposes, even when
derived from the same input. For example, the server handshake traffic
secret is derived with the label “s hs traffic”, while the client application
traffic secret uses “c ap traffic”.

Note that the output length of Derive-Secret is determined by the
underlying hash function (e.g., 32 bytes for SHA-256, 48 bytes for SHA-
384).

In summary, TLS 1.2 relies on a single PRF (invoked twice) to
generate two distinct secrets, incorporating the client and server random
values as inputs. TLS 1.3 shifts the derivation of keys into multiple steps,
where each cryptographic stage is derived from a previously computed
secret.

3. Related work

Numerous prior efforts have aimed at extracting TLS key material
through various hooking or memory analysis techniques. Most of these
approaches focus exclusively on TLS 1.2, particularly targeting the
master secret via the PRF. For instance, Curran and van Bockhaven
(2016) hook the tls_handshake_internal_prf function in Cor
eTLS on iOS devices to extract session secrets. Similarly, Choi and Lee
(2016) retrieve the master secret by hooking the PRF of LSASS on
Windows, but their solution is limited to TLS 1.2 as well. Caragea
(2016), Taubmann et al. (2018), and Pan et al. (2019) present related
approaches also restricted to TLS 1.2, showing the general trend of
targeting the master secret and not adapting to the fundamental changes
introduced in TLS 1.3.

Noseevich (2022)’s technique partially addresses TLS 1.3 by hooking
Schannel’s internal key derivation logic. However, the solution is
platform-specific and remains confined to Windows environments. In
contrast, the framework proposed by Moriconi et al. (2024) introduces a
TLS library and version agnostic approach based on memory tracking

Fig. 3. TLS 1.2 key schedule (Rescorla and Dierks, 2008a).

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

3

but is exclusively applicable to Linux systems.
Another class of solutions relies on installing keylog callback func

tions available in libraries like OpenSSL or NSS exposed via an
SSLKEYLOGFILE. This is effective across TLS versions but often fails in
practice due to compilation flags disabling the feature (Mozilla Inc.,
2023).

Tools like friTap (Baier et al., 2020), FridaTLSKeylogger (Tunius,
2023), and eBPF-based hookers (Valadon, 2022) extend this idea by
injecting or activating these callback functions via hooking mechanisms.
However, they often depend on debug symbols or exported functions
being available. Furthermore, none of these tools attempt to locate key
derivation functions in an automated way; all rely on manually identi
fied function signatures and are tuned to specific libraries.

In summary, current research suffers from several limitations: a focus
on TLS 1.2 and the master secret, library- and platform-specific instru
mentation, reliance on available symbols, and the absence of automa
tion in locating key generation functions.

4. Key derivation identification

Identifying key derivation functions in TLS implementations presents
a challenge due to the diversity of cryptographic libraries and the
absence of symbolic information in compiled binaries. However, the TLS
specifications mandate fixed derivation labels that serve as key separa
tion identifiers for role-specific key derivation. These labels are not
arbitrary but are an integral part of the key schedule, ensuring that
specific secrets are derived correctly and in their appropriate context.
Their primary objective is to bind the derived key material to context-
specific information, ensuring for instance that secrets designated for
handshake encryption cannot be misused for application data or session
resumption.

In TLS 1.2, the PRF relies on the labels “master secret” and “key
expansion” to define key derivation operations (cf. Section 2.2.1). TLS
1.3 replaces the PRF with a HKDF, using labels such as “c hs traffic” and

“s hs traffic” for handshake secrets and “c ap traffic” and “s ap traffic” for
application secrets (cf. Section 2.2.2). Throughout this paper, we will
refer to these labels as TLS labels. RFC-compliant TLS implementations
require these standardized TLS labels; their absence prevents interop
erability, as the derivation of shared secrets would not be compatible
with each other.

Since these TLS labels must be passed as input to the key derivation
functions, they provide a reliable starting point for identifying these
functions across different TLS implementations, irrespective of their
internal design.

Fig. 5 illustrates our approach in identifying the key derivation
function on a conceptual level. At its core, the approach is built around
finding functions in TLS libraries that take the aforementioned TLS la
bels as arguments.

The first step in the key derivation identification involves locating
the TLS labels in the binary. Depending on the compiler and imple
mentation, labels may be stored in various formats, including ASCII,
UTF-16, wide character encoding, or hex representations. Compiler
optimizations introduce further complexities. Some labels are placed in
the.rodata section but referenced indirectly, while others appear as
substrings within larger structures due to string interning or constant
folding in languages such as Java or C++. We detect and cross-reference
such variations to ensure accurate identification.

Fig. 4. TLS 1.3 key schedule as outlined in RFC 8446 (Rescorla, 2018). Secrets are derived hierarchically using HKDF. Arrows indicate the flow of secret derivation,
with labels specifying the derivation context.

Fig. 5. Conceptual overview of the key derivation identification.

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

4

Once a TLS label is located, the next step is to analyze its data flow to
determine how it is used. Simply identifying the presence of a TLS label
is insufficient; it is essential to track its propagation through the binary
to verify whether it is being passed as an argument into a function. The
way in which a TLS label is transferred from its initial location to its
eventual use as a function argument provides strong evidence for pin
pointing a cryptographic key derivation function.

The following section describes TLSKeyHunter, which implements
this idea by leveraging static analysis and forward data flow analysis
(Alfred et al., 2007) to extract unique signatures of these key derivation
functions from TLS libraries.

5. TLSKeyHunter

This section introduces TLSKeyHunter, our platform-agnostic static
analysis framework designed to identify the TLS key derivation function
through forward data flow analysis. By tracking the TLS labels and
analyzing their propagation through the binary, TLSKeyHunter detects
the key derivation function and extracts relevant patterns, offsets, and
function labels. This extracted information enables live forensic key
extraction, facilitating the recovery of cryptographic material from TLS
sessions.

Although TLSKeyHunter is conceptually instruction set-agnostic, our
current implementation targets ARM, ARM64, x86, and x86-64. These
architectures dominate modern embedded, mobile, and desktop/server
platforms, providing broad practical coverage. TLSKeyHunter is imple
mented using Ghidra (version 11.1.2), a widely used open-source dis
assembler. While Ghidra was used in our prototype, the underlying
concept of TLSKeyHunter remains disassembler agnostic and adaptable
to other tools.

5.1. Architecture

As shown in Fig. 6, TLSKeyHunter accepts a binary that either stat
ically links a TLS library or is the TLS library itself. A preprocessing stage
then ensures retention of critical information—such as strings and cross-
references. Following this, the framework performs the TLS label
localization as detailed in Section 4. Using forward data flow analysis,
TLSKeyHunter tracks the propagation of an identified TLS label until it is
passed as an argument to a function. This function is then assumed to be
the key derivation function and its initial bytes are extracted to form a
signature called Key-Derivation Fingerprint. This fingerprint is
subsequently used to hook the function during live forensic analysis.

5.2. Key derivation identification

Identification of a key derivation function within a TLS library re
quires a structured approach capable of handling variations in imple
mentations across different architectures and compilation strategies.
The algorithm used for this purpose consists of three primary steps:
identifying TLS labels, performing forward data flow analysis, and

validating the identified function.
To locate the key derivation function, we first search for predefined

TLS labels in different representations, as discussed in Section 4. The
detection process must account for compiler- and language-specific
transformations that may obscure direct string references.

After identifying a relevant string reference, we perform forward
data flow analysis to track its propagation through the binary (cf. Allen
and Cocke (1976)). This analysis is conducted using an intermediate
representation (IR) of the disassembled binary. In our case, we utilize
P-Code, Ghidra’s IR, which abstracts low-level assembly instructions
into a representation that is architecture-independent.

When a string reference is passed as a function argument, the func
tion is flagged as a candidate key derivation function. This candidate
must then be validated, as it may be a wrapper rather than the actual key
derivation function. In such cases, the function processes the TLS label
into an internal representation, encapsulates it in a data structure, and
returns it for use in the true key derivation function. To distinguish
between a wrapper and the actual key derivation function, we analyze
the operations performed within the function. In particular, we focus on
detecting string manipulation routines as a key indicator of wrapper
behavior. For example, the presence of standard string operations—such
as calls to strcpy, strlen, or custom loops that iterate over character
arrays—suggests that the function is primarily processing an input label.

Another distinguishing characteristic is the function’s return value.
Most genuine key derivation functions return only a success indicator, as
their primary role is to generate keying material. In contrast, wrapper
functions tend to return a constructed object or a pointer to a structure
that is later processed by the actual key derivation function.

By incorporating these heuristics, we ensure that our identification
process reliably isolates the actual key derivation function rather than
an intermediate wrapper.

Although it is theoretically possible to detect cryptographic opera
tions (such as HMAC calculations) within a function, in our observa
tions, key derivation routines often do not execute these operations
directly. Instead, they delegate the core cryptographic tasks to lower-
level functions, obscuring the overall operation in the disassembly.
Hence, we did not implement this heuristic in our prototype.

Finally, when identifying the PRF for TLS 1.0–1.2, we must distin
guish between a single “unified” implementation (which dynamically
selects the internal hash) and separate version-specific routines (e.g.,
TLS 1.0–1.1 with MD5/SHA1 vs. TLS 1.2’s P_Hash; cf. Section 2.2.1).
Throughout this paper, we refer to the all-in-one approach as the “uni
fied PRF”. If TLSKeyHunter detects multiple cross-references to the
master secret label, it infers that the library provides separate version-
specific implementations, and both are flagged as key derivation
functions.

5.3. Key-Derivation Fingerprint

As shown in Fig. 6, once the key derivation function is identified,
TLSKeyHunter extracts a pattern—the Key-Derivation

Fig. 6. Conceptual overview of TLSKeyHunter.

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

5

Fingerprint—from that function. This fingerprinting phase is modular by
design, allowing future integration of more advanced techniques such as
Germini (Xu et al., 2017), MCRIT (Plohmann et al., 2023), or N_Match
(Xia et al., 2023). However, due to practical constraints of the hooking
framework (cf. Section 6), we use a classical pattern approach relying on
raw byte sequences.

In practice, the extraction process begins at the function prologue
and continues until the first non-call branching instruction (e.g., a jump
or a conditional branch). If this signature remains shorter than 32 bytes,
the extraction is extended until a subsequent branch is encountered. This
procedure ensures sufficient uniqueness for reliable identification,
guided by prior research on function fingerprinting, including FLIRT
(Hex-Rays, 2004), which suggests that a signature of roughly 16–32
bytes is typically adequate. The resulting byte pattern is paired with its
offset in the target library, enabling precise identification of the key
derivation function at runtime.

This final step complements TLSKeyHunter’s static analysis, which
employs forward data flow analysis to locate the key derivation routine
within the binary. Once identified, the extracted Key-Derivation
Fingerprint allows to pinpoint and intercept the key derivation func
tion during runtime.

6. TLS key extraction

To extract the necessary cryptographic key material for TLS traffic
decryption, we hook into the key derivation function of the TLS library
used within a target application. This process relies on the Key-
Derivation Fingerprint generated by TLSKeyHunter, which provides a
unique byte sequence associated with the key derivation function. By
leveraging this fingerprint, we dynamically instrument the function
responsible for key derivation and intercept the generated key material
at runtime.

For the implementation, we utilize Frida (version 16.5.2), a dynamic
instrumentation toolkit that supports multiple instruction set architec
tures (ABIs) and operating systems. The choice of Frida ensures broad
compatibility, though the approach remains agnostic to the specific
instrumentation tool. Alternatives such as DynamoRIO or Intel Pin could
be employed for similar results.

We developed a custom hooking script that uses the precomputed
Key-Derivation Fingerprints to locate and intercept corresponding
function calls in real time. The implementation and signature of the key
derivation function varies depending on the library. Notably, how the
key material is returned is highly library-specific. We have to determine
if the material is returned directly or if it is written into an output
argument. If it is an output argument, we have to identify which argu
ment exactly. Moreover, some libraries encapsulate the key material in
complex data structures. Our hooking script is tailored to each TLS
implementation we considered, ensuring the correct parameters are
extracted from the function calls. We experimented with various heu
ristics to automatically determine the key material, such as entropy, but
found them too error-prone. Moreover, our preliminary evaluations
showed that the way a key-derivation function returns the key material
is relatively stable. However, these aspects need further investigation in
the future.

In TLS 1.2, the intercepted key material corresponds to the master
secret (cf. Section 2.2.1), which is derived during the handshake and
subsequently used to generate encryption and authentication keys. In
TLS 1.3, the extracted key material comprises the handshake traffic se
crets and the application traffic secrets, addressing the hierarchical key
derivation structure that requires multiple secrets (cf. Section 2.2.2).

Alongside the key material, we extract the corresponding client
random, which uniquely identifies the associated TLS session. This
random value, exchanged during the handshake and stored in the ses
sion state, is used by tools like Wireshark to correlate key material with
encrypted TLS streams for decryption. By integrating client random
extraction into our method, we ensure accurate association of keys with

their respective TLS sessions.
In practice, the hooking is performed by executing the target appli

cation (including its TLS library) on a system where dynamic instru
mentation is applied with administrative privileges. These privileges are
required to attach to the target process and to intercept the key deri
vation function at runtime. Upon invocation of the key derivation
function, our instrumentation layer intercepts the execution flow and
extracts the computed secrets and the associated client random. These
keys can subsequently be used to decrypt TLS-protected communication
streams, facilitating traffic analysis.

Fig. 7 illustrates how the Key-Derivation Fingerprint is used to
identify the function, which is then hooked. Once the function is inter
cepted, the key material is extracted and made available for further
analysis. This methodology enables platform-agnostic key extraction by
separating the function’s identification from the runtime context and
relying solely on the Key-Derivation Fingerprint with its TLS library-
specific hooking script. However, the hooking implementation re
quires library-specific adaptation. While the Key-Derivation Fingerprint
automates identification of the target function across TLS libraries, the
analyst must manually determine which function argument contains the
secret material or client random and encode it according to the NSS key
protocol specification. Depending on the analyst’s familiarity with Frida
and the TLS stack, the required effort may range from minutes to hours
and 10–50 lines of Frida code.

7. Ground truth dataset

At the time of writing, there was no comprehensive ground truth
dataset of TLS clients covering both TLS 1.2 and TLS 1.3 across major
TLS libraries. This absence poses a significant challenge for analyzing
key derivation mechanisms and their respective cryptographic imple
mentations. To address this gap, we systematically developed dedicated
TLS clients for each major TLS library, enabling controlled testing and
evaluation of their PRF- and HKDF-function.

The TLS clients developed in this paper can be found in our GitHub
repository, with library versions documented in the version.md file.
The selection of TLS libraries is based on the dataset presented by Baier
et al. (2024), which categorizes widely used implementations and in
dicates that the TLS implementation influences the management of
cryptographic key material in memory. For each library, we developed
two distinct clients per TLS version: one performing a standard hand
shake and another that additionally prints the derived key material to
the terminal. Consequently, each implementation includes four TLS
clients—two for TLS 1.2 and two for TLS 1.3—allowing for both func
tional verification and forensic analysis.

The only exception to this selection is CoreTLS, which was excluded
due to its deprecation (Apple Inc, 2025a). CoreTLS supports only TLS 1.2
and is part of Apple’s deprecated SecureTransport framework (Apple
Inc, 2025b; Curran and Nigmatullin, 2015). Table 1 provides an
over-view of the ground truth for each TLS library.

By establishing a well-defined set of TLS clients on x86-64, we pro
vide a reproducible and structured approach for analyzing key deriva
tion behavior across different implementations. This dataset forms the

Fig. 7. TLS key extraction during live forensics using the TLS Key-Derivation
Fingerprint.

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

6

foundation for further research into automated key derivation identifi
cation and forensic analysis of TLS key material.

8. Evaluation

Our evaluation is centred on Linux x86-64, a decision motivated by
practical and methodological considerations. The majority of TLS li
braries analyzed here are distributed in a form already compiled for x86-
64 by their developers, making it a comprehensive baseline for testing.
To cover Windows-specific deployments, we additionally evaluated
Schannel on Windows x86-64, as it is the only major TLS stack exclusive
to that platform. We evaluate two main aspects of TLSKeyHunter’s
effectiveness. First, we measure its accuracy in locating the key deri
vation function within a given TLS library. Second, we verify whether
the corresponding TLS key material and client random can be extracted
for TLS 1.2 and TLS 1.3.

To validate correctness, we manually confirm that TLS-KeyHunter’s
identified function is indeed the key derivation function, and we hook it
at runtime to extract the derived secrets. To validate the extracted se
crets, we import them in NSS key-log format into Wireshark and decrypt
captured TLS traffic, confirming the correctness of the recovered keys.
This validation strategy, is applied to our ground truth dataset as well as
a diverse set of real-world applications that utilize various TLS
implementations.

8.1. Ground truth

Table 1 shows TLSKeyHunter’s ability to identify the key derivation
function on our ground truth dataset. A check mark (✓) indicates the
successfully identification of the key derivation function by extracting
the Key-Derivation Fingerprint, while a cross (×) denotes that TLSKey
Hunter was unable to identify the key derivation function.

Our approach successfully extracts the key derivation function pat
terns from all evaluated libraries. The only exception is Rustls, for which
the extraction failed due to limited Rust disassembly support in Ghidra.

Table 2 summarizes the key material extraction results. The table
indicates whether derived secrets and the corresponding client randoms
were successfully extracted for the PRF and the HKDF. The extraction of
the secret was successful across all libraries, both for the PRF and the
HKDF. Rustls is the only exception again as we were not able to create
Key-Derivation Fingerprints.

However, the extraction of the client random value exhibited
divergence between protocols: it succeeded universally for TLS 1.2 PRF
interceptions but failed for Botan SSL, LibreSSL, Mbed TLS, Rustls,
Schannel, and s2n-TLS in TLS 1.3 HKDF contexts.

This discrepancy stems from fundamental protocol differences: in

TLS 1.2, the client random is an explicit input to the PRF, whereas TLS
1.3’s HKDF omits it from the key derivation logic. Nevertheless, some
TLS 1.3 implementations propagate the client random via session state
structures, which our approach leverages when passed as function ar
guments. Thus, extraction feasibility does not depend on cryptographic
necessity, but on library-specific implementation patterns, a constraint
our implementation addresses via its tailored hooking for each TLS
library.

In cases where HKDF instrumentation provides derived secrets
without an associated client random, the missing random value can be
gathered from ClientHello messages in the recorded TLS traffic. Each
derived secret is systematically paired with the recovered client random
values to determine valid session key combinations.

We leverage the temporal correlation between client random values
and derived secrets to streamline the pairing process. The sequential
nature of TLS handshakes allows us to restrict candidate pairs to a
sliding temporal window, reducing the practical complexity.

Client vs. Server Context: Since the code path for TLS secret derivation
is identical for client and server roles, TLSKeyHunter treats them
equivalently. To verify this empirically, we extended our ground truth
dataset with a minimal TLS server using OpenSSL, BoringSSL, and
GnuTLS. Applying the client-side fingerprints and hooks without
modification yielded valid secrets in all cases, indicating that the
method generalizes to server deployments.

8.2. Real world applications

In order to validate the approach with more complex programs we
selected a diverse set of real-world applications. These applications span
several widely deployed TLS implementations and provide a broad
range of usage scenarios. The selected applications and their associated
TLS libraries are summarized in Table 3.

These applications were chosen because they are either available
directly as packages on Ubuntu (x86-64) or can be easily built from
source. This selection ensures that TLSKeyHunter is evaluated on a

Table 1
Evaluation of TLSKeyHunter’s key derivation function identification across TLS
libraries using the ground truth dataset.

Library Name Unified PRF PRFFingerprint HKDFFingerprint

Botan SSL Yes ✓ ✓
BoringSSL Yes ✓ ✓
Bouncy Castle Yes ✓ ✓
Secure Transport N/A – –
GnuTLS Yes ✓ ✓
Golang crypto/tls Yes ✓ ✓
JSSE Yes ✓ ✓
LibreSSL Yes ✓ ✓
MatrixSSL No ✓ ✓
Mbed TLS Yes ✓ ✓
NSS No ✓ ✓
OpenSSL Yes ✓ ✓
Rustls No £ £

s2n-TLS Yes ✓ ✓
Schannel SSP Yes ✓ ✓
wolfSSL Yes ✓ ✓

Table 2
TLS Key Extraction results for key derivation components.

Library Name PRF Extraction HKDF Extraction

ClientRandom Secret ClientRandom Secret

Botan SSL ✓ ✓ £ ✓
BoringSSL ✓ ✓ ✓ ✓
Bouncy Castle ✓ ✓ ✓ ✓
GnuTLS ✓ ✓ ✓ ✓
Golang crypto/tls ✓ ✓ ✓ ✓
JSSE ✓ ✓ ✓ ✓
LibreSSL ✓ ✓ £ ✓
MatrixSSL ✓ ✓ ✓ ✓
Mbed TLS ✓ ✓ £ ✓
NSS ✓ ✓ ✓ ✓
OpenSSL ✓ ✓ ✓ ✓
Rustls £ £ £ £

s2n-TLS ✓ ✓ £ ✓
Schannel SSP ✓ ✓ £ ✓
wolfSSL ✓ ✓ ✓ ✓

Table 3
TLS secret extraction success in real-world apps.

Client (Library Name) PRF Extraction HKDF Extraction

Client_Random Secret Client_Random Secret

Chrome (BoringSSL) ✓ ✓ ✓ ✓
Firefox (NSS) ✓ ✓ ✓ ✓
Docker (Go lang crypto/

tls)
✓ ✓ ✓ ✓

curl (GnuTLS) ✓ ✓ ✓ ✓
lighttpd (Mbed TLS) ✓ ✓ £ ✓
Powershell (Schannel) ✓ ✓ £ ✓

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

7

representative mix of TLS implementations in real-world environments.
Detailed version information are provided in our repository.

The evaluation results align with those obtained from the ground
truth evaluation, despite the programs using different versions of the
TLS library. This consistency highlights that TLSKeyHunter operates
independently of implementation-specific details such as memory
layouts.

These results underscore the robustness of our approach. The
generated Key-Derivation Fingerprints are sufficiently distinctive to
identify the corresponding key derivation functions even in complex
software. Moreover, our hooking technique also worked for different
versions without modifications, indicating that the way the relevant
structures are used in the libraries tend to be relatively stable.

Finally, no false positives were observed in any evaluation; all
identified functions were confirmed as key derivation routines. While
false positives are theoretically possible, their absence—even in large
applications like Chrome—suggests the heuristics are sufficiently pre
cise. This precision may partly be rooted in characteristics of the dataset,
which includes minimal test cases and benign real-world applications.
Future work should explore conditions that may lead to false positives,
including the use of deliberately obfuscated samples, and develop
mitigation strategies.

8.3. Cross-platform applicability

To demonstrate the platform-agnostic nature of our approach, we
conducted preliminary evaluations beyond Linux x86-64. Specifically,
we evaluated BoringSSL on Android across multiple architectures
including ARM, ARM64, x86, and x86-64. Additionally, we assessed the
Windows-specific Schannel library on both x86-64 and ARM64 archi
tectures. In all evaluated configurations, TLSKeyHunter successfully
identified the target key derivation functions and extracted the corre
sponding TLS secrets.

These results provide initial evidence for the cross-platform appli
cability of our method. The successful identification of key derivation
functions across different operating systems (Linux, Android, Windows)
and processor architectures (x86, x86-64, ARM, ARM64) suggests that
our approach’s fundamental principles are indeed platform-agnostic. A
comprehensive evaluation across all target platforms remains important
future work to fully validate our technique’s robustness across diverse
environments.

8.4. Identification runtime

To assess TLSKeyHunter’s performance, we measured the time
required to identify key derivation functions in three representative
binaries from our dataset: the smallest (libmbedtls), the median-sized
(libgnutls), and the largest (Chrome). Ghidra’s preprocessing domi
nates the end to end runtime, and its share grows with binary size: it
represents ≈ 47 % of the time for the libmbedtls library, 77 % for libg
nutls, and virtually all the time (> 99 %) for the Chrome image (cf.
Table 4).

In contrast, TLSKeyHunter exhibits only modest sensitivity to input
size. Moreover, key derivation identification is performed once and does
not affect subsequent hooking.

A in-depth performance evaluation is left for future work, which
should quantify runtime overhead—including hook latency, extraction
time, and throughput under load—given the known impact of dynamic
instrumentation frameworks like Frida (cf.sec. 6.3 in Taubmann et al.
(2018)).

8.5. Limitations and future work

A limitation of TLSKeyHunter is its reliance on manual identification
of cryptographic parameters during HKDF or PRF hooking. While our
evaluation showed robustness across TLS implementations, the current

approach requires knowledge of which parameter in a key derivation
function corresponds to the target secret. Automating this identification
should be a priority for future work.

Additionally, TLSKeyHunter currently depends on manual parsing of
library-specific SSL structures to extract the client random. Automating
this process—for example, by developing heuristics to detect and
interpret memory layouts of TLS session objects—would eliminate
implementation specific assumptions and broaden compatibility with
obscure or proprietary libraries. Furthermore, while our evaluation
focused on x86-64 architectures, TLSKeyHunter’s platform-agnostic
design warrants validation on alternative platforms, particularly in en
vironments where memory layout or endianness may differ.

TLSKeyHunter relies on the assumption that standardized label
strings defined in RFC 5246 and RFC 8446 appear in plaintext within the
target binary. If a vendor encrypts or compresses these liter
als—decrypting them only at runtime before HKDF/PRF execution—the
static fingerprinting phase would fail to locate the key derivation
function, rendering the live hook ineffective. While technically feasible,
such heavy-handed obfuscation is uncommon in production-grade TLS
libraries as it adds measurable start-up latency, complicates string
interning, and hampers debugging; we found no instance of it in any
mainstream TLS libraries. On Windows systems, the Schannel TLS
implementation operates within the standardized Local Security Au
thority Subsystem Service (LSASS), further mitigating obfuscation op
portunities. Malware likewise tends to uses standard OS-provided TLS
libraries (e.g., OpenSSL on Linux, Schannel on Windows) to maximize
compatibility, leaving TLS labels unmodified and detectable. However,
sophisticated attackers may adapt by deliberately obfuscating or
customizing TLS implementations, potentially reducing the reliability of
label-based detection. Currently, such adaptations are uncommon due to
complexity and reduced compatibility, but they remain a noteworthy
limitation. Future enhancements to our approach could incorporate
heuristic-based methods to address these potential challenges,
strengthening resilience against evolving obfuscation techniques.

9. Conclusion

In this paper, we have demonstrated that hooking the HKDF is suf
ficient to extract all secret keys necessary to decrypt TLS 1.3 traffic.
Furthermore, we showed that hooking the PRF in TLS 1.2 not only en
ables the extraction of the master secret but also the client random,
which is essential for associating the extracted keys with specific TLS
sessions, regardless of the TLS library used.

We applied our approach to a ground truth dataset comprising major
publicly available TLS libraries, achieving successful key material
extraction for both TLS 1.2 and TLS 1.3 in the context of live forensics.
Additionally, we tested our method on real-world applications, further
demonstrating its practical applicability.

A key contribution of this paper is a two-phase workflow to live TLS
key extraction. The identification phase is fully automated: static anal
ysis derives fingerprints for the PRF (TLS 1.2) and HKDF (TLS 1.3)
without any prior knowledge of the target library. In the subsequent
extraction phase, these fingerprints steer lightweight Frida hooks that
capture the secrets at run time; the only manual input is a small, library-
specific mapping. This largely automated solution not only streamlines
the key extraction process but also helps adaptability to new libraries or
substantial updates to existing ones. By providing the ground truth
dataset and a reproducible methodology, our work offers a scalable and

Table 4
TLSKeyHunter performance.

Target Size Ghidra TLSKeyHunter

libmbedtls 464 KB 10 s 11.35 s
libgnutls 8.7 MB 33 s 10.06 s
Chrome 124.0 254 MB 73 144 s 111.10 s

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

8

flexible framework for TLS key extraction, bridging critical gaps in live
memory forensics.

Acknowledgments

We would like to thank Julian Lengersdorff who provided invaluable
assistance in building the majority of our ground truth dataset. His ef
forts were instrumental in ensuring the breadth and reliability of our test
environment.

References

Alfred, V.A., Monica, S.L., Jeffrey, D.U., 2007. Compilers Principles, Techniques & Tools.
pearson Education.

Allen, F.E., Cocke, J., 1976. A program data flow analysis procedure. Commun. ACM 19,
137.

Apple Inc, 2025a. coreTLS - TLS security. https://support.apple.com/en-ca/guide/securi
ty/sec100a75d12/web. (Accessed 1 February 2025).

Apple Inc, 2025b. Secure transport. https://developer.apple.com/documentation/securit
y/secure-transport. (Accessed 1 February 2025).

Baier, D., Basse, A., Hilgert, J.N., Lambertz, M., 2024. Tls key material identification and
extraction in memory: current state and future challenges. Forensic Sci. Int.: Digit.
Invest. 49, 301766.

Baier, D., Lengersdorff, J., Ufer, M.J., 2020. friTap: real-time key extraction and traffic
decryption for security research. https://github.com/fkie-cad/friTap.

Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley, A., Ray, M., 2015. Transport
layer security (TLS) session hash and extended master secret extension. RFC 7627.
https://www.rfc-editor.org/info/rfc7627.

Bishop, M.E., 2022. HTTP/3. RFC 9114. https://datatracker.ietf.org/doc/html/rfc9114.
Caragea, R., 2016. Telescope-real-time peering into the depths of tls traffic from the

hypervisor. Bitdefender Labs.
Choi, H.k., Lee, H., 2016. Extraction of TLS master secret key in windows. In: 2016

International Conference on Information and Communication Technology
Convergence (ICTC). IEEE.

Curran, T., van Bockhaven, C., 2016. TLS Session Key Extraction from Memory on iOS
Devices. University of Amsterdam.

Curran, T., Nigmatullin, M., 2015. Tls session key extraction from memory on ios
devices. https://rp.os3.nl/2015-2016/p52/presentation.pdf. (Accessed 1 February
2025).

Gigamon, 2023. The importance of TLS/SSL decryption for network security. https://blo
g.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-sec
urity/. (Accessed 15 January 2025).

Google Transparency Report, 2024. Https encryption in transit. https://transparencyrepo
rt.google.com/. (Accessed 11 February 2025).

Hex-Rays, 2004. Flirt: fast library identification and recognition technology. https://d
ocs.hex-rays.com/user-guide/signatures/flirt/ida-f.l.i.r.t.-technology-in-depth.
(Accessed 18 February 2025).

Internet Engineering Task Force, 2021. Deprecating TLS 1.0 and TLS 1.1. Technical
Report. IETF. https://datatracker.ietf.org/doc/rfc8996/.RFC8996.

Krawczyk, H., Eronen, P., 2010. HMAC-based extract-and-expand key derivation
function (HKDF). RFC 5869. https://datatracker.ietf.org/doc/html/rfc5869.

Lindenmeier, C., Hammer, A., Gruber, J., Röckl, J., Freiling, F., 2024. Key extraction-
based lawful access to encrypted data: taxonomy and survey. Forensic Sci. Int.: Digit.
Invest. 50, 301796.

Modbus Organization, 2018. Modbus TCP security, version 21. https://modbus.org/
docs/MB-TCP-Security-v21_2018-07-24.pdf. (Accessed 20 May 2025).

Moriconi, F., Levillain, O., Francillon, A., Troncy, R., 2024. X-ray-tls: transparent
decryption of tls sessions by extracting session keys from memory. In: ACM (Ed.),
ASIACCS 2024, 19th ACM ASIA Conference on Computer and Communications
Security, 1-5 July 2024, Singapore, Singapore, Singapore.

Mozilla Inc., 2023. NSS makefile. https://github.com/mozilla/gecko-dev/blob/80432
ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42
C3-L42C69. (Accessed 11 May 2025).

Noseevich, G., 2022. Decrypting schannel TLS traffic. Part 1. Getting secrets from lsass.
https://b.poc.fun/decrypting-schannel-tls-part-1/#6-obtaining-tls13-keys.
(Accessed 15 January 2025).

OpenVPN, Inc, 2017. openvpn/README.mbedtls at master. https://github.com/Ope
nVPN/openvpn/blob/master/README.mbedtls. (Accessed 20 May 2025).

Pan, J., Zhuang, Y., Sun, B., 2019. Efficient and transparent method for large-scale tls
traffic analysis of browsers and analogous programs. Secur. Commun. Network.
2019, 1–22. https://doi.org/10.1155/2019/8467081.

Papadogiannaki, E., Ioannidis, S., 2021. A survey on encrypted network traffic analysis
applications, techniques, and countermeasures. ACM Comput. Surv. 54, 1–35.

Plohmann, D., Blatt, M., Enders, D., 2023. Mcrit: the minhash-based code relationship &
investigation toolkit. The Journal on Cybercrime and Digital Investigations 8, 7–18.

Rescorla, E., 2000. HTTP over TLS. RFC 2818. https://www.rfc-editor.org/info/rfc2818.
Rescorla, E., 2018. The transport layer security (TLS) protocol version 1.3. RFC 8446. htt

ps://www.rfc-editor.org/info/rfc8446.
Rescorla, E., Dierks, T., 2008a. The transport layer security (TLS) protocol version 1.2.

RFC 5246. https://www.rfc-editor.org/info/rfc5246.
Rescorla, E., Dierks, T., 2008b. The transport layer security (TLS) protocol version 1.2.

RFC 5246. https://datatracker.ietf.org/doc/html/rfc5246#section-8.1.
SSL.com, 2023. SSL/TLS best practices. https://www.ssl.com/guide/ssl-best-practices/.

OnlineguideforSSL/TLSconfigurationandsecuritypractices. (Accessed 15 May 2025).
Stoykova, R., 2023. Encrochat: the hacker with a warrant and fair trials? Forensic Sci.

Int.: Digit. Invest. 46, 301602.
Taubmann, B., Alabduljaleel, O., Reiser, H.P., 2018. DroidKex: fast extraction of

ephemeral TLS keys from the memory of android apps. Digit. Invest. 26, S67–S76.
Thomson, M., Turner, S., Weston, S., 2021. Using TLS to secure QUIC. RFC 9001. https:

//datatracker.ietf.org/doc/html/rfc9001.
Tunius, H., 2023. TLS keylogger. https://codeshare.frida.re/@k0nserv/tls-keylogger/.

(Accessed 11 May 2025).
Valadon, G., 2022. When eBPF meets TLS! presentation slides. https://github.com/qua

rkslab/conf-presentations/blob/master/Confs/CanSecWest-2022/WhenPresentedat
CanSecWest2022.

Warburton, D., Vinberg, S., 2021. The 2021 TLS telemetry report. https://www.f5.com/
labs/articles/threat-intelligence/the-2021-tls-telemetry-report. (Accessed 29 April
2025).

Xia, B., Pang, J., Zhou, X., Shan, Z., Wang, J., Yue, F., 2023. Binary code similarity
analysis based on naming function and common vector space. Sci. Rep. 13, 15676.

Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D., 2017. Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 363–376.

Further reading

TLS key material identification and extraction in memory: Current state and future
challenges.

D. Baier and M. Lambertz Forensic Science International: Digital Investigation 54 (2025) 301975

9

http://refhub.elsevier.com/S2666-2817(25)00114-3/sref1
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref1
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref2
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref2
https://support.apple.com/en-ca/guide/security/sec100a75d12/web
https://support.apple.com/en-ca/guide/security/sec100a75d12/web
https://developer.apple.com/documentation/security/secure-transport
https://developer.apple.com/documentation/security/secure-transport
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref5
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref5
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref5
https://github.com/fkie-cad/friTap
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/rfc9114
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref9
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref9
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref10
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref10
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref10
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref11
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref11
https://rp.os3.nl/2015-2016/p52/presentation.pdf
https://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-security/
https://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-security/
https://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-security/
https://transparencyreport.google.com/
https://transparencyreport.google.com/
https://docs.hex-rays.com/user-guide/signatures/flirt/ida-f.l.i.r.t.-technology-in-depth
https://docs.hex-rays.com/user-guide/signatures/flirt/ida-f.l.i.r.t.-technology-in-depth
https://datatracker.ietf.org/doc/rfc8996/.RFC8996
https://datatracker.ietf.org/doc/html/rfc5869
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref18
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref18
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref18
https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref20
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref20
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref20
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref20
https://github.com/mozilla/gecko-dev/blob/80432ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42C3-L42C69
https://github.com/mozilla/gecko-dev/blob/80432ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42C3-L42C69
https://github.com/mozilla/gecko-dev/blob/80432ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42C3-L42C69
https://b.poc.fun/decrypting-schannel-tls-part-1/#6-obtaining-tls13-keys
https://github.com/OpenVPN/openvpn/blob/master/README.mbedtls
https://github.com/OpenVPN/openvpn/blob/master/README.mbedtls
https://doi.org/10.1155/2019/8467081
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref25
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref25
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref26
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref26
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-8.1
https://www.ssl.com/guide/ssl-best-practices/.OnlineguideforSSL/TLSconfigurationandsecuritypractices
https://www.ssl.com/guide/ssl-best-practices/.OnlineguideforSSL/TLSconfigurationandsecuritypractices
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref32
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref32
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref33
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref33
https://datatracker.ietf.org/doc/html/rfc9001
https://datatracker.ietf.org/doc/html/rfc9001
https://codeshare.frida.re/@k0nserv/tls-keylogger/
https://github.com/quarkslab/conf-presentations/blob/master/Confs/CanSecWest-2022/WhenPresentedatCanSecWest2022
https://github.com/quarkslab/conf-presentations/blob/master/Confs/CanSecWest-2022/WhenPresentedatCanSecWest2022
https://github.com/quarkslab/conf-presentations/blob/master/Confs/CanSecWest-2022/WhenPresentedatCanSecWest2022
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref38
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref38
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref39
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref39
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref39
http://refhub.elsevier.com/S2666-2817(25)00114-3/sref39

	All your TLS keys are belong to Us: A novel approach to live memory forensic key extraction
	1 Introduction
	2 TLS fundamentals
	2.1 Traffic decryption keys
	2.2 Key schedule
	2.2.1 TLS 1.2 key schedule
	2.2.2 TLS 1.3 key schedule

	3 Related work
	4 Key derivation identification
	5 TLSKeyHunter
	5.1 Architecture
	5.2 Key derivation identification
	5.3 Key-Derivation Fingerprint

	6 TLS key extraction
	7 Ground truth dataset
	8 Evaluation
	8.1 Ground truth
	8.2 Real world applications
	8.3 Cross-platform applicability
	8.4 Identification runtime
	8.5 Limitations and future work

	9 Conclusion
	Acknowledgments
	References
	Further reading

