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A B S T R A C T

Mobile applications are subject to frequent updates, which poses a challenge for validating digital forensic tools. 
This paper presents an approach to automate the generation of reference data on an ongoing basis, and how this 
can be integrated into the overall validation process of a digital forensic analysis platform. Specifically, it de
scribes the architecture of the mobile data synthesis framework Puma, shares its capabilities via an open-source 
project, and shows how it can be used in a tool testing workflow triggered by application updates. The value of 
this approach is demonstrated with three example use cases, documenting the use of the approach over six 
months and reporting insights and experiences gained from this integration. Finally, this work highlights 
additional contributions the proposed approach and tooling could make to the digital forensics community.

1. Introduction

The field of digital forensics is still facing many of the problems 
identified by Garfinkel (2010), such as size, complexity, and number of 
devices. Automation can help in handling these challenges. However, as 
highlighted in Casey (2002), “when evaluating evidence, its reliability 
and accuracy are of grave importance both in the investigative and 
probative stages of a case,” and more recently, “the courts have the 
expectation that the methods to produce the data that an expert bases 
their opinion on are valid” (UK Forensic Science Regulator, 2020). As 
automation increases, so does the opportunity to increase uncertainty. 
Early work by Carrier (2003a) introduces how error can result from 
translating data through abstraction layers1 used to facilitate presenta
tion of data in a form that allows analysis. More recent work presents a 
more complex and specific set of automated processes within modern 
monolithic forensic tools and documents errors that occur at each stage 
(Hargreaves et al., 2024b).

Recently, the SOLVE-IT knowledge base (Hargreaves et al., 2025) 
began to index weaknesses and mitigations in specific digital forensic 
techniques, and one of the highlighted mitigations, which is used for 

many of the weaknesses, is tool testing. Tool testing in digital forensics 
has been discussed since 2000 (Guttman et al., 2011) and a more 
extensive discussion of existing work can be found in Section 2. How
ever, while there is some existing work, often discussing a need for 
testing, publication of tangible advances in digital forensic tool testing is 
less common. This is despite the significant challenges of tool testing in 
an area where developed tools must process complex, diverse, and even 
potentially adversarial data.

The dynamic nature of smartphone applications introduces further 
challenges. According to Statista, as of April 2025, 36 percent of the top 
1000 Android applications in Google’s PlayStore were updated at least 
weekly, with 73 percent being updated at least monthly (Statista, 2025). 
In light of these frequent changes, it becomes crucial to regularly vali
date forensic tools’ ability to correctly extract traces resulting from 
application use.

This paper aims to advance this area, and to encourage further work 
developing techniques to ensure quality and correctness of results from 
automation in digital forensic tools, which will face new challenges with 
the introduction of AI capabilities into the workflow (Scanlon et al., 
2023).
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This paper is applicable to developers of digital forensic tools, but 
also to forensic labs that require their own internal testing, or re
searchers interested in tool errors. The paper makes the following 
contributions: 

• An open-source tool, Puma,2 designed to automate user actions on 
Android devices, which unlike existing user interface (UI) automa
tion frameworks allows concise and readable code to be written to 
perform a variety of tasks within supported applications. This in
cludes sending messages, taking pictures, and location-dependent 
activities. This reduces the time and effort required to generate 
comprehensive and representative reference data.

• The overall validation workflow used to ensure correctness of results 
from a complex digital forensic tool, with regard to application 
updates.

• Demonstration of the use of this workflow employed in practice for 
testing Hansken, a Digital Forensics as a Service (DFaaS) platform 
presented in prior work by van Baar et al. (2014) and van Beek et al. 
(2015, 2020). Our demonstration highlights insights on changes in 
application artifacts within a time frame of six months.

• A set of reference data capturing different versions of application 
data that can be used to test other forensic tool implementations, as 
well as the corresponding scripts used to generate the data.

• Additions to the SOLVE-IT knowledge base, representing the tech
niques developed in this work and the weaknesses they mitigate.3

Both the code for Puma and the dataset are publicly available.4,5 The 
remainder of this paper is structured as follows: Section 2 provides 
background and related work. Section 3 clarifies the scope of the paper, 
and Section 4 introduces the architecture of the developed data syn
thesis framework. The value of the approach is demonstrated in Section 
5, with examples highlighting three use cases of the automation 
framework. Section 6 provides a discussion, including considerations on 
the generalizability of the proposed approach for forensic tool testing. 
Conclusions are provided in Section 7.

2. Background and related work

This section provides background and related work, specifically 
covering automation in digital forensic tools, tool testing, reference 
data, and automated dataset generation.

2.1. Automation in digital forensic tools

Michelet et al. (2023) defines automation as “software or hardware 
that completes a task more efficiently, reliably, or transparently by 
reducing or removing the need for human engagement”. Automation in 
digital forensic tools has been discussed as early as 2003, with tools 
needing to translate data through one or more abstraction layers so it 
can be understood (Carrier, 2003a) and to solve the ‘complexity prob
lem’. It was also highlighted that each abstraction layer does not only 
have an output, but also a margin of error. There have also been other 
early explicit warnings about the dangers of automation in digital fo
rensics: “Another common mistake made by inexperienced individuals is 
over reliance on user-friendly or automated forensic software” (Casey, 
2006). More recently Hargreaves et al. (2024b) demonstrated specific 
problems in digital forensic tool processes including error propagation.

Therefore, automation is necessary to handle the complexity prob
lem, has become increasingly important in digital forensics, and, as 
described in the introduction, expectations have increased that the 

results of automation are correct (UK Forensic Science Regulator, 2020). 
A significant contributor to meeting that expectation is testing digital 
forensic tools.

2.2. Tool testing

Horsman (2019) describes a survey about tool testing and the results 
suggested a reliance on vendor tool testing (question 3). This was echoed 
in the DFPulse Practitioner Survey 2024; Hargreaves et al. (2024a)
indicating significant interest in, and reliance on tool testing to validate 
tools.

However, this remains a challenging area: “developing extensive and 
exhaustive tests for digital investigation tools is a lengthy and complex 
process” (Guo et al., 2009). Guttman et al. (2011) describes that the 
NIST Computer Forensics Tool Testing (CFTT) program has been active 
since 2000 and documents insights of the first ten years of this program. 
It also highlights that since 2008, test reports for mobile device forensic 
tools have also been published alongside write blocking and disk im
aging tools. The CFTT testing methodology is described as “functionality 
driven” (NIST, 2019) and the Scientific Working Group on Digital Evi
dence (2018) proposes minimal testing guidelines for different cate
gories of digital forensic tools, including the type of test that needs to be 
performed, the recommended testing frequency, and the appropriate 
entity for carrying out the test (e.g., vendor, lab, third party etc.). Others 
have also suggested that anti-forensic techniques must also be addressed 
in tool testing requirements (Wundram et al., 2013).

Baggili et al. (2007) also advocated for continuous tool testing, 
especially in the area of mobile forensic tools, given frequent updates. 
Lyle et al. (2022) also stated that while general validation of a specific 
tool version may be conducted centrally and shared, testing needs to be 
repeated when technologies change.

Marshall and Paige (2018) identified a lack of clearly formulated 
requirements in digital forensic methods and proposed a publicly 
available set of requirements for digital forensic methods and tools to 
improve transparency in tool testing. Horsman (2018) also discussed the 
need for rigorous and transparent validation techniques for digital 
forensic tools due to the interaction of tool errors and limitations, with 
incorrect use by users. Subsequently, Marshall (2021) elaborated on 
approaches that enable tool vendors to establish transparency and trust 
in their tool’s compliance with specified requirements without revealing 
tools’ inner workings. The introduction of generative AI into digital 
forensics also raises further concerns over transparency and trust (Webb 
et al., 2024), and the need for systematic validation gains further sig
nificance (Wickramasekara et al., 2025).

Brunty (2023) outlined the steps needed for internal tool testing as: 
defining the testing scope, obtaining a suitable test dataset, performing 
tests in a controlled environment, and assessing the test results based on 
expected results. Dataset acquisition is described as potentially the most 
challenging part of the validation process as it needs “a variety of 
different use cases [such as] testing and evaluation of a forensic tool’s 
capabilities such as extracting a specific artifact”.

2.3. Reference data

A crucial requirement for effective forensic tool testing is the 
development of reference data, which “consists of test scenarios (cases) 
against which a EE (Electronic Evidence) tool or its individual function 
is validated.” (Guo et al., 2009).

Early work on reference data includes the Digital Forensics Tool 
Testing Images by Carrier (2003b), a set of small, synthetic test images 
created between 2003 and 2010, targeting areas such as partitioning, 
file system, carving, and memory analysis. Others have created a 
SQLite3 dataset with 77 databases comprising different corner cases that 2 Puma stands for Programmable Utility for Mobile Automation.

3 https://github.com/SOLVE-IT-DF/solve-it/pull/106.
4 https://github.com/NetherlandsForensicInstitute/puma.
5 https://doi.org/10.5281/zenodo.16579435.
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can be encountered in such databases (Nemetz et al., 2018). Prominent 
collections of digital forensic datasets are Digital Corpora6 and Computer 
Forensic Reference Data Sets (CFReDS).7

However, since Garfinkel et al. (2009) called for standardized 
corpora, the need for reference datasets remains an ongoing issue for 
digital forensic tool testing, as well as digital forensic research and ed
ucation in general. This has been discussed in multiple works (Yannikos 
et al., 2014; Grajeda et al., 2017; Horsman and Lyle, 2021; Göbel et al., 
2025), with Hargreaves et al. (2024b) emphasizing the importance of 
modular, error-focused datasets, and Gonçalves et al. (2022) assessing 
the availability of mobile device datasets “as one of the main fields of 
missing datasets”.

Importantly, Spichiger and Adelstein (2025) urged the preservation 
of reference data for systems that are constantly changing since “soft
ware updates may change basically any aspect of a system” and “these 
changes could lead to a different interpretation of found traces and 
therefore negatively impact their potential evidentiary value”. They also 
note that retrospective collection of reference data might be challenging 
or impossible, so preservation must be timely.

2.4. Automated dataset generation

While real-world data can be valuable for forensic tool testing, it has 
limitations, such as privacy and legal concerns, restricted availability, or 
missing ground truth (Garfinkel et al., 2009). Synthetic data is an 
alternative that can be generated on demand and tailored to specific 
scenarios (Du et al., 2021). However, the manual creation of synthetic 
data is time-consuming and error-prone. There has been some work 
specifically targeting the automated creation of synthetic forensic data 
for testing forensic tools. Yannikos et al. (2011) and Yannikos and 
Winter (2013) proposed and later implemented a model-based method 
for the creation of synthetic test disks that involves the simulation of 
user activity in a scenario. Visti et al. (2015) introduced ForGe, a tool 
that automates the generation of test disk images, comprising the cre
ation of NTFS file systems and data-hiding techniques.

Moreover, different approaches and corresponding tools for the 
automated synthesis of forensic data have been presented for teaching 
purposes (Moch and Freiling, 2009; Scanlon et al., 2017; Du et al., 2021; 
Göbel et al., 2022; Schmidt et al., 2023; Wolf et al., 2024; Voigt et al., 
2024). Apart from Scanlon et al. (2017), who proposed creating baseline 
disk images and injecting artifacts into them, they all encompass auto
mating control of a virtual machine, including the simulation of user 
activity, to reduce the manual effort required for the generation of 
synthetic data while increasing their resemblance to real-world disks.

While these approaches have focused on teaching scenarios, others 
have demonstrated alternative uses of such approaches for tool testing. 
Notably, Rzepka et al. (2025) utilized ForTrace++ (Wolf et al., 2024) to 
automate the generation of an extensive dataset of 1600 main memory 
dumps to assess inconsistencies in main memory dumps acquired with 
four different tools.

There is also limited work on synthesizing mobile device datasets. 
Ceballos Delgado et al. (2022) introduced FADE, a tool that enables the 
injection of artifacts, namely text messages, contacts, calls, and files, 
into rooted Android emulators. Michel et al. (2022) presented the 
proof-of-concept tool, AutoPoD-Mobile, which works on a restricted set 
of five specific physical Android devices of different vendors and 
different Android versions as well as one iOS device, for which they 
implemented only limited functionality. With this, they proposed an 
approach for creating a diverse range of artifacts (e.g., contacts, calls, 
WhatsApp and email communication, pictures) on mobile devices by 
either injecting them or by approximating user activity on the devices 
using ADB, public APIs of applications, or web clients (e.g., WhatsApp 

communication via WhatsApp Web). They also utilized the Appium 
Settings application on target devices to enable static location spoofing. 
They demonstrated their approach with a multi-device setup, allowing 
them to synthesize mobile data for multi-person scenarios.

Demmel et al. (2024) introduced an approach that simulates user 
activity on Android devices via the device’s UI. They provided a 
proof-of-concept implementation that supports the simulation of ges
tures, clicks on UI elements, and external events. These included 
incoming calls or text messages, as well as GPS coordinate changes. To 
simulate the external events, they established a telnet connection to send 
commands to the emulator. However, in their current implementation, 
only rooted Android emulators and single-device settings are supported. 
The simulation of multiple devices and communication between them is 
not possible. Also, the use of a rooted device prevented them from native 
access to Google’s Play Store.

2.5. Summary

Increasing use of automation in digital forensic tools requires thor
ough tool testing programs that can keep up with rapid changes in 
technology, particularly in the ever-evolving mobile space. There is a 
strong case to use automation to assist with this task. Some work exists 
in this area, e.g., Demmel et al. (2024), but there is a significant need for 
a practical solution that integrates well with tool development and 
testing workflows, that is responsive to target application updates and 
beyond the proof-of-concept stage. The following sections describe the 
development of an automation framework that is focused on generating 
data to assist with this tool testing.

3. Scope

This section outlines the scope of this paper, covering the aim, the 
focus on automated test data generation, and the three existing use cases 
where this automation can be integrated into a broader tool testing ar
chitecture. Referring to the tool testing procedure described in Brunty 
(2023), we focus on the two initial steps: defining the test scope and 
obtaining the dataset, with emphasis on the latter, which the authors 
described as the most demanding part of the process.

3.1. Aim and motivation

Due to the rapid pace of updates to mobile applications, a new 
approach is needed to perform complete validation of forensic tools, 
preferably for every application version. To ensure full coverage, this 
process also needs to happen within a certain time span of the version’s 
release, since server-dependent applications might not allow older ver
sions to be used. Once an application version is no longer supported by 
the server, it will be impossible to create new reference data of that 
version (Spichiger and Adelstein, 2025). Due to this combination of 
factors and the resulting effort and challenges of manually creating 
reference data and validation of forensic tools, we propose an automated 
solution. Such a system needs to perform several tasks: 

• Generate reference data for new application versions
• Process this reference data using the forensic tools under test
• Verify the output of the forensic tools against expected results

For the first step, which is the focus of this paper, the automatically 
generated reference data needs to be representative and comprehensive, 
discussed in the following subsections.

3.1.1. Representative reference data
Voigt et al. (2025) formally defined a restricted form of realism in 

synthetic forensic data as being indistinguishable from real-world data 
with respect to a restricted set of allowed features. This mirrors intuitive 
definitions from previous literature. In the context of our tool testing 

6 https://digitalcorpora.org/.
7 https://cfreds.nist.gov.
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approach, realistic reference data would, therefore, not entail the syn
thetic data being indistinguishable in every aspect from data generated 
by users in real-world settings, but only in aspects relevant to our aim. 
To avoid confusion with more broadly defined concepts of realism in 
synthetic data, we refer to the quality of the reference data being 
indistinguishable from real-world data in selected aspects as represen
tative data.

It is critical that the data is created by interacting with the applica
tion in question, simulating user activity, rather than using alternative 
methods such as injecting entries to a database or appending log files. 
While these methods might be suitable for other use cases, they 
contradict the goal of our approach to identify changes in application 
artifacts, as injection techniques necessitate knowledge about the stor
age data structure in the first place.

In contrast, to validate the output of forensic tools, it is not necessary 
for the content of the reference data to follow a coherent narrative. 
Additionally, some traces of the synthetic nature of the data are not 
relevant to the approach we propose, e.g., traces of the automation 
framework on the target device in general or a flag8 hinting that a 
location trace stems from spoofing, as found by Demmel et al. (2024).

3.1.2. Comprehensive reference data
Comprehensive reference data in this context relates to the supported 

features of the forensic tool under test. For complete validation of its 
extraction features for a specific application, the reference data used for 
validation should contain artifacts for each feature supported by the 
forensic tool. For example, if a forensic tool supports recovering mes
sages and pictures from a chat application, but not videos, the reference 
data is comprehensive when it contains only messages and pictures.

Notably, some features may have a multiplicative effect on the 
required volume of reference data. For example, a forensic tool sup
porting chat messages and pictures requires reference data with at least 
four artifacts: a message and a picture, both sent as well as received. 
When the forensic tool adds support for group chats, those four artifacts 
are needed again in the context of a group chat, doubling the required 
artifacts to eight. With the rapid growth of features in mobile applica
tions, the number of artifacts needed in comprehensive reference data 
can create substantial scalability challenges, reinforcing the need for an 
automated approach.

In addition to the generated data itself, the provision of ground truth 
is also advised (Breitinger and Jotterand, 2023). Besides conventional 
ground truth logs in machine-readable format, this can also include 
making the generated test data self-describing, e.g., a message might be 
“This is a WhatsApp message from Alice to Bob, sent on 2025-05-20 at 
13:00”. This makes analysis and manual verification of tool results 
easier.

3.2. Applying automated reference data creation

To address the need for automated creation of reference data, we 
have developed Puma, a tool that enables and simplifies the automated 
execution of actions on mobile devices, and the architecture is discussed 
in Section 4. Puma forms a central part of the Hansken validation 
workflow, see Fig. 1. This shows that the complete process can be 
automated: applying application updates, creating reference data, 
extracting the data, processing with the forensic tool under test, and 
verifying its outputs.

Within this workflow, there are three use cases in which Puma can be 
used to create reference data for applications, including handling 
application updates. The three use cases are described in the following 
subsections and demonstrated in the context of tool testing for Hansken 
in Section 5.

3.2.1. Initial data population
The first use case is the initial creation of reference data for a mobile 

application for which support will be added to the forensic tool in 
question. This reference data can then be used to investigate the files in 
which the application stores data, helping the initial forensic tool 
development. After this development, the reference data will be used in 
a Continuous Integration and Continuous Deployment (CI/CD) pipeline 
to ensure that future code changes do not introduce regression in 
support.

Creating such data requires planning of the actions to be performed 
within the application, as well as precise execution. This often involves 
multiple devices, since interaction between users is a key characteristic 
of many applications, e.g., messaging applications. As discussed in 
Section 3.1.2, the number of required actions depends on the range of 
features supported by the application, and can increase rapidly due to 
multiplicative effects. Furthermore, the execution of actions must be 
logged to establish ground truth, which should capture the time at which 
actions are executed and any deviation from the planned actions.

The automation framework presented in this paper aims to address 
these problems by allowing researchers and developers to populate 
applications with data through script execution. We have used Puma to 
generate reference data for multiple applications and present the results 
in Section 5.1.

3.2.2. Post-update data population: application launch only
The second use case involves validating a forensic tool after an 

application update, assuming that the application is already supported. 
In this scenario, the application has been populated with data on the 
target device prior to the update. The update may alter the way the 
application stores data, e.g., by updating the database schema, and also 
migrate existing contents. This may therefore prevent a forensic tool 
from correctly parsing the data. On Android, the popular messaging 
application WhatsApp behaves in this way: when an update introduces a 
new database schema, the existing database on the device is migrated 
without requiring user interaction.

The validation step in this use case is straightforward: since the 
application was populated prior to the update and no further actions 
were performed within the application, the output of the forensic tool 
should remain unchanged after applying the update. We have applied 
this approach to validate our tools against new versions of the WhatsApp 
messaging application, which is demonstrated in Section 5.2.

3.2.3. Post-update data population: extended user actions required
The third use case extends the second by incorporating UI actions 

executed by Puma. While the process described in the second use case is 
effective for applications that automatically migrate stored data to a new 
format upon updating, some applications behave differently. In these 
cases, data is not migrated during an update. Instead, the new format is 
used only for data created after the update.

One such application is Telegram, which stores user data (e.g., 
messages and contacts) as Binary Large Objects (BLOBs) in a database 
(Jaeckel et al., 2025). The structure of these BLOBs can change between 
versions, but only new entries will use the new structure while existing 
data remains unchanged. Consequently, actions must be performed 
within the application post-update to generate reference data reflecting 
the latest version. This is illustrated in Section 5.3.

The validation approach here is mostly consistent with that in the 
second use case, but in this case, as new actions are carried out which 
supplement the existing data, the forensic tool’s output is expected to 
change. Therefore, the overall validation approach must be aware of the 
new executed actions and verify whether the forensic tool correctly 
detected them, while still correctly processing the old data.

4. Puma – a framework for automated synthesis of mobile data

In this section, we describe the requirements, architecture, and 
8 If this flag is not covered by the forensic tool’s supported features, see 

Section 3.1.2.
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currently implemented features of our open-source mobile data syn
thesis framework, Puma.

4.1. Requirements

The development of Puma was driven by a set of requirements. First, 
the tool must be capable of automating actions on Android devices, both 
emulated and physical, and must be operable from host systems running 
macOS, Windows or Linux. Second, the tool must support the generation 
of comprehensive test data, as explained in Section 3.1.2. This means 
that the tool should focus on supporting a wide range of application 
features within selected apps, rather than the creation of complex 
narrative-driven scenarios that are coherent across a broad range of 
diverse applications. Third, the tool must ensure that all application data 
is created by the application itself, and must not rely on alternative 
methods such as artifact injection. Finally, the tool should enable its 
users to easily specify what actions should be performed without 
requiring them to detail exactly how those actions are carried out on the 

target device.

4.2. System design and capabilities

Puma focuses on combining atomic UI actions into high-level activ
ities such as sending a message or creating a group chat. This reduces the 
complexity involved in writing automation scripts and eliminates the 
need for detailed knowledge about the target device’s UI. The target 
device can be either a mobile device emulator running on the host 
computer or a physical mobile device connected to it via USB, with ADB 
access enabled. Puma itself does not require root access. However, root 
access may be required to facilitate the subsequent acquisition of 
forensic artifacts, as it enables access to all system files.

The framework also supports ground truth logging during simula
tion. When an action is performed, it can record the time it was initiated. 
Script authors may include additional logging, e.g., by using Puma to 
create screenshots.

Furthermore, Puma provides general-purpose and application-specific 
functionality. General features include application launch and termi
nation, capturing screenshots and screen recordings, scrolling, and 
finding text in non-text elements through Optical Character Recognition 
(OCR). Moreover, Puma provides dynamic location spoofing capabil
ities, enabling the simulation of movement along a route between two 
predefined locations, thereby improving upon previous work which al
lows for spoofing static locations only (Michel et al., 2022; Demmel 
et al., 2024). The design of Puma emphasizes modularity and extensi
bility. Each supported application is represented by a dedicated class 
encapsulating the methods required to perform application-specific ac
tions, while also providing access to general functionality.

At the time of writing, Puma supports eight applications, with sup
ported features varying per application (see Table 1). The main objective 
is the automated generation of reference data for applications frequently 
encountered in real-world investigations (e.g., WhatsApp, Telegram, 
and Snapchat), and therefore necessitating support in forensic tools. 

Fig. 1. Tool validation workflow triggered by application updates. ①, ② and ③ correspond to the use cases of Puma within the workflow discussed in this paper.

Fig. 2. BLOBs of a regular message with similar content in Telegram v11.5.5 
(above) and v11.6.1 (below). The first four bytes (orange) are a header used by 
Hansken to determine how to parse the BLOB. When this header changed, 
Hansken needed to be updated. The message text is highlighted in blue.

Table 1 
Applications and their features currently supported by Puma.

Application Supported features

Google Camera Taking pictures
Google Chrome Visiting URLs, Google search via omnibar, managing and bookmarking tabs
Google Maps Searching location, navigating (including location spoofing)
Open Camera Taking pictures and videos
Snapchat Sending messages and snaps
Teleguard Sending messages, pictures, sending and accepting invites
Telegram Sending messages and pictures, making calls
WhatsApp Sending messages, pictures and videos, location sharing, making calls, creating and managing groups
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Some additional applications are supported for demonstration purposes, 
for instance, the messaging application TeleGuard can be used to easily 
demonstrate Puma’s functionality, as it does not mandate registration 
with a phone number. Similarly, Google Maps was supported to visually 
demonstrate the location spoofing feature, but it is also a mainstream 
application worth monitoring. Although this paper focuses on single- 
application scenarios, Puma supports concurrent control of multiple 
devices and applications, enabling more complex simulation scenarios.

4.3. Implementation overview

This section provides an overview of the most relevant parts of the 
Puma implementation. Further details on the implementation as well as 
extensive documentation can be found in the Puma repository.9

4.3.1. An Appium-based implementation
Puma is implemented in Python and is designed as a high-level 

abstraction layer built on top of Appium, an open-source automation 
framework for UI testing that supports various types of platforms, such 
as mobile, web browser, and desktop (OpenJS Foundation, 2025a). 
Appium is widely used by developers to test the UIs of their mobile 
applications for different platforms (e.g., iOS/Android), using the same 
API. Instead of its typical use in application testing, Puma uses Appium 
to generate reference data by automatically simulating user activity on a 
target device.

To understand Puma’s implementation and the implications for its 
forensic data synthesis approach, it is crucial to understand how Appium 
works (OpenJS Foundation, 2025b). Appium itself operates on a 
client-server architecture. The Appium server runs on a host workstation 
and communicates with a connected target device over ADB to install 
Appium’s helper application on it. Puma uses the Appium Python library 
to send commands to the Appium Server, which then executes them on 
the device. Appium automates application actions through its helper 
application hooking into the accessibility framework of the target device 
to interact with the UI elements, simulating user actions such as tapping 
buttons, entering text, and swiping.

While Appium offers a straightforward approach for defining atomic 
actions (i.e., locating UI elements, simulating clicks and swipes, or 
entering text), to represent higher–level activities that comprise multi
ple actions, several lines of code are required. This code can become 
verbose, reducing readability. Puma’s abstraction from these atomic 
actions reduces the complexity involved in writing higher–level activ
ities needed for automation scripts, making Puma code notably more 
concise and maintainable (see Appendix A).

4.3.2. Adding app-specific actions
As mentioned in Section 4.2, each supported application is imple

mented as a separate class with methods to perform app-specific actions. 
These app-specific classes extend the AndroidAppiumActions() 
base class, which provides Puma’s general-purpose methods through 
inheritance. Further details of implementing an app-specific actions in 
Puma are provided in the project repository documentation and below is 
a short description. Note that this detailed understanding of Appium is 
needed for development of new app-specific support, but not for general 
use of Puma.

In brief, development involves first identifying the corresponding UI 
element before it can be interacted with. The former can be done by 
calling Appium’s find_element() method, which searches for the 
element in an XML representation of the UI. This method allows 
selecting the element by different attributes, such as class name and 
accessibility ID.

Apart from single attributes, elements can also be selected using the 
XML Path Language (XPath), a query language allowing to query 

elements by their attributes in an XML document (World Wide Web 
Consortium (W3C), 2025). This enables more complex queries, such as 
selecting elements based on multiple attributes, their parent, or sibling 
elements. Subsequently, the element can be interacted with in different 
ways depending on the type of element. For instance, buttons are typi
cally engaged through the execution of a click action, denoted by the 
method click(); text fields are populated with text input using the 
send_keys() method.

4.3.3. Location spoofing
A specific feature, ‘dynamic location spoofing’ is implemented in the 

RouteSimulator() class. Puma offers this feature to facilitate the 
simulation of movement along a requested route at a specified speed, as 
Appium’s location spoofing is restricted to static locations. The speed at 
which the route is traversed can be specified at any time during the 
movement simulation to mimic more realistic movement patterns.

5. Demonstration

In the following section, we report on experiences and observations 
of using Puma from November 2024 to May 2025, as part of the tool 
testing process for Hansken. Puma enables us to validate that Hansken 
supports the latest version of an application the day it becomes publicly 
available. By using Puma actions on each new version, we can assess 
whether Hansken’s parsing of the application data is still correct, or if 
updates are needed. It allows the exact versions of applications sup
ported to be specified.

To illustrate the use of Puma, we revisit the three use cases intro
duced in Section 3.2 and discuss both outcomes and insights gained from 
its real-world integration.

5.1. Initial data population

The first use case involves extending forensic tool support to extract 
traces of a new application. This process starts with generating reference 
data specific to the target application, which serves as a basis for vali
dation. Incorporating a wide range of user actions during data genera
tion is desirable to capture the diverse traces that these actions produce.

An example reference dataset created by Puma for WhatsApp can be 
found in the repository, including the script used to create it. Listing 1
displays an excerpt of the script used for data synthesis. It includes 
messages and pictures being sent between two users, with self-describing 
message contents.

We observed that leveraging Puma for the purpose of initial data 
population reduces errors associated with manual data generation and 
enhances the reproducibility of reference data generation. This is 
particularly valuable when it becomes necessary to expand the dataset 
to cover additional application behaviors. For example, if an additional 
feature becomes available in WhatsApp to send stickers, the code out
lined in Listing 2 can be integrated into our existing scenario. Lastly, it 

Listing 1. Excerpt of a Puma script used for initial data population 
of Whatsapp.9 https://github.com/NetherlandsForensicInstitute/puma.
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significantly reduces the time required for data generation as the process 
is automated and the scenarios can be reused.

5.2. Post-update data population: application launch only

The second use case concerns the handling of updates to applications 
that migrate their data to new formats following an update. Again using 
WhatsApp as a case study, we observed it to be updated frequently. In 
the aforementioned time frame of six months, there have been version 
releases on 78 days (an average of three releases per week). This was 
checked by automatically downloading the Android Application Pack
age (APK) from the website of WhatsApp10 daily, and recovering the 
version from it using the Android Asset Packaging Tool for Python3 
(HuMoran, 2022).

In this scenario, the application was first updated on the test device 
to the most recent version using the ADB command adb install 
whatsapp.apk. Subsequently, the application was launched and then 
closed, after which the database was extracted from the device using 
adb pull database.db. This enabled the examination of whether the 
underlying database schema had changed between versions.

In our tool validation workflow for Hansken, each step mentioned in 
this scenario was performed automatically, requiring no manual inter
vention. The interaction with the target application was scripted using 
Puma, with only a single statement needed to simulate a user tapping the 
application icon on the home screen, thereby launching WhatsApp on 
the target device (see Listing 3).

Using the tool validation workflow, we have observed a high degree 
of stability for the WhatsApp database schema. During a monitoring 
period exceeding three years, from March 2022 to May 2025, the 
schema had undergone only two notable changes that broke the support 
of Hansken (see Table 2).

The schema update observed in version 2.22.14.70 was notable, as it 
was applied at multiple different application versions on other devices 
we use. This observation suggests that the change was not solely trig
gered by the installed update, but was also pushed from the WhatsApp 
servers. Further investigation was beyond the scope of our current study.

We also noticed that WhatsApp occasionally retracted previously 
released versions of its application. In some cases, the revoked version 
was replaced by an earlier one that had been available on the official 
website. In other instances, it was substituted with a release that had a 
lower build version number but a higher revision version number. These 
insights are difficult to obtain without the automated framework.

5.3. Post-update data population: extended user actions required

The third use case addresses application updates for Telegram, which 
we observed to be less frequent than those for WhatsApp. Still, the up
dates occur regularly, with 22 updates recorded in the time frame 
mentioned earlier (an average of approximately one update per week). 
As with WhatsApp, this was determined by downloading the APK daily 
from the Telegram website11 and extracting version information.

Despite the lower update frequency, each Telegram update was 
observed to pose a greater risk of disrupting support in Hansken: there 
were two breaking changes in six months. The broken support was 
primarily due to the structural differences in how Telegram stores data 
in its internal databases compared to WhatsApp. Specifically, when a 
new version of Telegram is released, the database schema remains un
changed and existing data is maintained in its original format. However, 
new user data (e.g., a new message) is stored using a new BLOB layout, 
with existing messages using the old format. This somewhat mirrors 
changes in Messages from iOS 10 to iOS 11 retaining both old and new 
timestamp formats within a single database (Barnhart, 2017). Scenarios 
like these can be handled with the use of Puma to expand the data 
post-update.

In this use case, the application was first updated to the latest 
version. Subsequently, a series of Puma actions were executed to 
simulate user interactions, such as sending messages or images and 
initiating voice calls to populate the application’s database with data of 
usage under the updated version. Once these interactions were com
plete, the database was extracted from the device and analyzed to assess 
whether the forensic tool continues to correctly parse the updated 
Telegram data structures.

Fig. 2 illustrates a change between Telegram version 11.5.5 to 
11.6.1 (released on 2025-01-02), which prevented parsing by Hansken 
due to the updated header at the start (the first 4 bytes). This was 
detected using Puma within 24 h of the update had been released.

5.4. General observations

In summary, the adoption of Puma has enabled a shift from manual 
execution of validation scenarios on mobile devices to fully automated, 
script-driven workflows. Previously, scenarios were documented as 
textual instructions requiring manual execution. These have now been 
replaced with clear, maintainable Python scripts, allowing efficient and 
reproducible generation of reference datasets.

We have manually performed the process of generating reference 
data in this context for years and found it to be both error-prone and 
labor-intensive. Due to the need for multiple devices, thorough docu
mentation, and growing complexity of application features, it often 
required several hours of work by at least two people. With Puma, this 
process can now be carried out in less than an hour by a single person, 
with a reduced risk of error.

This transition has not only streamlined the creation of reference 
data, but has also facilitated daily automated testing of Hansken, 
particularly in relation to detecting application updates. It is difficult to 
quantitatively assess the impact of this automation on the tool’s reli
ability, due to the lack of systematic failure tracking prior to imple
mentation. However, it is evident that this approach has improved our 
ability to detect application updates breaking support of our forensic 
tool. It has also improved our ability to respond to them in a timely and 
consistent manner and provide clear indications of which versions of an 
application are tested and supported.

Listing 2. Expansion of Listing 1 with additional functionality for WhatsApp.

Listing 3. Initialization of the WhatsApp application.

Table 2 
Example changes in Whatsapp detected by the tool validation workflow.

Date/version Details

2022-03-22, version 
2.22.7.73

The default value for timestamps changed from null to − 1. 
This caused Hansken to interpret these as timestamps from 
the date 1969-12-31.

2022-06-28, version 
2.22.14.70

A major database schema change migrated the content of 
the messages table to the message table with different 
columns. The result was that Hansken was unable to 
extract any messagesa.

a An example of two versions of WhatsApp databases containing this schema 
change is provided in the repository.

10 https://www.whatsapp.com/android.
11 https://telegram.org/android.
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6. Discussion, limitations, and further work

This paper has described the automated dataset generation tool 
Puma and demonstrated its use. It has also situated Puma within a 
broader forensic tool testing workflow. While the demonstrations clearly 
show its benefits, there are still limitations. This section discusses limi
tations and future work of Puma, the tool testing workflow, and the 
broader applicability.

6.1. Puma

While the benefits of using Puma have been shown in Section 5, there 
are additional examples that have not been presented in this paper. To 
illustrate these broader capabilities, an example script presenting the 
interaction between two emulators, using multiple applications, is pro
vided in Appendix B. It includes the use of Google Maps to demonstrate 
the location spoofing functionality mentioned in Section 4.2 and shows 
how Puma may facilitate the creation of arguably realistic, multi- 
application scenarios, making it a valuable tool for training and 
educational purposes. Its scripts are aimed at having good readability 
and are easily adaptable, thereby reducing the barrier to entry for 
simulating complex mobile interactions, even for users with limited 
technical expertise.

Despite the benefits offered by Puma, it is important to acknowledge 
that it may not always be the optimal choice for dataset generation. The 
time required to develop Puma scripts should be weighed against po
tential gains in efficiency and reproducibility. Table 3 outlines scenarios 
where Puma offers advantages, as well as cases where manual ap
proaches may be more suitable.

Furthermore, there are also specific limitations and further work for 
Puma. Its interaction with applications is fundamentally dependent on 
Appium, which leads to some inherited limitations. First, it requires the 
development of custom automation scripts for each individual applica
tion, preventing the use of generalized scripts for common actions across 
multiple applications, such as sending messages in various chat appli
cations, even when those applications exhibit similar UI patterns. There 
are also occasional issues with the underlying Appium implementation, 
e.g., due to differing loading times of application elements. Like all UI- 
based automation frameworks, it is sensitive to differing “user jour
neys” through applications, e.g., presenting a user agreement to accept, 
popups describing new features, or the requirement to create accounts. 
These currently need to be handled either with bespoke code or manu
ally bypassed.

Additionally, the use of Appium leaves traces on the target device. In 
the use cases presented in this paper, with its focus on trace extraction 
validation, additional traces left by Puma can be disregarded (see Sec
tion 3.1.1). However, other use cases, such as those discussed in Section 
6.3, will need to identify, document, and potentially scrub those artifacts 
if that is part of the alternative use case’s ‘realism’ requirement. For 
example, in case of utilizing the location spoofing mechanisms, it might 
be necessary to ensure that the application under test treats spoofed 
locations equivalently to actual location changes, or to identify differ
ences (as done by Demmel et al. (2024)) and assess their relevance for 
the use case in which the synthetic data is employed.

Other limitations include that, while Puma handles updates to stored 

data well, some aspects of frequent mobile application updates remain a 
challenge. In particular, any modification to an application’s UI, even 
subtle or non-visible changes, can disrupt existing Puma scripts. While 
this can cause initial issues, the code can evolve to handle multiple 
versions of an application’s UI.

To enhance the robustness of Puma, we plan to incorporate a finite 
state machine capable of recognizing the current state of the application 
under test. This would allow the framework to automatically detect and 
respond to unexpected interface elements (e.g., pop-ups), or recover 
from anomalous states by restarting the application or adjusting the 
execution flow. The integration of such a state-aware mechanism would 
improve Puma’s fault tolerance, particularly in complex or long-running 
scenarios.

Finally, we are exploring the potential for integrating artificial in
telligence (AI) into Puma’s architecture. AI-based techniques could 
assist in navigating application UIs by reducing reliance on hard-coded 
UI element identifiers, which are often subject to change during appli
cation updates. Furthermore, this may enable the development of 
generalized automation scripts capable of performing common tasks 
across multiple applications, thereby overcoming one of the current 
limitations of Puma’s design.

Other future work will focus on enhancing Puma’s functionality, 
broadening its platform and application support, and increasing its 
robustness and flexibility. The selection of additional applications 
developed internally will be driven by practical requirements, particu
larly those aligned with expanding the capabilities of Hansken. Appli
cation support will be prioritized based on forensic relevance and 
demand from investigative contexts. However, as the project is open- 
source, with detailed documentation, other application support can be 
added by the broader digital forensics community for any use case.

6.2. Forensic tool testing

Puma’s area of application lies within a broader tool testing archi
tecture, as illustrated earlier in Fig. 1. The use case demonstrated in 
Section 5.2 showed that for some applications, such as WhatsApp, 
additional user actions are not required to update the application data 
before extracting it for validation of a new application version. How
ever, there are benefits to incorporating automated data generation in 
this situation as well. For example, if a WhatsApp update introduces a 
change such that UI interaction is newly required to trigger post-update 
behavior, the approach that omits UI actions would falsely report that 
the forensic tool supports the latest version. In contrast, an approach 
incorporating UI actions would correctly identify the breaking change.

There are other considerations within the broader architecture. An 
example is identifying when an update is necessary. This is currently a 
scheduled check every 24 h, triggering the re-evaluation process if the 
application version is different. However, some applications may retain 
the same version but require revalidation between releases if they 
heavily utilize server-side data. This is particularly true when trace 
extraction depends on API access records or internally cached artifacts. 
Techniques for detecting these server-side changes would also be 
beneficial.

Another aspect that was not explored was the synchronization of user 
data of a user logged onto multiple devices. Since Puma can use any 

Table 3 
Comparison of conditions favoring Puma versus manual data generation.

Consideration Puma-based data generation Manual data generation

Support Puma already supports the application or feature Requires weighing effort against Puma support development
Repetition Dataset will need to be generated repeatedly, e.g., across different testing cycles or 

application versions
Dataset will only be created once

Data Volume Large volume of data is required, potentially involving multiple applications and 
device configurations

Only a limited number of simple actions are required

Intrusiveness Additional traces left by underlying automation framework (i.e., Appium) are not a 
concern

The dataset must closely mimic real-world conditions; automation 
framework are unacceptable
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number of devices, in future work Puma can be used to investigate how 
apps store such synchronized artifacts.

Puma is focused on generating reference data for Android applica
tions. There is therefore an obvious need for a complementary approach 
for iOS. Appium, which underpins Puma, also supports iOS, so it is 
possible for new scripts to be created to perform automated data gen
eration here too. We anticipate the reuse of substantial portions of the 
existing Android-focused implementation, which would facilitate a 
more efficient development process and enable Puma to support a wider 
range of mobile devices and ecosystems.

While Puma is integrated into the validation workflow for Hansken, 
it can be used to generate reference data for any forensic tool. In addi
tion, the overall tool validation workflow can apply to any forensic tool, 
but with caveats. For example, the ability to automatically extract traces 
from the reference data is possible here because of direct access to the 
internal capabilities of Hansken. Other tool developers would likely 
have similar capabilities and the overall approach can be generalized. 
However, if the validation needs to be performed in a forensic lab or by 
another third-party, programmatic access to forensic tools is not always 
available. However, with innovative approaches such as the use of 
ForTrace++ for UI control of digital forensic tools as presented by 
Rzepka et al. (2025), it is possible to test any GUI-based tool or plugins 
developed for such tools. However, this solution is far from ideal, and 
programmatic access (either API or command line) to tools would 
preferably be available to perform validation. For output verification, 
the output should be available in a standardized representation such as 
the CASE ontology (Casey et al., 2017). Validation efforts would benefit 
from demanding such requirements from all digital forensic tool 
vendors.

The proposed approach of automated test data generation represents 
a starting point for a much bigger potential research area: automating 
digital forensic research. For example, it would be possible for the 
overall system to detect schema changes in the database used by an 
application and promptly disseminate this knowledge to the broader 
community, rather than keeping it exclusively for tool testing. With 
machine-readable ground truth, locating known items within a modified 
database or dataset of other artifacts could also be possible, beginning 
the process of automatically inferring trace locations. The Aardwolf 
project offers a platform designed to facilitate the sharing of such 
knowledge (Boztas et al., 2025).

6.3. Broader discussion

Section 4.2 described how high-level activities such as sending a 
message are recorded as ground truth. This provides a further oppor
tunity to enhance timeline analysis research involving the inference of 
‘high-level events’ from lower-level timeline entries (e.g., Hargreaves 
and Patterson (2012)). Combining the ground-truth logs with a timeline 
generated from the test device could facilitate techniques such as ma
chine learning to identify the expected artifacts for a given activity.

There is also the potential to use Puma beyond its current tool 
testing-focused use case, such as for automated data generation for 
teaching. However, it would be necessary to either determine the 

acceptability of Puma’s automation artifacts in the concrete teaching 
context or to minimize their presence, e.g., by sharing only selected 
portions of the mobile device datasets with students.

Another important direction involves the development of long- 
duration scenarios and testing. These scenarios would simulate user 
activity over extended periods, spanning multiple days, in order to 
generate richer, more temporally diverse datasets. Such datasets could 
better reflect real-world usage patterns and improve the ecological 
validity of forensic validation procedures.

7. Conclusions

This paper has highlighted the need for digital forensic research to 
provide practical solutions to the problems described as early as Gar
finkel (2010) such as the dramatic increase in digital forensic tool scope 
and complexity, and therefore the cost of their development and up
dates. This is compounded by the update cycles and sheer number of 
modern mobile applications.

To contribute towards addressing this challenge, this paper has 
described the development of an automated testing workflow for a 
major digital forensic tool implementation, and the creation of an 
automation component to overcome many of the challenges in ensuring 
that rapidly changing mobile applications are processed reliably by 
automated forensic tools. It has also outlined some areas to further 
enhance quality. The hope is that the digital forensic research commu
nity can build on this work and develop practical solutions to improve 
the overall results of automated digital forensic tools.

CRediT authorship contribution statement

Angelina A. Claij-Swart: Conceptualization, Methodology, Soft
ware, Validation, Investigation, Data Curation, Visualization, Writing - 
Original Draft, Writing - Review & Editing. Erik Oudsen: Conceptuali
zation, Methodology, Software, Validation, Investigation, Data Cura
tion, Visualization, Writing - Original Draft, Writing - Review & Editing. 
Bouke Timbermont: Conceptualization, Methodology, Software, Vali
dation, Investigation, Data Curation, Visualization, Writing - Original 
Draft, Writing - Review & Editing. Christopher Hargreaves: Method
ology, Writing - Original Draft, Writing - Review & Editing, Visualiza
tion, Supervision. Lena L. Voigt: Methodology, Writing - Original Draft, 
Writing - Review & Editing, Visualization, Supervision.

Acknowledgments

We thank Felix Freiling for his valuable comments on an earlier draft 
of this paper. Thanks to the anonymous reviewers for their constructive 
feedback and improvement suggestions. We thank the Netherlands 
Forensic Institute for funding the development of Puma and the vali
dation tool and for providing us with the opportunity to dedicate time to 
innovation. The work by Lena L. Voigt was supported by Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation) as part of 
the Research and Training Group 2475 “Cybercrime and Forensic 
Computing” (grant number 393 541 319/GRK2475/2-2024).

A.A. Claij-Swart et al.                                                                                                                                                                                                                         Forensic Science International: Digital Investigation 54 (2025) 301985 

9 



Appendix A. Comparison of Python Appium and Puma code for sending a Telegram message

Appendix B. Puma script for a more complex scenario

References

Baggili, I.M., Mislan, R., Rogers, M., 2007. Mobile phone forensics tool testing: a 
database driven approach. Int. J. Digital Eviden. 6, 168–178.

Barnhart, H., 2017. Time is Not on our Side when it Comes to Messages in iOS 11. htt 
ps://smarterforensics.com/2017/09/time-is-not-on-our-side-when-it-comes-to-m 
essages-in-ios-11/. (Accessed 13 May 2025).

Boztas, A., De Jong, J., Hadjigeorghiou, C., 2025. Argus: a new approach for forensic 
analysis of apps on mobile devices. Forensic Sci. Int.: Digit. Invest. 53, 301938.

Breitinger, F., Jotterand, A., 2023. Sharing datasets for digital forensic: a novel taxonomy 
and legal concerns. Forensic Sci. Int.: Digit. Invest. 45, 301562.

A.A. Claij-Swart et al.                                                                                                                                                                                                                         Forensic Science International: Digital Investigation 54 (2025) 301985 

10 

http://refhub.elsevier.com/S2666-2817(25)00125-8/sref1
http://refhub.elsevier.com/S2666-2817(25)00125-8/sref1
https://smarterforensics.com/2017/09/time-is-not-on-our-side-when-it-comes-to-messages-in-ios-11/
https://smarterforensics.com/2017/09/time-is-not-on-our-side-when-it-comes-to-messages-in-ios-11/
https://smarterforensics.com/2017/09/time-is-not-on-our-side-when-it-comes-to-messages-in-ios-11/
http://refhub.elsevier.com/S2666-2817(25)00125-8/sref3
http://refhub.elsevier.com/S2666-2817(25)00125-8/sref3
http://refhub.elsevier.com/S2666-2817(25)00125-8/sref4
http://refhub.elsevier.com/S2666-2817(25)00125-8/sref4


Brunty, J., 2023. Validation of forensic tools and methods: a primer for the digital 
forensics examiner. Wiley Interdisciplin. Rev.: Forensic Sci. 5, e1474.

Carrier, B., 2003a. Defining digital forensic examination and analysis tools using 
abstraction layers. Int. J. Digital Eviden. 1, 1–12.

Carrier, B., 2003b. Digital Forensics Tool Testing Images. https://dftt.sourceforge.net. 
(Accessed 13 May 2025).

Casey, E., 2002. Error, uncertainty and loss in digital evidence. Int. J. Digital Eviden. 1.
Casey, E., 2006. Cutting corners: trading justice for cost savings. Digit. Invest.: Int. J. 

Digital Forensics Incident Response 3, 185–186.
Casey, E., Barnum, S., Griffith, R., Snyder, J., van Beek, H., Nelson, A., 2017. Advancing 

coordinated cyber-investigations and tool interoperability using a community 
developed specification language. Digit. Invest. 22, 14–45.

Ceballos Delgado, A.A., Glisson, W.B., Grispos, G., Choo, K.K.R., 2022. Fade: a forensic 
image generator for Android device education. Wiley Interdisciplin. Rev.: Forensic 
Sci. 4, e1432.
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