
 

Creating a standardized corpus for digital stratigraphic 
methods with fsstratify 

By: 

Julian Uthoff, Lisa Marie Dreier, Martin Lambertz, Mariia Rybalka, Felix Freiling 

From the proceedings of 
The Digital Forensic Research Conference 

DFRWS APAC 2025 
Nov 10-12, 2025 

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first 
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an 
informal environment.  
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to 
help drive the direction of research and development. 
https://dfrws.org 



DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC

Creating a standardized corpus for digital stratigraphic methods 
with fsstratify

Julian Uthoff a,* , Lisa Marie Dreier b , Martin Lambertz c , Mariia Rybalka c ,  
Felix Freiling b

a Hamburg State Police, Hamburg, Germany
b Computer Science Department, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
c Fraunhofer FKIE, Bonn, Germany

A R T I C L E  I N F O

Keywords:
Digital Stratigraphy
File Systems
Dataset Creation
Digital Forensics

A B S T R A C T

Digital stratigraphic methods aim to infer new information about digital objects using their depositional context. 
Many such methods have been developed, for example, to interpret file allocation traces and thereby estimate 
timestamps of file fragments based on their position on disk. Such methods are difficult to compare. We therefore 
present a corpus of NTFS file system images that can be used to evaluate these methods. The corpus comprises 
different categories, each extensively employing a small subset of file system operations to display their effect on 
file allocation traces. We demonstrate the usefulness of this corpus by evaluating the method of Bahjat and 
Jones (2019) that derives the timestamp of a file fragment from the timestamps of neighboring files. The corpus 
was generated using a revised version of fsstratify, a software framework to simulate file system usage. The 
tool is able to log the position of content data during file creation, greatly facilitating research in the realm of 
digital stratigraphy.

1. Introduction

Timestamps stored on digital media are an essential category of 
evidence used ubiquitously in digital forensic investigations. Using 
timestamps, for example, to create digital forensic timelines, is, 
however, often a cumbersome undertaking (Metz, 2021) because of 
clock skews, timezones and other context specific rules for their 
creation (Chow et al., 2007). While many approaches tackle these 
issues, any technique that relies on timestamps is bound to fail if no 
timestamps are available. Such situations can occur if files have been 
deleted and their file system metadata entries (including timestamps) 
have been overwritten with other data. For example, consider a case 
where investigators find several illegal but deleted files on the device 
of a suspect A and A claims that these files originated from a different 
user B who used the device before A started using it. Indeed, it would 
be helpful for the investigation if analysts could determine the cre
ation times of these files. But how can this be done if no timestamps 
are available?

In such cases, digital forensic analysis can build upon methods 
developed in other fields like archeology that also focus on questions of 
chronology but where timestamps are not as readily available as in file 
systems. In these areas, chronological information is inferred from the 
placement of objects relative to other objects. For example, in archeo
logical stratigraphy (Harris, 1989), objects found in a discernible exca
vation layer (stratum) can be dated in relation to other strata, the 
common case being that lower strata are older. These insights have 
inspired the digital forensics community to study the implications of file 
allocation traces: They can provide insight into “origin, composition, 
distribution, and time frame of strata within storage media” (Casey, 
2018), giving rise to the field of digital stratigraphy. In this paper, we 
focus on digital stratigraphic methods for chronology, i.e., the chrono
logical dating of file system data in contexts where critical timestamp 
data is either unavailable or not trustworthy. These provide, for a given 
digital object f, an estimation of the time when f was created, used or 
deleted. Ideally, aside from the time estimation, such methods also yield 
an estimation of reliability like a margin of error or error probability.
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1.1. Related work

Casey (2018) coined the term digital stratigraphy for digital forensic 
methods that take placement information into account in 2018. But 
placement information of data units especially from deleted files has 
been used for multiple purposes before. For example, Garfinkel et al. 
(2010) used this data as one source of information to determine the user 
that most probably created and used the file before deleting it. Several 
such methods have been proposed for chronological dating. Most of 
them, however, lack proper validation and reliability estimation. A 
prominent file fragment dating method was designed for NTFS (Bahjat 
and Jones, 2019) and FAT (Bahjat and Jones, 2023), but it was evaluated 
on disk images without a known ground truth.

Another method was proposed by Willassen (2008). He tried to infer 
the creation order of files by three properties: by their placement in the 
MFT, by an attribute counting how often the MFT entry was reused and 
by sequence numbers in order to find timestamps that were antedated. 
The approach’s evaluation was based on a small study, where four 
subjects with different technical skills had to antedate a file. While the 
description of the antedating process yields some knowledge about 
temporal relationships, it does not provide a real ground truth. In fact, 
Palmbach and Breitinger (2020) tried to re-implement this method but 
failed to confirm prior observations on a pre-determined scenario.

Other work has focused more on the placement strategies of file 
systems rather than chronological dating. Karresand (2023), for 
example, ran several virtual machines on a cluster and logged the 
$Bitmap file after each file system operation to understand how these 
operations (statistically) affect the placement of files in the file system. A 
greater emphasis on the temporal behavior of cluster allocation in file 
system drivers was placed by Schneider et al. (2024) who built the File 
System Activity Simulator (FSAS) (Schneider et al., 2024), a system that 
monitors file system activity at the driver level. A similar tool called 
fsstratify was developed independently by Bojic et al. (2020). In the 
present work, we extend and use fsstratify as FSAS was not yet 
available at the onset of our research.

1.2. Contributions

The lack of proper evaluation can be regarded as the Achilles’ heel of 
many digital forensic methods (Horsman, 2019). To alleviate this situ
ation in the field of digital stratigraphy, we contribute a dataset for 
chronological dating. More specifically, we provide a corpus of NTFS file 
system images which comes with detailed information about the ground 
truth, i.e., which file system operations happened when and in which 
way, such that the chronological circumstances of every bit on each 
image is known. The corpus is not intended to provide examples of 
representative file system usage. Rather our corpus, like other datasets 
for tool testing (Nemetz et al., 2018), can be used to benchmark and 
thereby compare different dating methods and tools.

We demonstrate the usefulness of the corpus by evaluating the dating 
method of Bahjat and Jones (2019) that attempts to estimate the crea
tion and deletion times of file fragments found in slack space from 
timestamps of neighboring files. These two estimations yield an 
approximation of a file fragment’s active lifetime, bounding it from 
below (lower bound, creation time) and above (upper bound, deletion 
time). To conduct a differentiated evaluation, we defined the measures 
of precision and accuracy as favorable properties in Section 4.1: While 
accuracy is the probability that the estimated value is within a certain 
bound of the true value, precision is the probability that the lower bound 
is in fact below the true creation time and that the upper bound is in fact 
above the true deletion time as defined. We show that, in general, the 
accuracy of Bahjat and Jones (2019) is rather low for both, lower and 
upper bound, on the data in our corpus and that the accuracy can be 
improved by a few minor adaptions. However, the precision of Bahjat 
and Jones (2019) is very good, in particular with regard to the upper 
bound. None of these insights could have been achieved without a 

dataset that has ground truth.
As an additional contribution, we take and modify fsstratify, a 

tool by Bojic et al. (2020), that is able to collect stratigraphic data about 
the placement of blocks on disk during file write and delete operations. 
The modified version of fsstratify is more robust than the previ
ously published version and was extended by the notion of data gener
ators that allow to define the content of files written. The updated 
version also now allows to control the time in which file system oper
ations happen.

The corpus with additional supplemental material (Uthoff et al., 
2025), the evaluation scripts (Dreier, 2025) as well as the code of 
fsstratify (Lambertz and Rybalka, 2025) are available online.

1.3. Outline

This paper is structured as follows: We first give some background on 
fsstratify and the modifications we made to the tool. We then 
introduce the corpus and the rationale behind it in Section 3. In Section 4
we use the corpus to evaluate the method of Bahjat and Jones (2019) for 
file fragment dating. We discuss our results in Section 5 and conclude in 
Section 6.

2. Revising fsstratify

The idea of fsstratify (Bojic et al., 2020) is to execute different 
file operations and to record the resulting changes in the file system in a 
log file. The framework performs the operations using the file system 
implementation of the operating system it runs on. By using the same 
simulation scripts on different operating systems, we can evaluate and 
compare the behavior of their file system implementations and pecu
liarities introduced by the operating systems. Tracking changes of the 
on-disk representation of the file system allows detailed analyses of the 
allocation strategies and the behavior of metadata properties such as 
timestamps. This makes fsstratify particularly useful for digital 
stratigraphy, as presented in this paper, and also for generating data sets 
for file carving evaluations.

Fig. 1 illustrates the functionality of the framework on a conceptual 
level. fsstratify performs predetermined actions (file operations) on 
mounted file systems to create aged file systems. The sequence of file 
operations to execute is specified by so-called playbooks. A playbook is 
essentially a script with one operation per line. Playbooks can be written 
manually or generated on the fly based on usage models. After every 
executed action, i.e., after every file system operation, the file system 
analyzer parses the file system and logs any changes to the state of the 
file system. The changes logged include information about the currently 
used clusters and metadata about the files, such as timestamps.

The following sections provide more details on each component, 
highlighting important aspects and design decisions. Note that the 
framework is highly modular, and almost all components can be 

Fig. 1. Conceptual overview of fsstratify.

J. Uthoff et al.                                                                                                                                                                                                                                   Forensic Science International: Digital Investigation 54 (2025) 301986 

2 



changed, extended, or configured.

2.1. Simulation volumes and file system analyzer

fsstratify uses a simulation volume to format a file system on. 
The framework supports different volume types for its simulations. The 
simplest type is the file-based volume, where a file in the host file system 
is used, but simulations on actual partitions or hardware disks are also 
supported. While the former is more convenient, the latter commonly 
enables larger volume sizes.

In a typical simulation, the volume is initialized before executing any 
operations. This initialization involves formatting the volume with the 
desired file system using the specified parameters, ensuring a clean and 
consistent file system state at the start of the simulation. However, there 
are scenarios where using a pre-existing, non-pristine (or “dirty”) vol
ume is preferable, such as when the outcome of one simulation is 
intended to serve as the starting point for subsequent simulations. To 
support such use cases, fsstratify allows simulations to utilize 
existing dirty volumes and retain volumes after a simulation is 
completed.

Parsing the on-disk structures of a file system to obtain information 
about allocated clusters and file metadata is a complex task. In its initial 
version, fsstratify used the popular analysis software The Sleuth Kit 
(TSK)1 for this purpose. Because TSK’s NTFS parser repeatedly crashed 
simulations, we replaced TSK with the tool dissect.2 This framework is 
written purely in Python, greatly enabling its cross-platform portability.

2.2. Playbooks and operations

Playbooks define the operations to be carried out on a mounted file 
system. The operation syntax is similar to well-known command line 

utilities, easing the reading and writing of playbooks. Fig. 2 shows a 
typical execution of a playbook where playbook commands like write 
and rm are given on the left. On the right, typical results of the playbook 
commands are depicted, i.e., sequences of data units that were allocated 
or deallocated during that step. These are extracted by the file system 
analyzer and logged to a file. The projection of all data units to the most 
recently recorded change for a step results in the stratum of that step.

The playbook commands are implemented using functionality pro
vided by the Python standard library, which, in turn, uses the operating 
system interfaces. This approach ensures that the behavior of the file 
system driver of the operating system under test is reflected in the 
simulation results. This also maintains the artifacts generated by other 
parts of the operating system like setting timestamps.

In the original fsstratify, data-writing operations like write 
and extend used randomly generated data, which benchmarking 
revealed as the primary performance bottleneck. To mitigate this, we 
introduced data generators. These generators let users define the type of 
data to write during simulations. To ensure backward compatibility, we 
implemented a random data generator reflecting the original 
fsstratify behavior. Additionally, we implemented a generator 
writing an easy-to-identify pattern. The pattern consists of the file name, 
an incrementing number for each 512-byte chunk of a file, and a static 
byte filling the remainder of the fragment. We used this pattern-based 
generator for our data set, as it enables effective downstream 
compression of disk images and simplifies manual analysis of the raw 
data.

The operations available in the initial fsstratify version only 
employed file-modifying functionality and did not interact with the 
operating system in any other way. While this eases running simulations 
on regular systems and avoids the necessity of dedicated simulation 
systems, we found that the operations were carried out in too close 
succession. We wanted to be able to control the temporal difference 
between two file operations or, more precisely, the time-related meta
data caused by the operations. We implemented this as an additional 
sleep command which waits for a desired time before executing the 
next operation. While having no side effects, using this approach 
dramatically slows down the simulations. As such, we implemented an 
additional time command which sets the system time of the operating 
system running the simulation to a specific value. This command may 
cause side effects within the operating system (Vanini et al., 2024), so it 
must be used carefully. Still, we used it in our experiments since the 
simulation volumes do not contain operating system files or files written 
by other programs.

2.3. Differential logs

fsstratify records the changes to the file system after every 
simulation step in a machine-readable format. Log lines contain the 
information necessary to infer the state of the file system at any given 
step during the simulation. The recorded information includes the 
executed operation with its parameters and the files and directories it 
affects. An operation affects a file when its allocated data units or its 
metadata changes. Metadata changes include not only facets like 
updated timestamps but also changed paths. When a directory is moved, 
for example, all files in this directory will be affected. The exact behavior 
can be configured with simulation parameters.

For each of the affected files their currently allocated data units are 
logged. Moreover, fsstratify includes various file system metadata 
about the files, such as MACE timestamps. These are file system time
stamps that save each file Modification, Access, Change and metadata 
Entry change. All metadata logged depends on the file system under test, 
as not all file systems use the same set of metadata.

3. Introducing the corpus

We now present the forensic corpus for temporal analysis. It is a 

Fig. 2. Playbook commands (left) and views of the changes in the allocated 
data units after executing the commands with fsstratify (right). The pro
jection of all blocks to the latest recorded changes for a step yields the stratum 
of the final step.

1 https://www.sleuthkit.org/sleuthkit/.
2 https://github.com/fox-it/dissect.
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corpus of 74 disk images, each containing a single NTFS file system, 
structured into 12 categories that resemble typical problem scenarios for 
digital stratigraphy. The objective is not to create data that is in any way 
realistic or representative of real-world usage but rather to create test 
data sets for which a ground truth of data creation exists. Therefore, the 
file content contains byte values devoid of any intrinsic meaning.3 No 
other file types like video or audio formats were employed when writing 
to the disk images. As a result, the files do not contain any information 
that could be considered privacy relevant and would need to be 
anonymized.

3.1. Creating the corpus

The disk images vary in size (500 MB, 5 GB and 50 GB) and were 
created using two different operating systems (Windows 11 and Ubuntu 
24.04). Files and directories were created and populated in random 
fashion, with file sizes varying between approximately 2000 bytes to 
over one gigabyte. The results therefore reflect the behavior of the 
respective file system driver during various file operations and across 
different disk sizes. We generally used the default settings but disabled 
the trim command as trim wipes the slack space of files, which zeroes all 
fragments. For some of the image files in the corpus, a longer period of 
utilization was simulated by adjusting the system time. The file opera
tions were conducted over a simulated period of up to three years.

We structured our corpus into one directory per category, each 
containing one directory per image. Still, the corpus contains additional 
information for each image: the Simulation.playbook (containing the 
fsstratify operations) and the Simulation.yml (containing the configu
ration of fsstratify). Both are needed to recreate the corpus. Additionally, 
we added the Simulation.strata, which is the log fsstratify creates during 
running the scenario. It contains the ground truth, e.g., creation time
stamps and allocated blocks for each operation.

3.2. Corpus categories

As mentioned above, the corpus is structured into a total of 12 cat
egories that resemble typical problem scenarios for digital stratigraphic 
methods, i.e., circumstances where files have been deleted, expanded, 
copied, moved or overwritten. Note that, since all simulations were 
performed on a single file system, file moves are equivalent to renames 
and do not involve copying the original data. The following briefly de
scribes the circumstances and rationale of each scenario.

Category 01: File creation until disk space is used up.
In the first scenario, files were written until the disk was filled to 

capacity. This setup is intended to demonstrate how the NTFS driver 
manages write operations under disk saturation conditions. As the 
allocation behavior of some file system drivers change in such a context, 
this category ensures digital stratigraphic methods can deal with it.

Category 02: Deleted files.
In the second scenario, the file systems were initially populated with 

a variety of files through the use of the write operation. Subsequently, 
files were deleted at different locations within the file system. In most 
cases, files were solely marked as deleted, but not overwritten, so the file 
content can still be located within the file system. Such image files can 
be employed to ascertain the date of deleted files.

Category 03: Write Operation - Deleted file fragments.
The third scenario extends the procedure described in the second 

scenario. The contents of the deleted files were overwritten with new 
data, rendering only fragments of the deleted file contents recoverable. 
Due to the overwriting process, the deleted file contents are no longer 
located solely in the unallocated file system area; fragments are now also 
within the slack space of newly written files. This scenario permits the 

dating of deleted files in both the unallocated regions of the file system 
and in the file slack of other files. Given that only the write operation 
was utilized to create files in this instance, it is possible to conduct a 
detailed examination of the specific effects of this operation.

Category 04: Copy Operation - Deleted file fragments.
In the fourth scenario, an initial set of files was created using the 

write operation before a large number of files were generated by copying 
existing ones. Additionally, many of these files were subsequently 
deleted and overwritten, producing fragments of deleted files. Since the 
access timestamp of the source file is updated during copying (Chow 
et al., 2007), the resulting timestamps of the deleted file fragments may 
differ from those observed in the third scenario.

Category 05: Move Operation - Deleted file fragments.
The idea of this scenario was consistent with that of the fourth sce

nario, except that most existing files were relocated to varying di
rectories using the move operation instead of copying them. As in the 
preceding category, the goal is to ensure that a large number of files in 
the file system are affected by the move operation, thereby testing the 
effects of this operation.

Category 06: Extend Operation - Deleted file fragments.
In the sixth category, the strategy focuses on the extend operation: 

The strategy of creating a group of files and then extending each of them 
was repeated multiple times, with specific files being deleted at desig
nated positions. This category distinguishes from the others regarding 
timestamps as the extend operation results in a comprehensive update of 
all timestamps except the creation timestamp. Furthermore, the alter
nating recreation and extension of files results in a higher degree of file 
fragmentation than that observed in the third scenario.

Category 07: Overwrite by write operation.
This scenario addresses the process of overwriting existing files. 

Therefore an initial group of files was created. But rather than deleting 
existing files, new data was stored under file names that already existed 
in the file system, thereby overwriting existing files. It is usually ex
pected that the timestamps are updated, except for the creation time. 
When overwriting, we ensured that not all of the file content was always 
overwritten, resulting in the persistence of fragments of the previous file 
within the file system. We overwrote files in disparate locations within 
the file system to evaluate the behavior of file dating methods at varying 
positions within the file system.

Category 08: Overwrite by move operation.
As in the seventh scenario, existing files in the file system were 

overwritten, creating unallocated file fragments. However, no new files 
were created while overwriting; instead, the contents of existing files 
from the file system were moved to an existing destination file. Again, 
we expect that the timestamps are updated, except for the creation 
timestamp. The behavior during cluster allocation may differ from that 
observed in the seventh scenario, which could result in disparate out
comes when calculating the creation dates of deleted file fragments.

Category 09: Overwrite by copy operation.
As in the seventh and eighth scenarios, the overwriting of existing 

files resulted in the generation of unallocated file fragments within this 
category. However, the overwriting was conducted by copying existing 
file contents to a destination file with a file name already existing. Since 
we are not aware of any systematic research that has studied this situ
ation, we added several images to the corpus as additional challenges for 
chronological dating of unallocated fragments.

Category 10: Fragmented files.
This scenario focuses on creating file systems with a high degree of 

fragmentation. If the content of files is stored in multiple fragments, the 
file system will automatically show a greater interlacing of files. Dating 
methods, such as that of Bahjat and Jones (2019), calculate creation 
dates based on the creation timestamps of neighboring files. A greater 
degree of interlacing is likely to produce different results than with 
non-fragmented files. To achieve a high degree of fragmentation, we 
have pursued the following strategy in this category: First, the disk was 
filled to a high degree with files using write commands. Afterwards, a 

3 To facilitate analysis, the files still contain the file name at regular intervals, 
though.
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group of operations was repeated: deleting two non-adjacent files and 
writing a new file, which is either slightly smaller or larger (if space 
allows). This way, every new file is at least fragmented into two frag
ments as not enough space is available to write it consecutively.

Category 11: Manipulated timestamps.
Assume we can determine the temporal relationships between files 

based on their positions in the file system. In that case, it should also be 
possible to identify manipulated timestamps by examining the position 
of a file. As Casey (2018) notes, stratigraphic analysis can be a valuable 
tool for detecting timestamp manipulation. While there is currently no 
research in this area, image files have been created to test this hypoth
esis. In these corpus files, the timestamps in the metadata were manually 
manipulated for several files at different positions in the file system. 
While we could have chosen any category as basis for the manipulation, 
we’ve decided to build on the strategy of the first category as it the 
simplest.

Category 12: Manipulated timestamps in fragmented files.
In the final scenario, the timestamps of files were again altered at 

various points within the file system. Compared to the previous cate
gory, the file system was highly fragmented before the manipulations, 
analogous to the tenth scenario. It is presumed that identifying altered 
timestamps of fragmented files is more challenging than in the eleventh 
category due to the interlacing of files within the file system.

4. Leveraging the corpus for digital stratigraphic analyses

In this section, we use our corpus to re-evaluate the file fragment 
dating method proposed by Bahjat and Jones (2019). Originally, Bahjat 
and Jones evaluated their method on the “M57 Patent digital corpora 
built by the Naval Postgraduate School” with reference to Garfinkel et al. 
(2009), considering only a subset of the images, namely “Pat’s drive.” 
This corpus does not provide a ground truth, but Bahjat and Jones try to 
estimate the ground truth from the 17 snapshots of Pat’s drive over time. 
Still, we argue that our corpus can improve their evaluation because 
having a known ground truth improves the evaluation’s reliability.

We include various variants of the method of Bahjat and Jones and 
also classical estimation approaches in Section 4.3 to show that our 
corpus is valuable for comparing different methods. Furthermore, we 
refined the evaluation methodology by introducing accuracy and pre
cision metrics and by distinguishing lifetime estimation and lifetime 
bounding.

4.1. File fragment dating

File fragment dating is typically used when a fragment of file f is 
found in the slack space of another (active) file ω and the investigator 
needs to assess the “lifetime” of the original file f, meaning the true value 
τ of the creation time of f and its deletion time δ. There are two variants 
of the file fragment dating problem. 

Definition 1. (Lifetime estimation) Estimate the lifetime of f as 
precisely as possible, i.e., give estimations c of creation time and d of 
deletion time of f such that |c − τ| < ϵ and |d − δ| < ϵ for small ϵ.

Definition 2. (Lifetime bounding) Estimate bounds on the lifetime of 
f as precisely as possible, i.e., determine values c and d such that c ≤ τ 
and δ ≤ d and that τ − c and d − δ are minimal.

Note that lifetime bounding adds an additional constraint to lifetime 
estimation, namely that both estimations need to be strict bounds, i.e., 
the estimated creation time c must be below the true creation time τ and 
the estimated deletion time d must be after the true deletion time δ.

As both types of file fragment dating have different goals, they need 
to be evaluated with different metrics. For this, we define the following 
three metrics. 

Definition 3. (Accuracy) The accuracy of the calculated value is its 
absolute difference from the true value.

Definition 4. (Precision of lower/upper bound) An estimated lower 
bound is precise iff it is below the true value. An estimated upper bound 
is precise iff it is above the true value.

4.2. Bahjat and Jones explained

Bahjat and Jones (2019) performed lifetime bounding, meaning they 
estimated a lower and an upper bound for the creation and deletion 
times of a file fragment. They roughly outlined their method in their 
paper, but they did not provide an actual implementation. For that 
reason, we re-implemented it based on our interpretation of the method 
as outlined in the following.

Bahjat and Jones define the slack owner as “the file occupying the 
first sector of the evidence file”. We interpret this as the active file, that 
has the file fragment in the slack space of its (last) cluster. Based on the 
concept of slack owner, Bahjat and Jones (2019) calculated the upper 
bound (of the deletion time) as the “maximum of the eight dates found in 
the Slack-Owner [sic]”. Our interpretation of this method is given as 
pseudo code in Fig. 3.

Even though not directly explained in the paper, we assume that the 
reason for taking the maximum of all timestamps instead of the 
maximum of the two creation timestamps in the Filename and Standard 
Information Attribute lies in the following fact: some file operations (e. 
g., copy) change the file content’s location but not the creation time
stamps under certain circumstances, e.g. when file tunneling is triggered 
or when a file is copied to an already existing file name and overwriting 
it (Bouma, Jonker, van der Meer and Aker, 2023). Thus, taking the 
maximum of all timestamps should give a highly precise albeit not 
necessarily particularly accurate upper bound.

To calculate the lower bound, two further concepts need to be 
introduced: the estimated creation time and the k nearest neighbors. Firstly, 
the estimated creation time (also called “TrueDate” and sometimes 
“TrueCreate” by Bahjat and Jones) is used as the ground truth in their 
evaluation as well as for calculating the lower bound. They distin
guished between a file created on the disk and a file transferred from 
outside the disk and took either the file’s creation date or its modifica
tion date respectively as the estimate. Fig. 4 shows our interpretation of 
the algorithm in pseudo code. Since we have a ground truth available in 
our corpus, we use this approach to calculate the lower bound in the 
evaluation.4

Secondly, the most central concept used by Bahjat and Jones (and for 
some variants introduced in Section 4.3) is determining the k nearest 
neighbors. Our interpretation of the algorithm doing so is shown in 
Fig. 6. There, Bahjat and Jones searched for the k nearest (in regards to 
disk position) files with the following properties: 

• At least one of their data runs precedes the fragment on disk.
• Their estimated creation time is earlier than the “upper-bound date” 

of the fragment.

Fig. 3. Pseudo code of calc_upper_bound

4 According to Bahjat and Jones the conditional statement in Fig. 4 should 
only be relevant for files coming from an external disk. Rather unexpectedly, we 
found files that triggered this condition in our corpus although we do not have a 
category that copies files between volumes. Upon closer examination, this 
condition was true only for exactly two files that seem to be related to the 
process of adding the disk as external disk in the simulation.
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While not directly explained in the paper, we understand the ratio
nale behind this choice of properties as follows. First, NTFS drivers 
mostly fill a disk from lower sectors towards higher ones. Hence, 
limiting the neighbors to the preceding ones should generate a better 
precision of the lower bound as the files should typically have been 
created before the file fragment. Still, using the disk from lower to higher 
sectors is only a general rule with file deletions causing many excep
tions: When a file is deleted, the clusters containing its content are 
reused at some point, often creating areas where position and creation 
time do not directly correlate to their neighbors. The second condition 
attempts to detect this and therefore neglects neighbors that have a 
creation time later than the upper bound. This ultimately means that 
they were created after the original file was deleted, and therefore (by 
definition of the upper bound) after the slack owner was created.

Bahjat and Jones finally sought to determine the lower bound as 
follows (also shown in Fig. 5): They calculate the average of the esti
mated creation time of the 10 nearest neighbors. They picked k = 10 
because they found that “10 neighbors are sufficient to calculate the 
average and the average does not drop significantly by adding more 
nodes”(Bahjat and Jones, 2019).

4.3. Variants and alternative approaches to file fragment dating

To show that our corpus is not adjusted for one particular method, 
we decided to additionally evaluate some variants of the bound esti
mations presented in Section 4.2. We took a naïve approach to an 
alternative upper bound and varied the estimation approach built upon 
the k nearest neighbors for the lower bound.

Overall, we considered two approaches to estimating the deletion time 
of the fragment: 

• Bahjat and Jones’ upper bound (BJ) as described in Section 4.2.
• naive upper bound (naïve): Instead of taking the maximum of all 8 

timestamps of the slack owner, we only use the maximum of the 
creation timestamps in the $STANDARD_INFORMATION attribute 
and the $FILE_NAME attribute. That way, the precision will likely be 
somewhat lower as factors like file tunneling may maintain a crea
tion time which is “too early” for the position, but the bound still 
could yield a higher accuracy if the majority of operations changing 
the position of the file content also changes the creation timestamps.

We also considered the following five variants and classical estima
tion approaches to estimating the creation time of the fragment: 

• average (by Bahjat and Jones) (avg) as described in Section 4.2.
• median (med) is an adaption of the method by Bahjat and Jones 

where the median of the creation times of the k nearest neighbors is 
used instead of the average. In this way we hope to achieve an in
crease in precision as the median is mathematically less affected by 
outliers.

• minimum (min) is a similar adaption of the method of Bahjat and 
Jones using the minimum of the k nearest neighbor creation times 
instead of the average. The idea of this method is that an outlier with 
a timestamp later than the creation time can only influence our 
estimation if no earlier neighbor exists. This should be highly precise 
but we expect to have a significantly lower accuracy than for the 
other methods as the oldest neighbor is not necessarily a good esti
mation of the fragment’s creation time. For this reason, this method 
might be better suitable for lifetime bounding than for lifetime 
estimation.

• linear regression (linReg) uses a simple linear model to project the 
slope of the rising flank of creation times to predict the creation time 
of the slack owner. The method approximates a line by fitting it to 

Fig. 4. Pseudo code of estimate_creation

Fig. 5. Pseudo code of calculate_lower_bound

Fig. 6. Pseudo code of nearest_neighbors

Fig. 7. Linear Regression between start cluster and estimated creation time: A 
linear model (red line) is approximated from the 10 nearest neighbors (points), 
through which the creation time can be estimated based on its start clus
ter (arrows).
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the disk positions and the estimated creation timeof the k nearest 
neighbors as shown in Fig. 7.

• linear regression within interquantile range (linRegQuant) is an 
adaption of linReg that attempts to reduce the effects of outliers by 
trying to exclude them: Instead of considering all 10 nearest neigh
bors, we only take those in the interquartile range, i.e., 25 % of the 
data above and below the median.

4.4. Results

This section presents the results from the evaluation of different file 
fragment approaches described above using our corpus. Our evaluation 
only uses images from the corpus that contain file fragments, specifically 
those in categories 03 to 10 created on Windows. The images created on 
Ubuntu did not create fragments in the slack space, instead the slack 
space was zeroed out. As discussed in Section 4.1, we use precision and 
accuracy as metrics to assess how suitable each method is for lifetime 
estimation and lifetime bounding.

4.4.1. Evaluating the upper bound
Fig. 8 shows the results for the accuracy of the upper bound using BJ 

and naïve. The horizontal axis plots the accuracy interval ϵ as the per
centage of the disk runtime within which the estimated bound is 
considered accurate. This should lead to a monotonic increase in the 
measurements as a larger interval can only cause more fragments to be 
dated accurately. As shown in Fig. 8, the graph for BJ increases much 
faster than that of naïve, so its accuracy is clearly better.

In comparison to the original paper, the accuracy of BJ increases 
faster: In the original paper, the accuracy is over 80 % based on a in
terval of ±5 days around the correct date being considered “accurate” 
(Bahjat and Jones, 2019). With the scenario having a runtime of 33 days, 
this equates to around ±15 % runtime, whereas the graph is above 90 % 
accuracy within a deviation interval of ±15 % runtime. The reason for 
this appears to stem from the way in which we created the corpus since 
we focused on one file creation method per category.

When calculating the precision of BJ, we found that it is precise in 
almost 100 % of all cases. The precision of naïve, however, is much more 
diverse: it ranges from 9.5 % to 80 %, depending on file or category. This 
makes the BJ the better choice for lifetime estimation as well as lifetime 
bounding.

4.4.2. Precision of the lower bound
We now evaluate the precision of the lower bound. The results are 

depicted in Fig. 9. The horizontal axis shows the number of neighbors k 

with respect to the percentage of estimations that are precise. Here, min 
clearly outperforms the other algorithms in terms of precision. This is 
not unexpected: A fragment is precisely bounded if—among all its 
nearest neighbors—it contains at least one neighbor that was created 
before the fragment, which is the case for a majority of fragments. It 
even performs so well that we decided to look at the raw data. Here, it is 
evident that the method (when considering at least 20 nearest neigh
bors) has a precision of 100 % for all categories but category 10, which 
was specifically designed to contain a huge amount of fragments. This 
shows that our corpus was designed in a way so that it covers relevant 
edge cases.5

Overall, no other approach comes close to the precision of min, even 
though med has a high precision as well. It is followed by linRegQuant 
and avg, with their order depending on the question of which upper 
bound is used to restrict outliers if any. This is because avg and linReg 
profit from using any upper bound (especially naïve) to restrict outliers 
as the outliers’ estimated creation time is higher than the upper bound. 
While every approach at least minimally profits from using naïve as an 
upper bound, avg and linReg appear to have been greatly influenced. 
avg increases its precision by more than 20 % and linReg, which showed 
the worst performance for precision, started to show a trend: while it 
was only fluctuating when adding more neighbors without any upper 
bound, it started to show a maximum around 10 %–20 % and stayed 
equal at a high number of 50–100 neighbors. This is untypical as an 
increase is the expected behavior for a good file fragment dating 
method: Adding more neighbors should primarily add more older 
neighbors, which decrease the estimated date and thus increases the 
precision of the lower bound. Not having such an increase is a sign that 
the influence of outliers outweighs the influence of the neighbors 
created before the fragment.

4.4.3. Accuracy of the lower bound
Fig. 10 gives an overview of the results for the accuracy of the lower 

bound using 20 nearest neighbors for different methods. Here, min 
clearly performs worst, which was expected: Taking the minimum of the 
k nearest neighbors typically underestimates the true creation time. This 
gives a high precision as seen earlier, but at the detriment to accuracy. 
All the other approaches perform somewhat similarly in a margin of 10 
%–20 % accuracy rating.

Looking at the different plots in Fig. 10 also shows the influence of 
restricting outliers with different upper bounds: Using any of the two 
upper bound approaches to restrict outliers improves the accuracy 
compared to no outlier restriction at all for most approaches. But how 
strong this influence is depends on how stable the approach itself is 
against outliers. While linReg and avg, which are both heavily influ
enced by outliers, clearly improve their accuracy, med and min, which 
are mathematically robust to outliers, are only marginally affected. The 
fact that linRegQuant improves only marginally shows that using only 
the neighbors within the interquantile range for the estimation already 
restricts the outliers effectively.

There is only one of our approaches, min, that even has a slightly 
negative effect on accuracy when restricting outliers: with less outliers 
among the neighbors, minimum takes more older neighbors into ac
count, which lowers its estimation leading to a slightly less accurate 
result.

Comparing naïve to BJ yields another interesting insight: even 
though BJ outperforms naïve in terms of accuracy and precision, their 
suitability for restricting outliers is comparable in terms of accuracy. 
This seems counter-intuitive at first but can be easily explained: naïve 
has lower precision, so it sometimes excludes neighbors that were 

Fig. 8. Accuracies of the upper bounds.

5 In fact, additional plots show that category 10 yields a significantly lower 
precision than the other categories for every method estimating a lower bound 
in our experiments. These additional plots are published together with the 
corpus (Uthoff et al., 2025).
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created before file fragment was deleted. This benefits methods that 
slightly overestimate the true creation date, e.g., linReg or avg, but 
slightly penalizes methods underestimating the date, e.g., min.

We now turn to the influence of the number of k nearest neighbors on 
the lower bound accuracy. The results are shown in Fig. 11 for a devi
ation of ±20 % of the runtime of the disk image. We expected the 
following behavior: For low numbers, the accuracy should improve with 

an increasing number of neighbors because outliers have less of an in
fluence than the “intended” neighbors. But for a high number of 
neighbors, there should be a point where the accuracy starts to decrease 
because the “intended” neighbors become older as more of them are 
added; thus, the estimated creation date starts to decrease.

In fact, both effects can be seen for the majority of the approaches: 
For avg, med, linReg and linRegQuant, the accuracy starts to increase at 
first and starts to decrease at individual points: the optimal k varies 
between 10 and 50 for the these methods. Only min seems to decrease in 
accuracy directly with more than 2 neighbors. This is likely because the 
outliers are only impactful if no “intended” neighbor is part of the k 
nearest neighbors. At the same time, neighbors becoming older has a 
tremendous effect. As such, the optimum is so early that any increase in 
the beginning remains unnoticed.

4.5. Summary of results

To summarize our results, we can conclude that BJ outperforms 
naïve in terms of accuracy as well as precision and can thus be regarded 
as the better option for lifetime estimation as well as for lifetime 
bounding.

For the lower bound approaches, we must differentiate: min has a 
very high precision and is thus the best candidate for lifetime bounding 
despite its low accuracy. But from our results it seems hard to achieve a 
really high accuracy and do lifetime estimation really well. While there 
are clearly worse ways to calculate the lower bound, there is no clearly 
better method than Bahjat and Jones.

Fig. 9. Precisions of various methods for estimating the lower bound in relation to k neighbors.

Fig. 10. Accuracies of various methods for 20 neighbors.

Fig. 11. Accuracies of various methods considering varying k with a deviation 
of ±20 % of the complete runtime of the image using BJ.
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5. Limitations

As presented in the previous section, the corpus has greatly facili
tated the way in which file fragment dating in general and Bahjat and 
Jones (2019) in particular can be understood. Because it maps com
mands in the playbook to instructions for a concrete file system imple
mentation, the results of the measurement should be authentic and 
incorporate special behavior like file tunelling.

By no means was the corpus constructed to represent typical, i.e., 
representative, file system activity. For this, information on how often 
which file system operation is executed in practice is missing. The 
dataset of real world disk images collected by Garfinkel et al. (2009) is 
large but lacks ground truth information about what really happened. In 
contrast, our corpus is rather homogeneous regarding file operations per 
category, a fact that clearly influences measurements. Having corpus 
categories that attempt to mix file operations and run longer would be 
more challenging for lifetime bounding methods, but finding good 
measures for representativeness is a research challenge in itself. Still, our 
corpus is useful for showing the effect of certain operations on the 
chronology of file fragments.

Despite the large number of images in the corpus, it still lacks several 
scenarios that represent typical edge cases for file fragment dating, e.g., 
images after applying defragmentation or images containing files that 
were copied from other disks. We limited our corpus to operations that 
are connected to file creation even though other operations (like file 
renaming) may influence timestamps as well.

An additional limitation of the corpus may be the relatively small 
number of files and file operations used to create the individual images. 
While this can be easily increased (by downloading the playbook files, 
extending them and rerunning the experiments with fsstratify), we 
believe that the effects of individual classes of file operations on file 
fragment dating can be readily observed. This is also evident in the 
differentiated discussion on the file fragment dating method from Bahjat 
and Jones (2019) in Section 4.

6. Conclusion

In this paper, we presented a slightly refined version of the fsstra
tify tool and used it to produce a corpus of NTFS file system images for 
testing and evaluating digital stratigraphic methods. The corpus covers 
homogeneous edge cases of file system operations and can therefore be 
used to benchmark and compare different methods because it comes with a 
ground truth. We demonstrated the usefulness of the corpus (and indirectly 
of the tool that created it) by evaluating the dating method of Bahjat and 
Jones (2019) and comparing it to slight variations of it.

Future work should expand the corpus and consider further edge 
cases like copying files across volumes or the application of defrag
mentation operations. Images with a representative mixture of many file 
operations would also be helpful, although a proper definition of 
representativeness remains absent.

Regarding fsstratify, we are implementing features allowing 
external files to be included in a simulation, which is relevant when 
fsstratify is used to generate data sets to evaluate file carving or 
other data recovery methods. Moreover, we want to include complex 
operations reflecting more high-level events. Such events include actions 
like “an editor saving a file” that comprise more than one of the oper
ations described here (e.g., write the new content to a temporary file and 
move it to the original file). Operations like these ease the evaluation of 
effects like file tunneling, which Casey (2018) has already observed in 
his work, where he introduced the concept of digital stratigraphy.

Apart from complex operations, encryption is another interesting 
problem to tackle. Currently, fsstratify does not support encryp
tion—neither at the volume level (e.g., via LUKS) nor file system 
inherent encryption, as provided by, for example, ZFS. However, 
incorporating encryption support at both levels is feasible without 
requiring changes to the core architecture of fsstratify, and this 

enhancement is planned for a future release. For the evaluations pre
sented in this paper, encryption has only a limited impact. The method 
of Bahjat and Jones needs three types of information: knowledge of the 
existence of an interesting fragment in a certain block, the location of 
files, and the timestamps of neighboring files. With file-based encryp
tion, this metadata is often accessible without the key; with volume- 
based encryption, the key is generally required. In controlled experi
ments as we conducted them, the key is known; in real-world in
vestigations, the key is a prerequisite for most analyses—Bahjat and 
Jonesis no exception in this regard.
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