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Mobile applications are subject to frequent updates, which poses a challenge for validating digital forensic tools.
This paper presents an approach to automate the generation of reference data on an ongoing basis, and how this
can be integrated into the overall validation process of a digital forensic analysis platform. Specifically, it de-
scribes the architecture of the mobile data synthesis framework Puma, shares its capabilities via an open-source
project, and shows how it can be used in a tool testing workflow triggered by application updates. The value of
this approach is demonstrated with three example use cases, documenting the use of the approach over six
months and reporting insights and experiences gained from this integration. Finally, this work highlights

additional contributions the proposed approach and tooling could make to the digital forensics community.

1. Introduction

The field of digital forensics is still facing many of the problems
identified by Garfinkel (2010), such as size, complexity, and number of
devices. Automation can help in handling these challenges. However, as
highlighted in Casey (2002), “when evaluating evidence, its reliability
and accuracy are of grave importance both in the investigative and
probative stages of a case,” and more recently, “the courts have the
expectation that the methods to produce the data that an expert bases
their opinion on are valid” (UK Forensic Science Regulator, 2020). As
automation increases, so does the opportunity to increase uncertainty.
Early work by Carrier (2003a) introduces how error can result from
translating data through abstraction layers' used to facilitate presenta-
tion of data in a form that allows analysis. More recent work presents a
more complex and specific set of automated processes within modern
monolithic forensic tools and documents errors that occur at each stage
(Hargreaves et al., 2024b).

Recently, the SOLVE-IT knowledge base (Hargreaves et al., 2025)
began to index weaknesses and mitigations in specific digital forensic
techniques, and one of the highlighted mitigations, which is used for

* Corresponding author.

many of the weaknesses, is tool testing. Tool testing in digital forensics
has been discussed since 2000 (Guttman et al., 2011) and a more
extensive discussion of existing work can be found in Section 2. How-
ever, while there is some existing work, often discussing a need for
testing, publication of tangible advances in digital forensic tool testing is
less common. This is despite the significant challenges of tool testing in
an area where developed tools must process complex, diverse, and even
potentially adversarial data.

The dynamic nature of smartphone applications introduces further
challenges. According to Statista, as of April 2025, 36 percent of the top
1000 Android applications in Google’s PlayStore were updated at least
weekly, with 73 percent being updated at least monthly (Statista, 2025).
In light of these frequent changes, it becomes crucial to regularly vali-
date forensic tools’ ability to correctly extract traces resulting from
application use.

This paper aims to advance this area, and to encourage further work
developing techniques to ensure quality and correctness of results from
automation in digital forensic tools, which will face new challenges with
the introduction of Al capabilities into the workflow (Scanlon et al.,
2023).
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This paper is applicable to developers of digital forensic tools, but
also to forensic labs that require their own internal testing, or re-
searchers interested in tool errors. The paper makes the following
contributions:

e An open-source tool, Puma,” designed to automate user actions on
Android devices, which unlike existing user interface (UI) automa-
tion frameworks allows concise and readable code to be written to
perform a variety of tasks within supported applications. This in-
cludes sending messages, taking pictures, and location-dependent
activities. This reduces the time and effort required to generate
comprehensive and representative reference data.

The overall validation workflow used to ensure correctness of results
from a complex digital forensic tool, with regard to application
updates.

Demonstration of the use of this workflow employed in practice for
testing Hansken, a Digital Forensics as a Service (DFaaS) platform
presented in prior work by van Baar et al. (2014) and van Beek et al.
(2015, 2020). Our demonstration highlights insights on changes in
application artifacts within a time frame of six months.

A set of reference data capturing different versions of application
data that can be used to test other forensic tool implementations, as
well as the corresponding scripts used to generate the data.
Additions to the SOLVE-IT knowledge base, representing the tech-
niques developed in this work and the weaknesses they mitigate.’

Both the code for Puma and the dataset are publicly available.”> The
remainder of this paper is structured as follows: Section 2 provides
background and related work. Section 3 clarifies the scope of the paper,
and Section 4 introduces the architecture of the developed data syn-
thesis framework. The value of the approach is demonstrated in Section
5, with examples highlighting three use cases of the automation
framework. Section 6 provides a discussion, including considerations on
the generalizability of the proposed approach for forensic tool testing.
Conclusions are provided in Section 7.

2. Background and related work

This section provides background and related work, specifically
covering automation in digital forensic tools, tool testing, reference
data, and automated dataset generation.

2.1. Automation in digital forensic tools

Michelet et al. (2023) defines automation as “software or hardware
that completes a task more efficiently, reliably, or transparently by
reducing or removing the need for human engagement”. Automation in
digital forensic tools has been discussed as early as 2003, with tools
needing to translate data through one or more abstraction layers so it
can be understood (Carrier, 2003a) and to solve the ‘complexity prob-
lem’. It was also highlighted that each abstraction layer does not only
have an output, but also a margin of error. There have also been other
early explicit warnings about the dangers of automation in digital fo-
rensics: “Another common mistake made by inexperienced individuals is
over reliance on user-friendly or automated forensic software” (Casey,
2006). More recently Hargreaves et al. (2024b) demonstrated specific
problems in digital forensic tool processes including error propagation.

Therefore, automation is necessary to handle the complexity prob-
lem, has become increasingly important in digital forensics, and, as
described in the introduction, expectations have increased that the

2 Puma stands for Programmable Utility for Mobile Automation.
3 https://github.com/SOLVE-IT-DF/solve-it/pull/106.

* https://github.com/NetherlandsForensicInstitute/puma.

5 https://doi.org/10.5281/zenodo.16579435.
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results of automation are correct (UK Forensic Science Regulator, 2020).
A significant contributor to meeting that expectation is testing digital
forensic tools.

2.2. Tool testing

Horsman (2019) describes a survey about tool testing and the results
suggested a reliance on vendor tool testing (question 3). This was echoed
in the DFPulse Practitioner Survey 2024; Hargreaves et al. (2024a)
indicating significant interest in, and reliance on tool testing to validate
tools.

However, this remains a challenging area: “developing extensive and
exhaustive tests for digital investigation tools is a lengthy and complex
process” (Guo et al., 2009). Guttman et al. (2011) describes that the
NIST Computer Forensics Tool Testing (CFTT) program has been active
since 2000 and documents insights of the first ten years of this program.
It also highlights that since 2008, test reports for mobile device forensic
tools have also been published alongside write blocking and disk im-
aging tools. The CFTT testing methodology is described as “functionality
driven” (NIST, 2019) and the Scientific Working Group on Digital Evi-
dence (2018) proposes minimal testing guidelines for different cate-
gories of digital forensic tools, including the type of test that needs to be
performed, the recommended testing frequency, and the appropriate
entity for carrying out the test (e.g., vendor, lab, third party etc.). Others
have also suggested that anti-forensic techniques must also be addressed
in tool testing requirements (Wundram et al., 2013).

Baggili et al. (2007) also advocated for continuous tool testing,
especially in the area of mobile forensic tools, given frequent updates.
Lyle et al. (2022) also stated that while general validation of a specific
tool version may be conducted centrally and shared, testing needs to be
repeated when technologies change.

Marshall and Paige (2018) identified a lack of clearly formulated
requirements in digital forensic methods and proposed a publicly
available set of requirements for digital forensic methods and tools to
improve transparency in tool testing. Horsman (2018) also discussed the
need for rigorous and transparent validation techniques for digital
forensic tools due to the interaction of tool errors and limitations, with
incorrect use by users. Subsequently, Marshall (2021) elaborated on
approaches that enable tool vendors to establish transparency and trust
in their tool’s compliance with specified requirements without revealing
tools’ inner workings. The introduction of generative Al into digital
forensics also raises further concerns over transparency and trust (Webb
et al., 2024), and the need for systematic validation gains further sig-
nificance (Wickramasekara et al., 2025).

Brunty (2023) outlined the steps needed for internal tool testing as:
defining the testing scope, obtaining a suitable test dataset, performing
tests in a controlled environment, and assessing the test results based on
expected results. Dataset acquisition is described as potentially the most
challenging part of the validation process as it needs “a variety of
different use cases [such as] testing and evaluation of a forensic tool’s
capabilities such as extracting a specific artifact”.

2.3. Reference data

A crucial requirement for effective forensic tool testing is the
development of reference data, which “consists of test scenarios (cases)
against which a EE (Electronic Evidence) tool or its individual function
is validated.” (Guo et al., 2009).

Early work on reference data includes the Digital Forensics Tool
Testing Images by Carrier (2003b), a set of small, synthetic test images
created between 2003 and 2010, targeting areas such as partitioning,
file system, carving, and memory analysis. Others have created a
SQLite3 dataset with 77 databases comprising different corner cases that
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can be encountered in such databases (Nemetz et al., 2018). Prominent
collections of digital forensic datasets are Digital Corpora® and Computer
Forensic Reference Data Sets (1 CFReDS).”

However, since Garfinkel et al. (2009) called for standardized
corpora, the need for reference datasets remains an ongoing issue for
digital forensic tool testing, as well as digital forensic research and ed-
ucation in general. This has been discussed in multiple works (Yannikos
et al., 2014; Grajeda et al., 2017; Horsman and Lyle, 2021; Gobel et al.,
2025), with Hargreaves et al. (2024b) emphasizing the importance of
modular, error-focused datasets, and Gongalves et al. (2022) assessing
the availability of mobile device datasets “as one of the main fields of
missing datasets”.

Importantly, Spichiger and Adelstein (2025) urged the preservation
of reference data for systems that are constantly changing since “soft-
ware updates may change basically any aspect of a system” and “these
changes could lead to a different interpretation of found traces and
therefore negatively impact their potential evidentiary value”. They also
note that retrospective collection of reference data might be challenging
or impossible, so preservation must be timely.

2.4. Automated dataset generation

While real-world data can be valuable for forensic tool testing, it has
limitations, such as privacy and legal concerns, restricted availability, or
missing ground truth (Garfinkel et al., 2009). Synthetic data is an
alternative that can be generated on demand and tailored to specific
scenarios (Du et al., 2021). However, the manual creation of synthetic
data is time-consuming and error-prone. There has been some work
specifically targeting the automated creation of synthetic forensic data
for testing forensic tools. Yannikos et al. (2011) and Yannikos and
Winter (2013) proposed and later implemented a model-based method
for the creation of synthetic test disks that involves the simulation of
user activity in a scenario. Visti et al. (2015) introduced ForGe, a tool
that automates the generation of test disk images, comprising the cre-
ation of NTFS file systems and data-hiding techniques.

Moreover, different approaches and corresponding tools for the
automated synthesis of forensic data have been presented for teaching
purposes (Moch and Freiling, 2009; Scanlon et al., 2017; Du et al., 2021;
Gobel et al., 2022; Schmidt et al., 2023; Wolf et al., 2024; Voigt et al.,
2024). Apart from Scanlon et al. (2017), who proposed creating baseline
disk images and injecting artifacts into them, they all encompass auto-
mating control of a virtual machine, including the simulation of user
activity, to reduce the manual effort required for the generation of
synthetic data while increasing their resemblance to real-world disks.

While these approaches have focused on teaching scenarios, others
have demonstrated alternative uses of such approaches for tool testing.
Notably, Rzepka et al. (2025) utilized ForTrace++ (Wolf et al., 2024) to
automate the generation of an extensive dataset of 1600 main memory
dumps to assess inconsistencies in main memory dumps acquired with
four different tools.

There is also limited work on synthesizing mobile device datasets.
Ceballos Delgado et al. (2022) introduced FADE, a tool that enables the
injection of artifacts, namely text messages, contacts, calls, and files,
into rooted Android emulators. Michel et al. (2022) presented the
proof-of-concept tool, AutoPoD-Mobile, which works on a restricted set
of five specific physical Android devices of different vendors and
different Android versions as well as one iOS device, for which they
implemented only limited functionality. With this, they proposed an
approach for creating a diverse range of artifacts (e.g., contacts, calls,
WhatsApp and email communication, pictures) on mobile devices by
either injecting them or by approximating user activity on the devices
using ADB, public APIs of applications, or web clients (e.g., WhatsApp

6 https://digitalcorpora.org/.
7 https://cfreds.nist.gov.
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communication via WhatsApp Web). They also utilized the Appium
Settings application on target devices to enable static location spoofing.
They demonstrated their approach with a multi-device setup, allowing
them to synthesize mobile data for multi-person scenarios.

Demmel et al. (2024) introduced an approach that simulates user
activity on Android devices via the device’s UL They provided a
proof-of-concept implementation that supports the simulation of ges-
tures, clicks on UI elements, and external events. These included
incoming calls or text messages, as well as GPS coordinate changes. To
simulate the external events, they established a telnet connection to send
commands to the emulator. However, in their current implementation,
only rooted Android emulators and single-device settings are supported.
The simulation of multiple devices and communication between them is
not possible. Also, the use of a rooted device prevented them from native
access to Google’s Play Store.

2.5. Summary

Increasing use of automation in digital forensic tools requires thor-
ough tool testing programs that can keep up with rapid changes in
technology, particularly in the ever-evolving mobile space. There is a
strong case to use automation to assist with this task. Some work exists
in this area, e.g., Demmel et al. (2024), but there is a significant need for
a practical solution that integrates well with tool development and
testing workflows, that is responsive to target application updates and
beyond the proof-of-concept stage. The following sections describe the
development of an automation framework that is focused on generating
data to assist with this tool testing.

3. Scope

This section outlines the scope of this paper, covering the aim, the
focus on automated test data generation, and the three existing use cases
where this automation can be integrated into a broader tool testing ar-
chitecture. Referring to the tool testing procedure described in Brunty
(2023), we focus on the two initial steps: defining the test scope and
obtaining the dataset, with emphasis on the latter, which the authors
described as the most demanding part of the process.

3.1. Aim and motivation

Due to the rapid pace of updates to mobile applications, a new
approach is needed to perform complete validation of forensic tools,
preferably for every application version. To ensure full coverage, this
process also needs to happen within a certain time span of the version’s
release, since server-dependent applications might not allow older ver-
sions to be used. Once an application version is no longer supported by
the server, it will be impossible to create new reference data of that
version (Spichiger and Adelstein, 2025). Due to this combination of
factors and the resulting effort and challenges of manually creating
reference data and validation of forensic tools, we propose an automated
solution. Such a system needs to perform several tasks:

o Generate reference data for new application versions
e Process this reference data using the forensic tools under test
o Verify the output of the forensic tools against expected results

For the first step, which is the focus of this paper, the automatically
generated reference data needs to be representative and comprehensive,
discussed in the following subsections.

3.1.1. Representative reference data

Voigt et al. (2025) formally defined a restricted form of realism in
synthetic forensic data as being indistinguishable from real-world data
with respect to a restricted set of allowed features. This mirrors intuitive
definitions from previous literature. In the context of our tool testing
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approach, realistic reference data would, therefore, not entail the syn-
thetic data being indistinguishable in every aspect from data generated
by users in real-world settings, but only in aspects relevant to our aim.
To avoid confusion with more broadly defined concepts of realism in
synthetic data, we refer to the quality of the reference data being
indistinguishable from real-world data in selected aspects as represen-
tative data.

It is critical that the data is created by interacting with the applica-
tion in question, simulating user activity, rather than using alternative
methods such as injecting entries to a database or appending log files.
While these methods might be suitable for other use cases, they
contradict the goal of our approach to identify changes in application
artifacts, as injection techniques necessitate knowledge about the stor-
age data structure in the first place.

In contrast, to validate the output of forensic tools, it is not necessary
for the content of the reference data to follow a coherent narrative.
Additionally, some traces of the synthetic nature of the data are not
relevant to the approach we propose, e.g., traces of the automation
framework on the target device in general or a flag® hinting that a
location trace stems from spoofing, as found by Demmel et al. (2024).

3.1.2. Comprehensive reference data

Comprehensive reference data in this context relates to the supported
features of the forensic tool under test. For complete validation of its
extraction features for a specific application, the reference data used for
validation should contain artifacts for each feature supported by the
forensic tool. For example, if a forensic tool supports recovering mes-
sages and pictures from a chat application, but not videos, the reference
data is comprehensive when it contains only messages and pictures.

Notably, some features may have a multiplicative effect on the
required volume of reference data. For example, a forensic tool sup-
porting chat messages and pictures requires reference data with at least
four artifacts: a message and a picture, both sent as well as received.
When the forensic tool adds support for group chats, those four artifacts
are needed again in the context of a group chat, doubling the required
artifacts to eight. With the rapid growth of features in mobile applica-
tions, the number of artifacts needed in comprehensive reference data
can create substantial scalability challenges, reinforcing the need for an
automated approach.

In addition to the generated data itself, the provision of ground truth
is also advised (Breitinger and Jotterand, 2023). Besides conventional
ground truth logs in machine-readable format, this can also include
making the generated test data self-describing, e.g., a message might be
“This is a WhatsApp message from Alice to Bob, sent on 2025-05-20 at
13:00”. This makes analysis and manual verification of tool results
easier.

3.2. Applying automated reference data creation

To address the need for automated creation of reference data, we
have developed Puma, a tool that enables and simplifies the automated
execution of actions on mobile devices, and the architecture is discussed
in Section 4. Puma forms a central part of the Hansken validation
workflow, see Fig. 1. This shows that the complete process can be
automated: applying application updates, creating reference data,
extracting the data, processing with the forensic tool under test, and
verifying its outputs.

Within this workflow, there are three use cases in which Puma can be
used to create reference data for applications, including handling
application updates. The three use cases are described in the following
subsections and demonstrated in the context of tool testing for Hansken
in Section 5.

8 If this flag is not covered by the forensic tool’s supported features, see
Section 3.1.2.
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3.2.1. Initial data population

The first use case is the initial creation of reference data for a mobile
application for which support will be added to the forensic tool in
question. This reference data can then be used to investigate the files in
which the application stores data, helping the initial forensic tool
development. After this development, the reference data will be used in
a Continuous Integration and Continuous Deployment (CI/CD) pipeline
to ensure that future code changes do not introduce regression in
support.

Creating such data requires planning of the actions to be performed
within the application, as well as precise execution. This often involves
multiple devices, since interaction between users is a key characteristic
of many applications, e.g., messaging applications. As discussed in
Section 3.1.2, the number of required actions depends on the range of
features supported by the application, and can increase rapidly due to
multiplicative effects. Furthermore, the execution of actions must be
logged to establish ground truth, which should capture the time at which
actions are executed and any deviation from the planned actions.

The automation framework presented in this paper aims to address
these problems by allowing researchers and developers to populate
applications with data through script execution. We have used Puma to
generate reference data for multiple applications and present the results
in Section 5.1.

3.2.2. Post-update data population: application launch only

The second use case involves validating a forensic tool after an
application update, assuming that the application is already supported.
In this scenario, the application has been populated with data on the
target device prior to the update. The update may alter the way the
application stores data, e.g., by updating the database schema, and also
migrate existing contents. This may therefore prevent a forensic tool
from correctly parsing the data. On Android, the popular messaging
application WhatsApp behaves in this way: when an update introduces a
new database schema, the existing database on the device is migrated
without requiring user interaction.

The validation step in this use case is straightforward: since the
application was populated prior to the update and no further actions
were performed within the application, the output of the forensic tool
should remain unchanged after applying the update. We have applied
this approach to validate our tools against new versions of the WhatsApp
messaging application, which is demonstrated in Section 5.2.

3.2.3. Post-update data population: extended user actions required

The third use case extends the second by incorporating UI actions
executed by Puma. While the process described in the second use case is
effective for applications that automatically migrate stored data to a new
format upon updating, some applications behave differently. In these
cases, data is not migrated during an update. Instead, the new format is
used only for data created after the update.

One such application is Telegram, which stores user data (e.g.,
messages and contacts) as Binary Large Objects (BLOBs) in a database
(Jaeckel et al., 2025). The structure of these BLOBs can change between
versions, but only new entries will use the new structure while existing
data remains unchanged. Consequently, actions must be performed
within the application post-update to generate reference data reflecting
the latest version. This is illustrated in Section 5.3.

The validation approach here is mostly consistent with that in the
second use case, but in this case, as new actions are carried out which
supplement the existing data, the forensic tool’s output is expected to
change. Therefore, the overall validation approach must be aware of the
new executed actions and verify whether the forensic tool correctly
detected them, while still correctly processing the old data.

4. Puma - a framework for automated synthesis of mobile data

In this section, we describe the requirements, architecture, and
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Fig. 1. Tool validation workflow triggered by application updates. @, @ and ® correspond to the use cases of Puma within the workflow discussed in this paper.
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Fig. 2. BLOBs of a regular message with similar content in Telegram v11.5.5
(above) and v11.6.1 (below). The first four bytes (orange) are a header used by
Hansken to determine how to parse the BLOB. When this header changed,
Hansken needed to be updated. The message text is highlighted in blue.

currently implemented features of our open-source mobile data syn-
thesis framework, Puma.

4.1. Requirements

The development of Puma was driven by a set of requirements. First,
the tool must be capable of automating actions on Android devices, both
emulated and physical, and must be operable from host systems running
macOS, Windows or Linux. Second, the tool must support the generation
of comprehensive test data, as explained in Section 3.1.2. This means
that the tool should focus on supporting a wide range of application
features within selected apps, rather than the creation of complex
narrative-driven scenarios that are coherent across a broad range of
diverse applications. Third, the tool must ensure that all application data
is created by the application itself, and must not rely on alternative
methods such as artifact injection. Finally, the tool should enable its
users to easily specify what actions should be performed without
requiring them to detail exactly how those actions are carried out on the

Table 1
Applications and their features currently supported by Puma.

target device.

4.2. System design and capabilities

Puma focuses on combining atomic UI actions into high-level activ-
ities such as sending a message or creating a group chat. This reduces the
complexity involved in writing automation scripts and eliminates the
need for detailed knowledge about the target device’s Ul The target
device can be either a mobile device emulator running on the host
computer or a physical mobile device connected to it via USB, with ADB
access enabled. Puma itself does not require root access. However, root
access may be required to facilitate the subsequent acquisition of
forensic artifacts, as it enables access to all system files.

The framework also supports ground truth logging during simula-
tion. When an action is performed, it can record the time it was initiated.
Script authors may include additional logging, e.g., by using Puma to
create screenshots.

Furthermore, Puma provides general-purpose and application-specific
functionality. General features include application launch and termi-
nation, capturing screenshots and screen recordings, scrolling, and
finding text in non-text elements through Optical Character Recognition
(OCR). Moreover, Puma provides dynamic location spoofing capabil-
ities, enabling the simulation of movement along a route between two
predefined locations, thereby improving upon previous work which al-
lows for spoofing static locations only (Michel et al., 2022; Demmel
et al., 2024). The design of Puma emphasizes modularity and extensi-
bility. Each supported application is represented by a dedicated class
encapsulating the methods required to perform application-specific ac-
tions, while also providing access to general functionality.

At the time of writing, Puma supports eight applications, with sup-
ported features varying per application (see Table 1). The main objective
is the automated generation of reference data for applications frequently
encountered in real-world investigations (e.g., WhatsApp, Telegram,
and Snapchat), and therefore necessitating support in forensic tools.

Application

Supported features

Google Camera
Google Chrome
Google Maps
Open Camera
Snapchat
Teleguard
Telegram
WhatsApp

Taking pictures

Visiting URLSs, Google search via omnibar, managing and bookmarking tabs

Searching location, navigating (including location spoofing)

Taking pictures and videos

Sending messages and snaps

Sending messages, pictures, sending and accepting invites

Sending messages and pictures, making calls

Sending messages, pictures and videos, location sharing, making calls, creating and managing groups
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Some additional applications are supported for demonstration purposes,
for instance, the messaging application TeleGuard can be used to easily
demonstrate Puma’s functionality, as it does not mandate registration
with a phone number. Similarly, Google Maps was supported to visually
demonstrate the location spoofing feature, but it is also a mainstream
application worth monitoring. Although this paper focuses on single-
application scenarios, Puma supports concurrent control of multiple
devices and applications, enabling more complex simulation scenarios.

4.3. Implementation overview

This section provides an overview of the most relevant parts of the
Puma implementation. Further details on the implementation as well as
extensive documentation can be found in the Puma repository.”

4.3.1. An Appium-based implementation

Puma is implemented in Python and is designed as a high-level
abstraction layer built on top of Appium, an open-source automation
framework for UI testing that supports various types of platforms, such
as mobile, web browser, and desktop (OpenJS Foundation, 2025a).
Appium is widely used by developers to test the Uls of their mobile
applications for different platforms (e.g., i0S/Android), using the same
API Instead of its typical use in application testing, Puma uses Appium
to generate reference data by automatically simulating user activity on a
target device.

To understand Puma’s implementation and the implications for its
forensic data synthesis approach, it is crucial to understand how Appium
works (OpenJS Foundation, 2025b). Appium itself operates on a
client-server architecture. The Appium server runs on a host workstation
and communicates with a connected target device over ADB to install
Appium’s helper application on it. Puma uses the Appium Python library
to send commands to the Appium Server, which then executes them on
the device. Appium automates application actions through its helper
application hooking into the accessibility framework of the target device
to interact with the UI elements, simulating user actions such as tapping
buttons, entering text, and swiping.

While Appium offers a straightforward approach for defining atomic
actions (i.e., locating UI elements, simulating clicks and swipes, or
entering text), to represent higher-level activities that comprise multi-
ple actions, several lines of code are required. This code can become
verbose, reducing readability. Puma’s abstraction from these atomic
actions reduces the complexity involved in writing higher-level activ-
ities needed for automation scripts, making Puma code notably more
concise and maintainable (see Appendix A).

4.3.2. Adding app-specific actions

As mentioned in Section 4.2, each supported application is imple-
mented as a separate class with methods to perform app-specific actions.
These app-specific classes extend the AndroidAppiumActions ()
base class, which provides Puma’s general-purpose methods through
inheritance. Further details of implementing an app-specific actions in
Puma are provided in the project repository documentation and below is
a short description. Note that this detailed understanding of Appium is
needed for development of new app-specific support, but not for general
use of Puma.

In brief, development involves first identifying the corresponding UI
element before it can be interacted with. The former can be done by
calling Appium’s find_element () method, which searches for the
element in an XML representation of the UIL This method allows
selecting the element by different attributes, such as class name and
accessibility ID.

Apart from single attributes, elements can also be selected using the
XML Path Language (XPath), a query language allowing to query

9 https://github.com/NetherlandsForensicInstitute/puma.
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elements by their attributes in an XML document (World Wide Web
Consortium (W3C), 2025). This enables more complex queries, such as
selecting elements based on multiple attributes, their parent, or sibling
elements. Subsequently, the element can be interacted with in different
ways depending on the type of element. For instance, buttons are typi-
cally engaged through the execution of a click action, denoted by the
method click(); text fields are populated with text input using the
send_keys () method.

4.3.3. Location spoofing

A specific feature, ‘dynamic location spoofing’ is implemented in the
RouteSimulator () class. Puma offers this feature to facilitate the
simulation of movement along a requested route at a specified speed, as
Appium’s location spoofing is restricted to static locations. The speed at
which the route is traversed can be specified at any time during the
movement simulation to mimic more realistic movement patterns.

5. Demonstration

In the following section, we report on experiences and observations
of using Puma from November 2024 to May 2025, as part of the tool
testing process for Hansken. Puma enables us to validate that Hansken
supports the latest version of an application the day it becomes publicly
available. By using Puma actions on each new version, we can assess
whether Hansken’s parsing of the application data is still correct, or if
updates are needed. It allows the exact versions of applications sup-
ported to be specified.

To illustrate the use of Puma, we revisit the three use cases intro-
duced in Section 3.2 and discuss both outcomes and insights gained from
its real-world integration.

5.1. Initial data population

The first use case involves extending forensic tool support to extract
traces of a new application. This process starts with generating reference
data specific to the target application, which serves as a basis for vali-
dation. Incorporating a wide range of user actions during data genera-
tion is desirable to capture the diverse traces that these actions produce.

An example reference dataset created by Puma for WhatsApp can be
found in the repository, including the script used to create it. Listing 1
displays an excerpt of the script used for data synthesis. It includes
messages and pictures being sent between two users, with self-describing
message contents.

We observed that leveraging Puma for the purpose of initial data
population reduces errors associated with manual data generation and
enhances the reproducibility of reference data generation. This is
particularly valuable when it becomes necessary to expand the dataset
to cover additional application behaviors. For example, if an additional
feature becomes available in WhatsApp to send stickers, the code out-
lined in Listing 2 can be integrated into our existing scenario. Lastly, it

alice wa = WhatsappActions(device udid='emulator-5554")
bob_wa = WhatsappActions(device udid='emulator-5556")
alice wa.create new chat(
contact="Bob",
first message="This is the first message from Alice to Bob,"
"sent on 2023-04-12 at 13:35")
bob wa.send message(
message text="This is the first message from Bob to Alice,"
"sent on 2023-04-12 at 13:37",
chat="alice")
alice wa.send_media(directory name="tiger",
caption="This is an image of a tiger")
bob_wa.send media(directory name="elephant", view once=True)

Listing 1. Excerpt of a Puma script used for initial data population
of Whatsapp.
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alice wa.send_sticker(chat="Bob")
bob_wa.send_sticker(chat="Alice")

Listing 2. Expansion of Listing 1 with additional functionality for WhatsApp.

significantly reduces the time required for data generation as the process
is automated and the scenarios can be reused.

5.2. Post-update data population: application launch only

The second use case concerns the handling of updates to applications
that migrate their data to new formats following an update. Again using
WhatsApp as a case study, we observed it to be updated frequently. In
the aforementioned time frame of six months, there have been version
releases on 78 days (an average of three releases per week). This was
checked by automatically downloading the Android Application Pack-
age (APK) from the website of WhatsApp'® daily, and recovering the
version from it using the Android Asset Packaging Tool for Python3
(HuMoran, 2022).

In this scenario, the application was first updated on the test device
to the most recent version using the ADB command adb install
whatsapp . apk. Subsequently, the application was launched and then
closed, after which the database was extracted from the device using
adb pull database.db. This enabled the examination of whether the
underlying database schema had changed between versions.

In our tool validation workflow for Hansken, each step mentioned in
this scenario was performed automatically, requiring no manual inter-
vention. The interaction with the target application was scripted using
Puma, with only a single statement needed to simulate a user tapping the
application icon on the home screen, thereby launching WhatsApp on
the target device (see Listing 3).

Using the tool validation workflow, we have observed a high degree
of stability for the WhatsApp database schema. During a monitoring
period exceeding three years, from March 2022 to May 2025, the
schema had undergone only two notable changes that broke the support
of Hansken (see Table 2).

The schema update observed in version 2.22.14.70 was notable, as it
was applied at multiple different application versions on other devices
we use. This observation suggests that the change was not solely trig-
gered by the installed update, but was also pushed from the WhatsApp
servers. Further investigation was beyond the scope of our current study.

We also noticed that WhatsApp occasionally retracted previously
released versions of its application. In some cases, the revoked version
was replaced by an earlier one that had been available on the official
website. In other instances, it was substituted with a release that had a
lower build version number but a higher revision version number. These
insights are difficult to obtain without the automated framework.

5.3. Post-update data population: extended user actions required

The third use case addresses application updates for Telegram, which
we observed to be less frequent than those for WhatsApp. Still, the up-
dates occur regularly, with 22 updates recorded in the time frame
mentioned earlier (an average of approximately one update per week).
As with WhatsApp, this was determined by downloading the APK daily
from the Telegram website'! and extracting version information.

alice wa = WhatsappActions(device udid='emulator-5554")

Listing 3. Initialization of the WhatsApp application.

10 https://www.whatsapp.com/android.
11 https://telegram.org/android.
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Table 2
Example changes in Whatsapp detected by the tool validation workflow.

Date/version Details

2022-03-22, version
2.22.7.73

The default value for timestamps changed from null to —1.
This caused Hansken to interpret these as timestamps from
the date 1969-12-31.

2022-06-28, version
2.22.14.70

A major database schema change migrated the content of
the messages table to the message table with different
columns. The result was that Hansken was unable to
extract any messages”.

# An example of two versions of WhatsApp databases containing this schema
change is provided in the repository.

Despite the lower update frequency, each Telegram update was
observed to pose a greater risk of disrupting support in Hansken: there
were two breaking changes in six months. The broken support was
primarily due to the structural differences in how Telegram stores data
in its internal databases compared to WhatsApp. Specifically, when a
new version of Telegram is released, the database schema remains un-
changed and existing data is maintained in its original format. However,
new user data (e.g., a new message) is stored using a new BLOB layout,
with existing messages using the old format. This somewhat mirrors
changes in Messages from iOS 10 to iOS 11 retaining both old and new
timestamp formats within a single database (Barnhart, 2017). Scenarios
like these can be handled with the use of Puma to expand the data
post-update.

In this use case, the application was first updated to the latest
version. Subsequently, a series of Puma actions were executed to
simulate user interactions, such as sending messages or images and
initiating voice calls to populate the application’s database with data of
usage under the updated version. Once these interactions were com-
plete, the database was extracted from the device and analyzed to assess
whether the forensic tool continues to correctly parse the updated
Telegram data structures.

Fig. 2 illustrates a change between Telegram version 11.5.5 to
11.6.1 (released on 2025-01-02), which prevented parsing by Hansken
due to the updated header at the start (the first 4 bytes). This was
detected using Puma within 24 h of the update had been released.

5.4. General observations

In summary, the adoption of Puma has enabled a shift from manual
execution of validation scenarios on mobile devices to fully automated,
script-driven workflows. Previously, scenarios were documented as
textual instructions requiring manual execution. These have now been
replaced with clear, maintainable Python scripts, allowing efficient and
reproducible generation of reference datasets.

We have manually performed the process of generating reference
data in this context for years and found it to be both error-prone and
labor-intensive. Due to the need for multiple devices, thorough docu-
mentation, and growing complexity of application features, it often
required several hours of work by at least two people. With Puma, this
process can now be carried out in less than an hour by a single person,
with a reduced risk of error.

This transition has not only streamlined the creation of reference
data, but has also facilitated daily automated testing of Hansken,
particularly in relation to detecting application updates. It is difficult to
quantitatively assess the impact of this automation on the tool’s reli-
ability, due to the lack of systematic failure tracking prior to imple-
mentation. However, it is evident that this approach has improved our
ability to detect application updates breaking support of our forensic
tool. It has also improved our ability to respond to them in a timely and
consistent manner and provide clear indications of which versions of an
application are tested and supported.
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6. Discussion, limitations, and further work

This paper has described the automated dataset generation tool
Puma and demonstrated its use. It has also situated Puma within a
broader forensic tool testing workflow. While the demonstrations clearly
show its benefits, there are still limitations. This section discusses limi-
tations and future work of Puma, the tool testing workflow, and the
broader applicability.

6.1. Puma

While the benefits of using Puma have been shown in Section 5, there
are additional examples that have not been presented in this paper. To
illustrate these broader capabilities, an example script presenting the
interaction between two emulators, using multiple applications, is pro-
vided in Appendix B. It includes the use of Google Maps to demonstrate
the location spoofing functionality mentioned in Section 4.2 and shows
how Puma may facilitate the creation of arguably realistic, multi-
application scenarios, making it a valuable tool for training and
educational purposes. Its scripts are aimed at having good readability
and are easily adaptable, thereby reducing the barrier to entry for
simulating complex mobile interactions, even for users with limited
technical expertise.

Despite the benefits offered by Puma, it is important to acknowledge
that it may not always be the optimal choice for dataset generation. The
time required to develop Puma scripts should be weighed against po-
tential gains in efficiency and reproducibility. Table 3 outlines scenarios
where Puma offers advantages, as well as cases where manual ap-
proaches may be more suitable.

Furthermore, there are also specific limitations and further work for
Puma. Its interaction with applications is fundamentally dependent on
Appium, which leads to some inherited limitations. First, it requires the
development of custom automation scripts for each individual applica-
tion, preventing the use of generalized scripts for common actions across
multiple applications, such as sending messages in various chat appli-
cations, even when those applications exhibit similar UI patterns. There
are also occasional issues with the underlying Appium implementation,
e.g., due to differing loading times of application elements. Like all UI-
based automation frameworks, it is sensitive to differing “user jour-
neys” through applications, e.g., presenting a user agreement to accept,
popups describing new features, or the requirement to create accounts.
These currently need to be handled either with bespoke code or manu-
ally bypassed.

Additionally, the use of Appium leaves traces on the target device. In
the use cases presented in this paper, with its focus on trace extraction
validation, additional traces left by Puma can be disregarded (see Sec-
tion 3.1.1). However, other use cases, such as those discussed in Section
6.3, will need to identify, document, and potentially scrub those artifacts
if that is part of the alternative use case’s ‘realism’ requirement. For
example, in case of utilizing the location spoofing mechanisms, it might
be necessary to ensure that the application under test treats spoofed
locations equivalently to actual location changes, or to identify differ-
ences (as done by Demmel et al. (2024)) and assess their relevance for
the use case in which the synthetic data is employed.

Other limitations include that, while Puma handles updates to stored

Table 3
Comparison of conditions favoring Puma versus manual data generation.
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data well, some aspects of frequent mobile application updates remain a
challenge. In particular, any modification to an application’s UI, even
subtle or non-visible changes, can disrupt existing Puma scripts. While
this can cause initial issues, the code can evolve to handle multiple
versions of an application’s UL

To enhance the robustness of Puma, we plan to incorporate a finite
state machine capable of recognizing the current state of the application
under test. This would allow the framework to automatically detect and
respond to unexpected interface elements (e.g., pop-ups), or recover
from anomalous states by restarting the application or adjusting the
execution flow. The integration of such a state-aware mechanism would
improve Puma’s fault tolerance, particularly in complex or long-running
scenarios.

Finally, we are exploring the potential for integrating artificial in-
telligence (AI) into Puma’s architecture. Al-based techniques could
assist in navigating application Uls by reducing reliance on hard-coded
UI element identifiers, which are often subject to change during appli-
cation updates. Furthermore, this may enable the development of
generalized automation scripts capable of performing common tasks
across multiple applications, thereby overcoming one of the current
limitations of Puma’s design.

Other future work will focus on enhancing Puma’s functionality,
broadening its platform and application support, and increasing its
robustness and flexibility. The selection of additional applications
developed internally will be driven by practical requirements, particu-
larly those aligned with expanding the capabilities of Hansken. Appli-
cation support will be prioritized based on forensic relevance and
demand from investigative contexts. However, as the project is open-
source, with detailed documentation, other application support can be
added by the broader digital forensics community for any use case.

6.2. Forensic tool testing

Puma’s area of application lies within a broader tool testing archi-
tecture, as illustrated earlier in Fig. 1. The use case demonstrated in
Section 5.2 showed that for some applications, such as WhatsApp,
additional user actions are not required to update the application data
before extracting it for validation of a new application version. How-
ever, there are benefits to incorporating automated data generation in
this situation as well. For example, if a WhatsApp update introduces a
change such that Ul interaction is newly required to trigger post-update
behavior, the approach that omits UI actions would falsely report that
the forensic tool supports the latest version. In contrast, an approach
incorporating UI actions would correctly identify the breaking change.

There are other considerations within the broader architecture. An
example is identifying when an update is necessary. This is currently a
scheduled check every 24 h, triggering the re-evaluation process if the
application version is different. However, some applications may retain
the same version but require revalidation between releases if they
heavily utilize server-side data. This is particularly true when trace
extraction depends on API access records or internally cached artifacts.
Techniques for detecting these server-side changes would also be
beneficial.

Another aspect that was not explored was the synchronization of user
data of a user logged onto multiple devices. Since Puma can use any

Consideration ~ Puma-based data generation Manual data generation
Support Puma already supports the application or feature Requires weighing effort against Puma support development
Repetition Dataset will need to be generated repeatedly, e.g., across different testing cycles or ~ Dataset will only be created once

application versions
Data Volume
device configurations
Intrusiveness
concern

Large volume of data is required, potentially involving multiple applications and

Additional traces left by underlying automation framework (i.e., Appium) are not a

Only a limited number of simple actions are required

The dataset must closely mimic real-world conditions; automation
framework are unacceptable
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number of devices, in future work Puma can be used to investigate how
apps store such synchronized artifacts.

Puma is focused on generating reference data for Android applica-
tions. There is therefore an obvious need for a complementary approach
for i0S. Appium, which underpins Puma, also supports iOS, so it is
possible for new scripts to be created to perform automated data gen-
eration here too. We anticipate the reuse of substantial portions of the
existing Android-focused implementation, which would facilitate a
more efficient development process and enable Puma to support a wider
range of mobile devices and ecosystems.

While Puma is integrated into the validation workflow for Hansken,
it can be used to generate reference data for any forensic tool. In addi-
tion, the overall tool validation workflow can apply to any forensic tool,
but with caveats. For example, the ability to automatically extract traces
from the reference data is possible here because of direct access to the
internal capabilities of Hansken. Other tool developers would likely
have similar capabilities and the overall approach can be generalized.
However, if the validation needs to be performed in a forensic lab or by
another third-party, programmatic access to forensic tools is not always
available. However, with innovative approaches such as the use of
ForTrace++ for UI control of digital forensic tools as presented by
Rzepka et al. (2025), it is possible to test any GUI-based tool or plugins
developed for such tools. However, this solution is far from ideal, and
programmatic access (either API or command line) to tools would
preferably be available to perform validation. For output verification,
the output should be available in a standardized representation such as
the CASE ontology (Casey et al., 2017). Validation efforts would benefit
from demanding such requirements from all digital forensic tool
vendors.

The proposed approach of automated test data generation represents
a starting point for a much bigger potential research area: automating
digital forensic research. For example, it would be possible for the
overall system to detect schema changes in the database used by an
application and promptly disseminate this knowledge to the broader
community, rather than keeping it exclusively for tool testing. With
machine-readable ground truth, locating known items within a modified
database or dataset of other artifacts could also be possible, beginning
the process of automatically inferring trace locations. The Aardwolf
project offers a platform designed to facilitate the sharing of such
knowledge (Boztas et al., 2025).

6.3. Broader discussion

Section 4.2 described how high-level activities such as sending a
message are recorded as ground truth. This provides a further oppor-
tunity to enhance timeline analysis research involving the inference of
‘high-level events’ from lower-level timeline entries (e.g., Hargreaves
and Patterson (2012)). Combining the ground-truth logs with a timeline
generated from the test device could facilitate techniques such as ma-
chine learning to identify the expected artifacts for a given activity.

There is also the potential to use Puma beyond its current tool
testing-focused use case, such as for automated data generation for
teaching. However, it would be necessary to either determine the
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acceptability of Puma’s automation artifacts in the concrete teaching
context or to minimize their presence, e.g., by sharing only selected
portions of the mobile device datasets with students.

Another important direction involves the development of long-
duration scenarios and testing. These scenarios would simulate user
activity over extended periods, spanning multiple days, in order to
generate richer, more temporally diverse datasets. Such datasets could
better reflect real-world usage patterns and improve the ecological
validity of forensic validation procedures.

7. Conclusions

This paper has highlighted the need for digital forensic research to
provide practical solutions to the problems described as early as Gar-
finkel (2010) such as the dramatic increase in digital forensic tool scope
and complexity, and therefore the cost of their development and up-
dates. This is compounded by the update cycles and sheer number of
modern mobile applications.

To contribute towards addressing this challenge, this paper has
described the development of an automated testing workflow for a
major digital forensic tool implementation, and the creation of an
automation component to overcome many of the challenges in ensuring
that rapidly changing mobile applications are processed reliably by
automated forensic tools. It has also outlined some areas to further
enhance quality. The hope is that the digital forensic research commu-
nity can build on this work and develop practical solutions to improve
the overall results of automated digital forensic tools.
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Appendix A. Comparison of Python Appium and Puma code for sending a Telegram message

Appium code

driver = webdriver.Remote(command executor=appium_server,

options=options)
driver.activate app(app_id='org.telegram')
chat_row_elem = driver.find _element(
by=AppiumBy.XPATH,
value="//android.view.ViewGroup['Alice']"
)
chat_row_elem.click()
message text field = driver.find element(
by=AppiumBy.XPATH,

value="//android.widget.EditText[@Text="'Message']"

)

message_text_field.send_keys(value="Hello Alice!")

send_button_elem = driver.find_element(
by=AppiumBy.XPATH,

value="//android.view.View[@content-desc="'Send"']"

)
send_button_elem.click()

Puma code

bob_telegram = TelegramActions(device udid='emulator-5554")
bob_telegram.send message(message='Hello Alice!', chat='Alice')

Appendix B. Puma script for a more complex scenario
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