7DFRW S

DIGITAL FORENSICS RESEARCH CONFERENCE

Creating a standardized corpus for digital stratigraphic
methods with fsstratify

By:
Julian Uthoff, Lisa Marie Dreier, Martin Lambertz, Mariia Rybalka, Felix Freiling

From the proceedings of
The Digital Forensic Research Conference
DFRWS APAC 2025
Nov 10-12, 2025

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.

https://dfrws.org

Forensic Science International: Digital Investigation 54 (2025) 301986

ELSEVIER

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

T
Digital

Investigation

journal homepage: www.elsevier.com/locate/fsidi
DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC ' :.)
Creating a standardized corpus for digital stratigraphic methods

with fsstratify

Julian Uthoff* ®, Lisa Marie Dreier "®, Martin Lambertz “®, Mariia Rybalka “®,

Felix Freiling "

@ Hamburg State Police, Hamburg, Germany

Y Computer Science Department, Friedrich-Alexander-Universitiit Erlangen-Niirnberg (FAU), Erlangen, Germany

¢ Fraunhofer FKIE, Bonn, Germany

ARTICLE INFO ABSTRACT

Keywords:

Digital Stratigraphy
File Systems
Dataset Creation
Digital Forensics

Digital stratigraphic methods aim to infer new information about digital objects using their depositional context.
Many such methods have been developed, for example, to interpret file allocation traces and thereby estimate
timestamps of file fragments based on their position on disk. Such methods are difficult to compare. We therefore
present a corpus of NTFS file system images that can be used to evaluate these methods. The corpus comprises
different categories, each extensively employing a small subset of file system operations to display their effect on

file allocation traces. We demonstrate the usefulness of this corpus by evaluating the method of Bahjat and
Jones (2019) that derives the timestamp of a file fragment from the timestamps of neighboring files. The corpus
was generated using a revised version of £sstratify, a software framework to simulate file system usage. The
tool is able to log the position of content data during file creation, greatly facilitating research in the realm of

digital stratigraphy.

1. Introduction

Timestamps stored on digital media are an essential category of
evidence used ubiquitously in digital forensic investigations. Using
timestamps, for example, to create digital forensic timelines, is,
however, often a cumbersome undertaking (Metz, 2021) because of
clock skews, timezones and other context specific rules for their
creation (Chow et al., 2007). While many approaches tackle these
issues, any technique that relies on timestamps is bound to fail if no
timestamps are available. Such situations can occur if files have been
deleted and their file system metadata entries (including timestamps)
have been overwritten with other data. For example, consider a case
where investigators find several illegal but deleted files on the device
of a suspect A and A claims that these files originated from a different
user B who used the device before A started using it. Indeed, it would
be helpful for the investigation if analysts could determine the cre-
ation times of these files. But how can this be done if no timestamps
are available?

* Corresponding author.

In such cases, digital forensic analysis can build upon methods
developed in other fields like archeology that also focus on questions of
chronology but where timestamps are not as readily available as in file
systems. In these areas, chronological information is inferred from the
placement of objects relative to other objects. For example, in archeo-
logical stratigraphy (Harris, 1989), objects found in a discernible exca-
vation layer (stratum) can be dated in relation to other strata, the
common case being that lower strata are older. These insights have
inspired the digital forensics community to study the implications of file
allocation traces: They can provide insight into “origin, composition,
distribution, and time frame of strata within storage media” (Casey,
2018), giving rise to the field of digital stratigraphy. In this paper, we
focus on digital stratigraphic methods for chronology, i.e., the chrono-
logical dating of file system data in contexts where critical timestamp
data is either unavailable or not trustworthy. These provide, for a given
digital object f, an estimation of the time when f was created, used or
deleted. Ideally, aside from the time estimation, such methods also yield
an estimation of reliability like a margin of error or error probability.

E-mail addresses: julian.uthoff@mailbox.org (J. Uthoff), lisa.dreier@fau.de (L.M. Dreier), martin.lambertz@fkie.fraunhofer.de (M. Lambertz), mariia.rybalka@

fkie.fraunhofer.de (M. Rybalka), felix.freiling@fau.de (F. Freiling).

https://doi.org/10.1016/j.fsidi.2025.301986

Available online 3 November 2025
2666-2817/© 2025 The Author(s).

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license

https://orcid.org/0009-0001-7439-196X
https://orcid.org/0009-0001-7439-196X
https://orcid.org/0009-0009-8462-389X
https://orcid.org/0009-0009-8462-389X
https://orcid.org/0009-0007-1156-5807
https://orcid.org/0009-0007-1156-5807
https://orcid.org/0009-0004-8057-932X
https://orcid.org/0009-0004-8057-932X
https://orcid.org/0000-0002-8279-8401
https://orcid.org/0000-0002-8279-8401
mailto:julian.uthoff@mailbox.org
mailto:lisa.dreier@fau.de
mailto:martin.lambertz@fkie.fraunhofer.de
mailto:mariia.rybalka@fkie.fraunhofer.de
mailto:mariia.rybalka@fkie.fraunhofer.de
mailto:felix.freiling@fau.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301986
https://doi.org/10.1016/j.fsidi.2025.301986
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301986&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Uthoff et al.

1.1. Related work

Casey (2018) coined the term digital stratigraphy for digital forensic
methods that take placement information into account in 2018. But
placement information of data units especially from deleted files has
been used for multiple purposes before. For example, Garfinkel et al.
(2010) used this data as one source of information to determine the user
that most probably created and used the file before deleting it. Several
such methods have been proposed for chronological dating. Most of
them, however, lack proper validation and reliability estimation. A
prominent file fragment dating method was designed for NTFS (Bahjat
and Jones, 2019) and FAT (Bahjat and Jones, 2023), but it was evaluated
on disk images without a known ground truth.

Another method was proposed by Willassen (2008). He tried to infer
the creation order of files by three properties: by their placement in the
MFT, by an attribute counting how often the MFT entry was reused and
by sequence numbers in order to find timestamps that were antedated.
The approach’s evaluation was based on a small study, where four
subjects with different technical skills had to antedate a file. While the
description of the antedating process yields some knowledge about
temporal relationships, it does not provide a real ground truth. In fact,
Palmbach and Breitinger (2020) tried to re-implement this method but
failed to confirm prior observations on a pre-determined scenario.

Other work has focused more on the placement strategies of file
systems rather than chronological dating. Karresand (2023), for
example, ran several virtual machines on a cluster and logged the
$Bitmap file after each file system operation to understand how these
operations (statistically) affect the placement of files in the file system. A
greater emphasis on the temporal behavior of cluster allocation in file
system drivers was placed by Schneider et al. (2024) who built the File
System Activity Simulator (FSAS) (Schneider et al., 2024), a system that
monitors file system activity at the driver level. A similar tool called
fsstratify was developed independently by Bojic et al. (2020). In the
present work, we extend and use fsstratify as FSAS was not yet
available at the onset of our research.

1.2. Contributions

The lack of proper evaluation can be regarded as the Achilles’ heel of
many digital forensic methods (Horsman, 2019). To alleviate this situ-
ation in the field of digital stratigraphy, we contribute a dataset for
chronological dating. More specifically, we provide a corpus of NTFS file
system images which comes with detailed information about the ground
truth, i.e., which file system operations happened when and in which
way, such that the chronological circumstances of every bit on each
image is known. The corpus is not intended to provide examples of
representative file system usage. Rather our corpus, like other datasets
for tool testing (Nemetz et al., 2018), can be used to benchmark and
thereby compare different dating methods and tools.

We demonstrate the usefulness of the corpus by evaluating the dating
method of Bahjat and Jones (2019) that attempts to estimate the crea-
tion and deletion times of file fragments found in slack space from
timestamps of neighboring files. These two estimations yield an
approximation of a file fragment’s active lifetime, bounding it from
below (lower bound, creation time) and above (upper bound, deletion
time). To conduct a differentiated evaluation, we defined the measures
of precision and accuracy as favorable properties in Section 4.1: While
accuracy is the probability that the estimated value is within a certain
bound of the true value, precision is the probability that the lower bound
is in fact below the true creation time and that the upper bound is in fact
above the true deletion time as defined. We show that, in general, the
accuracy of Bahjat and Jones (2019) is rather low for both, lower and
upper bound, on the data in our corpus and that the accuracy can be
improved by a few minor adaptions. However, the precision of Bahjat
and Jones (2019) is very good, in particular with regard to the upper
bound. None of these insights could have been achieved without a

Forensic Science International: Digital Investigation 54 (2025) 301986

dataset that has ground truth.

As an additional contribution, we take and modify fsstratify, a
tool by Bojic et al. (2020), that is able to collect stratigraphic data about
the placement of blocks on disk during file write and delete operations.
The modified version of fsstratify is more robust than the previ-
ously published version and was extended by the notion of data gener-
ators that allow to define the content of files written. The updated
version also now allows to control the time in which file system oper-
ations happen.

The corpus with additional supplemental material (Uthoff et al.,
2025), the evaluation scripts (Dreier, 2025) as well as the code of
fsstratify (Lambertz and Rybalka, 2025) are available online.

1.3. Outline

This paper is structured as follows: We first give some background on
fsstratify and the modifications we made to the tool. We then
introduce the corpus and the rationale behind it in Section 3. In Section 4
we use the corpus to evaluate the method of Bahjat and Jones (2019) for
file fragment dating. We discuss our results in Section 5 and conclude in
Section 6.

2. Revising fsstratify

The idea of £sstratify (Bojic et al., 2020) is to execute different
file operations and to record the resulting changes in the file system in a
log file. The framework performs the operations using the file system
implementation of the operating system it runs on. By using the same
simulation scripts on different operating systems, we can evaluate and
compare the behavior of their file system implementations and pecu-
liarities introduced by the operating systems. Tracking changes of the
on-disk representation of the file system allows detailed analyses of the
allocation strategies and the behavior of metadata properties such as
timestamps. This makes fsstratify particularly useful for digital
stratigraphy, as presented in this paper, and also for generating data sets
for file carving evaluations.

Fig. 1 illustrates the functionality of the framework on a conceptual
level. £sstratify performs predetermined actions (file operations) on
mounted file systems to create aged file systems. The sequence of file
operations to execute is specified by so-called playbooks. A playbook is
essentially a script with one operation per line. Playbooks can be written
manually or generated on the fly based on usage models. After every
executed action, i.e., after every file system operation, the file system
analyzer parses the file system and logs any changes to the state of the
file system. The changes logged include information about the currently
used clusters and metadata about the files, such as timestamps.

The following sections provide more details on each component,
highlighting important aspects and design decisions. Note that the
framework is highly modular, and almost all components can be

usage model

K4 generates
s

playbook

mount point log file

7

is mounted on

g is analyzed with

virtual disk formatted file system
with a file system analyzer

performs
actions on

parametrizes generates

.I..|.+ initializes
I > |ooo
creates

configuration

Fig. 1. Conceptual overview of fsstratify.

J. Uthoff et al.

changed, extended, or configured.

2.1. Simulation volumes and file system analyzer

fsstratify uses a simulation volume to format a file system on.
The framework supports different volume types for its simulations. The
simplest type is the file-based volume, where a file in the host file system
is used, but simulations on actual partitions or hardware disks are also
supported. While the former is more convenient, the latter commonly
enables larger volume sizes.

In a typical simulation, the volume is initialized before executing any
operations. This initialization involves formatting the volume with the
desired file system using the specified parameters, ensuring a clean and
consistent file system state at the start of the simulation. However, there
are scenarios where using a pre-existing, non-pristine (or “dirty”) vol-
ume is preferable, such as when the outcome of one simulation is
intended to serve as the starting point for subsequent simulations. To
support such use cases, fsstratify allows simulations to utilize
existing dirty volumes and retain volumes after a simulation is
completed.

Parsing the on-disk structures of a file system to obtain information
about allocated clusters and file metadata is a complex task. In its initial
version, fsstratify used the popular analysis software The Sleuth Kit
(TSK)' for this purpose. Because TSK’s NTFS parser repeatedly crashed
simulations, we replaced TSK with the tool dissect.” This framework is
written purely in Python, greatly enabling its cross-platform portability.

2.2. Playbooks and operations

Playbooks define the operations to be carried out on a mounted file
system. The operation syntax is similar to well-known command line

%] 1 2 3 4 5

step O:
empty file system

step 1:
create file A
write /A size=2048

step 2:
delete file A

rm /A

step 3:
create file B
write /B size=1536

stratum 3

2] 1 2 3 4 5

Fig. 2. Playbook commands (left) and views of the changes in the allocated
data units after executing the commands with £sstratify (right). The pro-
jection of all blocks to the latest recorded changes for a step yields the stratum
of the final step.

! https://www.sleuthkit.org/sleuthkit/.
2 https://github.com/fox-it/dissect.

Forensic Science International: Digital Investigation 54 (2025) 301986

utilities, easing the reading and writing of playbooks. Fig. 2 shows a
typical execution of a playbook where playbook commands like write
and rm are given on the left. On the right, typical results of the playbook
commands are depicted, i.e., sequences of data units that were allocated
or deallocated during that step. These are extracted by the file system
analyzer and logged to a file. The projection of all data units to the most
recently recorded change for a step results in the stratum of that step.

The playbook commands are implemented using functionality pro-
vided by the Python standard library, which, in turn, uses the operating
system interfaces. This approach ensures that the behavior of the file
system driver of the operating system under test is reflected in the
simulation results. This also maintains the artifacts generated by other
parts of the operating system like setting timestamps.

In the original fsstratify, data-writing operations like write
and extend used randomly generated data, which benchmarking
revealed as the primary performance bottleneck. To mitigate this, we
introduced data generators. These generators let users define the type of
data to write during simulations. To ensure backward compatibility, we
implemented a random data generator reflecting the original
fsstratify behavior. Additionally, we implemented a generator
writing an easy-to-identify pattern. The pattern consists of the file name,
an incrementing number for each 512-byte chunk of a file, and a static
byte filling the remainder of the fragment. We used this pattern-based
generator for our data set, as it enables effective downstream
compression of disk images and simplifies manual analysis of the raw
data.

The operations available in the initial fsstratify version only
employed file-modifying functionality and did not interact with the
operating system in any other way. While this eases running simulations
on regular systems and avoids the necessity of dedicated simulation
systems, we found that the operations were carried out in too close
succession. We wanted to be able to control the temporal difference
between two file operations or, more precisely, the time-related meta-
data caused by the operations. We implemented this as an additional
sleep command which waits for a desired time before executing the
next operation. While having no side effects, using this approach
dramatically slows down the simulations. As such, we implemented an
additional time command which sets the system time of the operating
system running the simulation to a specific value. This command may
cause side effects within the operating system (Vanini et al., 2024), so it
must be used carefully. Still, we used it in our experiments since the
simulation volumes do not contain operating system files or files written
by other programs.

2.3. Differential logs

fsstratify records the changes to the file system after every
simulation step in a machine-readable format. Log lines contain the
information necessary to infer the state of the file system at any given
step during the simulation. The recorded information includes the
executed operation with its parameters and the files and directories it
affects. An operation affects a file when its allocated data units or its
metadata changes. Metadata changes include not only facets like
updated timestamps but also changed paths. When a directory is moved,
for example, all files in this directory will be affected. The exact behavior
can be configured with simulation parameters.

For each of the affected files their currently allocated data units are
logged. Moreover, fsstratify includes various file system metadata
about the files, such as MACE timestamps. These are file system time-
stamps that save each file Modification, Access, Change and metadata
Entry change. All metadata logged depends on the file system under test,
as not all file systems use the same set of metadata.

3. Introducing the corpus

We now present the forensic corpus for temporal analysis. It is a

https://www.sleuthkit.org/sleuthkit/
https://github.com/fox-it/dissect

J. Uthoff et al.

corpus of 74 disk images, each containing a single NTFS file system,
structured into 12 categories that resemble typical problem scenarios for
digital stratigraphy. The objective is not to create data that is in any way
realistic or representative of real-world usage but rather to create test
data sets for which a ground truth of data creation exists. Therefore, the
file content contains byte values devoid of any intrinsic meaning.” No
other file types like video or audio formats were employed when writing
to the disk images. As a result, the files do not contain any information
that could be considered privacy relevant and would need to be
anonymized.

3.1. Creating the corpus

The disk images vary in size (500 MB, 5 GB and 50 GB) and were
created using two different operating systems (Windows 11 and Ubuntu
24.04). Files and directories were created and populated in random
fashion, with file sizes varying between approximately 2000 bytes to
over one gigabyte. The results therefore reflect the behavior of the
respective file system driver during various file operations and across
different disk sizes. We generally used the default settings but disabled
the trim command as trim wipes the slack space of files, which zeroes all
fragments. For some of the image files in the corpus, a longer period of
utilization was simulated by adjusting the system time. The file opera-
tions were conducted over a simulated period of up to three years.

We structured our corpus into one directory per category, each
containing one directory per image. Still, the corpus contains additional
information for each image: the Simulation.playbook (containing the
fsstratify operations) and the Simulation.yml (containing the configu-
ration of fsstratify). Both are needed to recreate the corpus. Additionally,
we added the Simulation.strata, which is the log fsstratify creates during
running the scenario. It contains the ground truth, e.g., creation time-
stamps and allocated blocks for each operation.

3.2. Corpus categories

As mentioned above, the corpus is structured into a total of 12 cat-
egories that resemble typical problem scenarios for digital stratigraphic
methods, i.e., circumstances where files have been deleted, expanded,
copied, moved or overwritten. Note that, since all simulations were
performed on a single file system, file moves are equivalent to renames
and do not involve copying the original data. The following briefly de-
scribes the circumstances and rationale of each scenario.

Category 01: File creation until disk space is used up.

In the first scenario, files were written until the disk was filled to
capacity. This setup is intended to demonstrate how the NTFS driver
manages write operations under disk saturation conditions. As the
allocation behavior of some file system drivers change in such a context,
this category ensures digital stratigraphic methods can deal with it.

Category 02: Deleted files.

In the second scenario, the file systems were initially populated with
a variety of files through the use of the write operation. Subsequently,
files were deleted at different locations within the file system. In most
cases, files were solely marked as deleted, but not overwritten, so the file
content can still be located within the file system. Such image files can
be employed to ascertain the date of deleted files.

Category 03: Write Operation - Deleted file fragments.

The third scenario extends the procedure described in the second
scenario. The contents of the deleted files were overwritten with new
data, rendering only fragments of the deleted file contents recoverable.
Due to the overwriting process, the deleted file contents are no longer
located solely in the unallocated file system area; fragments are now also
within the slack space of newly written files. This scenario permits the

3 To facilitate analysis, the files still contain the file name at regular intervals,
though.

Forensic Science International: Digital Investigation 54 (2025) 301986

dating of deleted files in both the unallocated regions of the file system
and in the file slack of other files. Given that only the write operation
was utilized to create files in this instance, it is possible to conduct a
detailed examination of the specific effects of this operation.

Category 04: Copy Operation - Deleted file fragments.

In the fourth scenario, an initial set of files was created using the
write operation before a large number of files were generated by copying
existing ones. Additionally, many of these files were subsequently
deleted and overwritten, producing fragments of deleted files. Since the
access timestamp of the source file is updated during copying (Chow
et al., 2007), the resulting timestamps of the deleted file fragments may
differ from those observed in the third scenario.

Category 05: Move Operation - Deleted file fragments.

The idea of this scenario was consistent with that of the fourth sce-
nario, except that most existing files were relocated to varying di-
rectories using the move operation instead of copying them. As in the
preceding category, the goal is to ensure that a large number of files in
the file system are affected by the move operation, thereby testing the
effects of this operation.

Category 06: Extend Operation - Deleted file fragments.

In the sixth category, the strategy focuses on the extend operation:
The strategy of creating a group of files and then extending each of them
was repeated multiple times, with specific files being deleted at desig-
nated positions. This category distinguishes from the others regarding
timestamps as the extend operation results in a comprehensive update of
all timestamps except the creation timestamp. Furthermore, the alter-
nating recreation and extension of files results in a higher degree of file
fragmentation than that observed in the third scenario.

Category 07: Overwrite by write operation.

This scenario addresses the process of overwriting existing files.
Therefore an initial group of files was created. But rather than deleting
existing files, new data was stored under file names that already existed
in the file system, thereby overwriting existing files. It is usually ex-
pected that the timestamps are updated, except for the creation time.
When overwriting, we ensured that not all of the file content was always
overwritten, resulting in the persistence of fragments of the previous file
within the file system. We overwrote files in disparate locations within
the file system to evaluate the behavior of file dating methods at varying
positions within the file system.

Category 08: Overwrite by move operation.

As in the seventh scenario, existing files in the file system were
overwritten, creating unallocated file fragments. However, no new files
were created while overwriting; instead, the contents of existing files
from the file system were moved to an existing destination file. Again,
we expect that the timestamps are updated, except for the creation
timestamp. The behavior during cluster allocation may differ from that
observed in the seventh scenario, which could result in disparate out-
comes when calculating the creation dates of deleted file fragments.

Category 09: Overwrite by copy operation.

As in the seventh and eighth scenarios, the overwriting of existing
files resulted in the generation of unallocated file fragments within this
category. However, the overwriting was conducted by copying existing
file contents to a destination file with a file name already existing. Since
we are not aware of any systematic research that has studied this situ-
ation, we added several images to the corpus as additional challenges for
chronological dating of unallocated fragments.

Category 10: Fragmented files.

This scenario focuses on creating file systems with a high degree of
fragmentation. If the content of files is stored in multiple fragments, the
file system will automatically show a greater interlacing of files. Dating
methods, such as that of Bahjat and Jones (2019), calculate creation
dates based on the creation timestamps of neighboring files. A greater
degree of interlacing is likely to produce different results than with
non-fragmented files. To achieve a high degree of fragmentation, we
have pursued the following strategy in this category: First, the disk was
filled to a high degree with files using write commands. Afterwards, a

J. Uthoff et al.

group of operations was repeated: deleting two non-adjacent files and
writing a new file, which is either slightly smaller or larger (if space
allows). This way, every new file is at least fragmented into two frag-
ments as not enough space is available to write it consecutively.

Category 11: Manipulated timestamps.

Assume we can determine the temporal relationships between files
based on their positions in the file system. In that case, it should also be
possible to identify manipulated timestamps by examining the position
of a file. As Casey (2018) notes, stratigraphic analysis can be a valuable
tool for detecting timestamp manipulation. While there is currently no
research in this area, image files have been created to test this hypoth-
esis. In these corpus files, the timestamps in the metadata were manually
manipulated for several files at different positions in the file system.
While we could have chosen any category as basis for the manipulation,
we’ve decided to build on the strategy of the first category as it the
simplest.

Category 12: Manipulated timestamps in fragmented files.

In the final scenario, the timestamps of files were again altered at
various points within the file system. Compared to the previous cate-
gory, the file system was highly fragmented before the manipulations,
analogous to the tenth scenario. It is presumed that identifying altered
timestamps of fragmented files is more challenging than in the eleventh
category due to the interlacing of files within the file system.

4. Leveraging the corpus for digital stratigraphic analyses

In this section, we use our corpus to re-evaluate the file fragment
dating method proposed by Bahjat and Jones (2019). Originally, Bahjat
and Jones evaluated their method on the “M57 Patent digital corpora
built by the Naval Postgraduate School” with reference to Garfinkel et al.
(2009), considering only a subset of the images, namely “Pat’s drive.”
This corpus does not provide a ground truth, but Bahjat and Jones try to
estimate the ground truth from the 17 snapshots of Pat’s drive over time.
Still, we argue that our corpus can improve their evaluation because
having a known ground truth improves the evaluation’s reliability.

We include various variants of the method of Bahjat and Jones and
also classical estimation approaches in Section 4.3 to show that our
corpus is valuable for comparing different methods. Furthermore, we
refined the evaluation methodology by introducing accuracy and pre-
cision metrics and by distinguishing lifetime estimation and lifetime
bounding.

4.1. File fragment dating

File fragment dating is typically used when a fragment of file f is
found in the slack space of another (active) file w and the investigator
needs to assess the “lifetime” of the original file f, meaning the true value
7 of the creation time of f and its deletion time §. There are two variants
of the file fragment dating problem.

Definition 1. (Lifetime estimation) Estimate the lifetime of f as
precisely as possible, i.e., give estimations ¢ of creation time and d of
deletion time of f such that |c — 7| < e and |d — §| < € for small e.

Definition 2. (Lifetime bounding) Estimate bounds on the lifetime of
f as precisely as possible, i.e., determine values ¢ and d such that ¢ < 7
and 6 < d and that 7 — ¢ and d — § are minimal.

Note that lifetime bounding adds an additional constraint to lifetime
estimation, namely that both estimations need to be strict bounds, i.e.,
the estimated creation time ¢ must be below the true creation time 7 and
the estimated deletion time d must be after the true deletion time 6.

As both types of file fragment dating have different goals, they need
to be evaluated with different metrics. For this, we define the following
three metrics.

Definition 3. (Accuracy) The accuracy of the calculated value is its
absolute difference from the true value.

Forensic Science International: Digital Investigation 54 (2025) 301986

Definition 4. (Precision of lower/upper bound) An estimated lower
bound is precise iff it is below the true value. An estimated upper bound
is precise iff it is above the true value.

4.2. Bahjat and Jones explained

Bahjat and Jones (2019) performed lifetime bounding, meaning they
estimated a lower and an upper bound for the creation and deletion
times of a file fragment. They roughly outlined their method in their
paper, but they did not provide an actual implementation. For that
reason, we re-implemented it based on our interpretation of the method
as outlined in the following.

Bahjat and Jones define the slack owner as “the file occupying the
first sector of the evidence file”. We interpret this as the active file, that
has the file fragment in the slack space of its (last) cluster. Based on the
concept of slack owner, Bahjat and Jones (2019) calculated the upper
bound (of the deletion time) as the “maximum of the eight dates found in
the Slack-Owner [sic]”. Our interpretation of this method is given as
pseudo code in Fig. 3.

Even though not directly explained in the paper, we assume that the
reason for taking the maximum of all timestamps instead of the
maximum of the two creation timestamps in the Filename and Standard
Information Attribute lies in the following fact: some file operations (e.
g., copy) change the file content’s location but not the creation time-
stamps under certain circumstances, e.g. when file tunneling is triggered
or when a file is copied to an already existing file name and overwriting
it (Bouma, Jonker, van der Meer and Aker, 2023). Thus, taking the
maximum of all timestamps should give a highly precise albeit not
necessarily particularly accurate upper bound.

To calculate the lower bound, two further concepts need to be
introduced: the estimated creation time and the k nearest neighbors. Firstly,
the estimated creation time (also called “TrueDate” and sometimes
“TrueCreate” by Bahjat and Jones) is used as the ground truth in their
evaluation as well as for calculating the lower bound. They distin-
guished between a file created on the disk and a file transferred from
outside the disk and took either the file’s creation date or its modifica-
tion date respectively as the estimate. Fig. 4 shows our interpretation of
the algorithm in pseudo code. Since we have a ground truth available in
our corpus, we use this approach to calculate the lower bound in the
evaluation.*

Secondly, the most central concept used by Bahjat and Jones (and for
some variants introduced in Section 4.3) is determining the k nearest
neighbors. Our interpretation of the algorithm doing so is shown in
Fig. 6. There, Bahjat and Jones searched for the k nearest (in regards to
disk position) files with the following properties:

e At least one of their data runs precedes the fragment on disk.
e Their estimated creation time is earlier than the “upper-bound date”
of the fragment.

1 calc_upper_bound(fragment fr):

2 sl _owner = get slack owner(fr)

3 max_date std = max(sl_owner.std info.mace)
4 max_date fn = max(sl_owner.file name.mace)
5 return max(max_date std, max_date fn)

Fig. 3. Pseudo code of calc_upper bound

4 According to Bahjat and Jones the conditional statement in Fig. 4 should
only be relevant for files coming from an external disk. Rather unexpectedly, we
found files that triggered this condition in our corpus although we do not have a
category that copies files between volumes. Upon closer examination, this
condition was true only for exactly two files that seem to be related to the
process of adding the disk as external disk in the simulation.

J. Uthoff et al.

1 estimate creation(file f):
2 if f.file name.c date > f.std info.e date:
3 estimation = f.file _name.c_date
4 else:
5 estimation = f.file name.m_date
6 return estimation
Fig. 4. Pseudo code of estimate_creation

1 calculate lower bound(fragment fr):
2 neigh creations = nearest neighbors (10, fr)
3 avg creation = (sum(neigh creations) /
4 count(neigh creations))
5 return avg creation

Fig. 5. Pseudo code of calculate_lower bound
1 nearest neighbors(int k, fragment frag):
2 sl _owner = get slack owner(frag)
3
4 # List all dataruns preceding frag
5 neighbor start clus = []
6 for each active file in file system:
7 if active file = sl _owner:
8 continue
9 for each r in active file.dataruns:
10 if r.start < sl_owner.last_datarun.start:
11 neighbors start clus.append(r.start)
12 sort(neighbors start clus, order=descending)
13
14 # Take the k nearest/preceding data runs of
15 # different files with their estimated
16 # creation time being earlier than the
17 # upper bound of the fragment
18 neighbor creations = []
19 for each x in neighbors start clus:
20 if length(neighbor creations) = k:
21 break
22 if x.file is a file in neighbor creations:
23 continue
24 est creation = estimate creation(x. file)
25 if est creation > calc_upper bound(frag):
26 continue
27 else:
28 neighbor creations.append(est creation)
29 return neighbor creations

Fig. 6. Pseudo code of nearest neighbors

While not directly explained in the paper, we understand the ratio-
nale behind this choice of properties as follows. First, NTFS drivers
mostly fill a disk from lower sectors towards higher ones. Hence,
limiting the neighbors to the preceding ones should generate a better
precision of the lower bound as the files should typically have been
created before the file fragment. Still, using the disk from lower to higher
sectors is only a general rule with file deletions causing many excep-
tions: When a file is deleted, the clusters containing its content are
reused at some point, often creating areas where position and creation
time do not directly correlate to their neighbors. The second condition
attempts to detect this and therefore neglects neighbors that have a
creation time later than the upper bound. This ultimately means that
they were created after the original file was deleted, and therefore (by
definition of the upper bound) after the slack owner was created.

Bahjat and Jones finally sought to determine the lower bound as
follows (also shown in Fig. 5): They calculate the average of the esti-
mated creation time of the 10 nearest neighbors. They picked k = 10
because they found that “10 neighbors are sufficient to calculate the
average and the average does not drop significantly by adding more
nodes”(Bahjat and Jones, 2019).

Forensic Science International: Digital Investigation 54 (2025) 301986
4.3. Variants and alternative approaches to file fragment dating

To show that our corpus is not adjusted for one particular method,
we decided to additionally evaluate some variants of the bound esti-
mations presented in Section 4.2. We took a naive approach to an
alternative upper bound and varied the estimation approach built upon
the k nearest neighbors for the lower bound.

Overall, we considered two approaches to estimating the deletion time
of the fragment:

e Bahjat and Jones’ upper bound (BJ) as described in Section 4.2.

e naive upper bound (naive): Instead of taking the maximum of all 8
timestamps of the slack owner, we only use the maximum of the
creation timestamps in the $STANDARD_INFORMATION attribute
and the $FILE_NAME attribute. That way, the precision will likely be
somewhat lower as factors like file tunneling may maintain a crea-
tion time which is “too early” for the position, but the bound still
could yield a higher accuracy if the majority of operations changing
the position of the file content also changes the creation timestamps.

We also considered the following five variants and classical estima-
tion approaches to estimating the creation time of the fragment:

o average (by Bahjat and Jones) (avg) as described in Section 4.2.
e median (med) is an adaption of the method by Bahjat and Jones
where the median of the creation times of the k nearest neighbors is
used instead of the average. In this way we hope to achieve an in-
crease in precision as the median is mathematically less affected by
outliers.

minimum (min) is a similar adaption of the method of Bahjat and
Jones using the minimum of the k nearest neighbor creation times
instead of the average. The idea of this method is that an outlier with
a timestamp later than the creation time can only influence our
estimation if no earlier neighbor exists. This should be highly precise
but we expect to have a significantly lower accuracy than for the
other methods as the oldest neighbor is not necessarily a good esti-
mation of the fragment’s creation time. For this reason, this method
might be better suitable for lifetime bounding than for lifetime
estimation.

linear regression (linReg) uses a simple linear model to project the
slope of the rising flank of creation times to predict the creation time
of the slack owner. The method approximates a line by fitting it to

100

o

E

=]
EE - L]
T e 1
E
S 4 L
2a
8z ®
G‘b—

(0]

L]

TE 60
+ O
T2
Ew
58
wo

o

@

vy

£ 40

T T
10000 12500 15000 17500

Start Cluster

Fig. 7. Linear Regression between start cluster and estimated creation time: A
linear model (red line) is approximated from the 10 nearest neighbors (points),
through which the creation time can be estimated based on its start clus-
ter (arrows).

J. Uthoff et al.

the disk positions and the estimated creation timeof the k nearest
neighbors as shown in Fig. 7.

¢ linear regression within interquantile range (linRegQuant) is an
adaption of linReg that attempts to reduce the effects of outliers by
trying to exclude them: Instead of considering all 10 nearest neigh-
bors, we only take those in the interquartile range, i.e., 25 % of the
data above and below the median.

4.4. Results

This section presents the results from the evaluation of different file
fragment approaches described above using our corpus. Our evaluation
only uses images from the corpus that contain file fragments, specifically
those in categories 03 to 10 created on Windows. The images created on
Ubuntu did not create fragments in the slack space, instead the slack
space was zeroed out. As discussed in Section 4.1, we use precision and
accuracy as metrics to assess how suitable each method is for lifetime
estimation and lifetime bounding.

4.4.1. Evaluating the upper bound

Fig. 8 shows the results for the accuracy of the upper bound using BJ
and naive. The horizontal axis plots the accuracy interval ¢ as the per-
centage of the disk runtime within which the estimated bound is
considered accurate. This should lead to a monotonic increase in the
measurements as a larger interval can only cause more fragments to be
dated accurately. As shown in Fig. 8, the graph for BJ increases much
faster than that of naive, so its accuracy is clearly better.

In comparison to the original paper, the accuracy of BJ increases
faster: In the original paper, the accuracy is over 80 % based on a in-
terval of +£5 days around the correct date being considered “accurate”
(Bahjat and Jones, 2019). With the scenario having a runtime of 33 days,
this equates to around +15 % runtime, whereas the graph is above 90 %
accuracy within a deviation interval of +15 % runtime. The reason for
this appears to stem from the way in which we created the corpus since
we focused on one file creation method per category.

When calculating the precision of BJ, we found that it is precise in
almost 100 % of all cases. The precision of naive, however, is much more
diverse: it ranges from 9.5 % to 80 %, depending on file or category. This
makes the BJ the better choice for lifetime estimation as well as lifetime
bounding.

4.4.2. Precision of the lower bound

We now evaluate the precision of the lower bound. The results are
depicted in Fig. 9. The horizontal axis shows the number of neighbors k

Total Upper Bound Accuracy

100%
80%
60%
>
o
g
=1
g
40%
20% -
—— Bahjat & Jones
Alternative Approach
0%

7% 13% 20% 27% 33% 40% 47% 53% 60% 67% 73% 80% 87% 93%100%
+/- Deviation in Percentage of Disk Runtime

Fig. 8. Accuracies of the upper bounds.

Forensic Science International: Digital Investigation 54 (2025) 301986

with respect to the percentage of estimations that are precise. Here, min
clearly outperforms the other algorithms in terms of precision. This is
not unexpected: A fragment is precisely bounded if—among all its
nearest neighbors—it contains at least one neighbor that was created
before the fragment, which is the case for a majority of fragments. It
even performs so well that we decided to look at the raw data. Here, it is
evident that the method (when considering at least 20 nearest neigh-
bors) has a precision of 100 % for all categories but category 10, which
was specifically designed to contain a huge amount of fragments. This
shows that our corpus was designed in a way so that it covers relevant
edge cases.”

Overall, no other approach comes close to the precision of min, even
though med has a high precision as well. It is followed by linRegQuant
and avg, with their order depending on the question of which upper
bound is used to restrict outliers if any. This is because avg and linReg
profit from using any upper bound (especially naive) to restrict outliers
as the outliers’ estimated creation time is higher than the upper bound.
While every approach at least minimally profits from using naive as an
upper bound, avg and linReg appear to have been greatly influenced.
avg increases its precision by more than 20 % and linReg, which showed
the worst performance for precision, started to show a trend: while it
was only fluctuating when adding more neighbors without any upper
bound, it started to show a maximum around 10 %-20 % and stayed
equal at a high number of 50-100 neighbors. This is untypical as an
increase is the expected behavior for a good file fragment dating
method: Adding more neighbors should primarily add more older
neighbors, which decrease the estimated date and thus increases the
precision of the lower bound. Not having such an increase is a sign that
the influence of outliers outweighs the influence of the neighbors
created before the fragment.

4.4.3. Accuracy of the lower bound

Fig. 10 gives an overview of the results for the accuracy of the lower
bound using 20 nearest neighbors for different methods. Here, min
clearly performs worst, which was expected: Taking the minimum of the
k nearest neighbors typically underestimates the true creation time. This
gives a high precision as seen earlier, but at the detriment to accuracy.
All the other approaches perform somewhat similarly in a margin of 10
%-20 % accuracy rating.

Looking at the different plots in Fig. 10 also shows the influence of
restricting outliers with different upper bounds: Using any of the two
upper bound approaches to restrict outliers improves the accuracy
compared to no outlier restriction at all for most approaches. But how
strong this influence is depends on how stable the approach itself is
against outliers. While linReg and avg, which are both heavily influ-
enced by outliers, clearly improve their accuracy, med and min, which
are mathematically robust to outliers, are only marginally affected. The
fact that linRegQuant improves only marginally shows that using only
the neighbors within the interquantile range for the estimation already
restricts the outliers effectively.

There is only one of our approaches, min, that even has a slightly
negative effect on accuracy when restricting outliers: with less outliers
among the neighbors, minimum takes more older neighbors into ac-
count, which lowers its estimation leading to a slightly less accurate
result.

Comparing naive to BJ yields another interesting insight: even
though BJ outperforms naive in terms of accuracy and precision, their
suitability for restricting outliers is comparable in terms of accuracy.
This seems counter-intuitive at first but can be easily explained: naive
has lower precision, so it sometimes excludes neighbors that were

5 In fact, additional plots show that category 10 yields a significantly lower
precision than the other categories for every method estimating a lower bound
in our experiments. These additional plots are published together with the
corpus (Uthoff et al., 2025).

J. Uthoff et al.

Total Lower Bound Precision

100% 100%

80% B80%

60% 1 60%

Precision
Precision

40%

40% 1

—— Average (by Bahjat & Jones)

~—— Median

—— Minimum

—— Linear Regression

—— Linear Regression within Interquantile Range
0% 0%

25 10 20 100

50
Number of Neighbors

(a) Lower bound without considering any
upper bound

Forensic Science International: Digital Investigation 54 (2025) 301986

Total Lower Bound Precision

Average (by Bahjat & Jones)

Median

Minimum

Linear Regression

Linear Regression within Interquantile Range

LI

25 10 20 100

50
Number of Neighbors

(b) Lower bound considering BJ

Precision

100%

80%

60%

40%

20%

0%

Total Lower Bound Precision

Average (by Bahjat & Jones)

Median

Minimum

Linear Regression

Linear Regression within Interquantile Range

LI

25 10 20 50 100
Number of Neighbors

(¢) Lower bound considering naive

Fig. 9. Precisions of various methods for estimating the lower bound in relation to k neighbors.

Total Lower Bound Accuracy

100% 100%

80%

Accuracy

—— Average (by Bahjat & Jones)
20% dedian 20%
f —— Minimum

—— Linear Regression

Linear Regression within Interquantile Range

I A — —— 0%
7% 13% 20% 27%33% 40% 47% 53% 60%67%73% 80% 87% 93%100%
+/- deviation in percentage of disk runtime

(a) Lower bound without considering any

Total Lower Bound Accuracy

—— Average (by Bahjat & Jones)
—— Median

—— Minimum
—— Linear Regression
—— Linear Regression within Interquantile Range

T% 13% 20% 27% 33% 40% 47% 53% 60%67% 73% 80% 87% 93%100%
+/- deviation in percentage of disk runtime

(b) Lower bound considering BJ

Accuracy

100%

80%

60%

40%

20%

Total Lower Bound Accuracy

—— Average (by Bahjat & Jones)
—— Median

—— Minimum
—— Linear Regression
—— Linear Regression within Interquantile Range

7% 13% 20%27% 33% 40% 47% 53% 60%67% 73% 80% 87% 93%100%
+/- deviation in percentage of disk runtime

(¢) Lower bound considering naive

upper bound

Fig. 10. Accuracies of various methods for 20 neighbors.

created before file fragment was deleted. This benefits methods that
slightly overestimate the true creation date, e.g., linReg or avg, but
slightly penalizes methods underestimating the date, e.g., min.

We now turn to the influence of the number of k nearest neighbors on
the lower bound accuracy. The results are shown in Fig. 11 for a devi-
ation of +£20 % of the runtime of the disk image. We expected the
following behavior: For low numbers, the accuracy should improve with

Total Lower Bound Accuracy

100%
80%
60% 1 e
>
=)
£
-
g
40%
—— Average (by Bahjat & Jones)
0% 4 — Median \
—— Minimum
—— Linear Regression
—— Linear Regression within Interquantile Range
0% T T T

10 20 50 100
Number of Nearest Neighbors k

[
w4

Fig. 11. Accuracies of various methods considering varying k with a deviation
of £20 % of the complete runtime of the image using BJ.

an increasing number of neighbors because outliers have less of an in-
fluence than the “intended” neighbors. But for a high number of
neighbors, there should be a point where the accuracy starts to decrease
because the “intended” neighbors become older as more of them are
added; thus, the estimated creation date starts to decrease.

In fact, both effects can be seen for the majority of the approaches:
For avg, med, linReg and linRegQuant, the accuracy starts to increase at
first and starts to decrease at individual points: the optimal k varies
between 10 and 50 for the these methods. Only min seems to decrease in
accuracy directly with more than 2 neighbors. This is likely because the
outliers are only impactful if no “intended” neighbor is part of the k
nearest neighbors. At the same time, neighbors becoming older has a
tremendous effect. As such, the optimum is so early that any increase in
the beginning remains unnoticed.

4.5. Summary of results

To summarize our results, we can conclude that BJ outperforms
naive in terms of accuracy as well as precision and can thus be regarded
as the better option for lifetime estimation as well as for lifetime
bounding.

For the lower bound approaches, we must differentiate: min has a
very high precision and is thus the best candidate for lifetime bounding
despite its low accuracy. But from our results it seems hard to achieve a
really high accuracy and do lifetime estimation really well. While there
are clearly worse ways to calculate the lower bound, there is no clearly
better method than Bahjat and Jones.

J. Uthoff et al.

5. Limitations

As presented in the previous section, the corpus has greatly facili-
tated the way in which file fragment dating in general and Bahjat and
Jones (2019) in particular can be understood. Because it maps com-
mands in the playbook to instructions for a concrete file system imple-
mentation, the results of the measurement should be authentic and
incorporate special behavior like file tunelling.

By no means was the corpus constructed to represent typical, i.e.,
representative, file system activity. For this, information on how often
which file system operation is executed in practice is missing. The
dataset of real world disk images collected by Garfinkel et al. (2009) is
large but lacks ground truth information about what really happened. In
contrast, our corpus is rather homogeneous regarding file operations per
category, a fact that clearly influences measurements. Having corpus
categories that attempt to mix file operations and run longer would be
more challenging for lifetime bounding methods, but finding good
measures for representativeness is a research challenge in itself. Still, our
corpus is useful for showing the effect of certain operations on the
chronology of file fragments.

Despite the large number of images in the corpus, it still lacks several
scenarios that represent typical edge cases for file fragment dating, e.g.,
images after applying defragmentation or images containing files that
were copied from other disks. We limited our corpus to operations that
are connected to file creation even though other operations (like file
renaming) may influence timestamps as well.

An additional limitation of the corpus may be the relatively small
number of files and file operations used to create the individual images.
While this can be easily increased (by downloading the playbook files,
extending them and rerunning the experiments with fsstratify), we
believe that the effects of individual classes of file operations on file
fragment dating can be readily observed. This is also evident in the
differentiated discussion on the file fragment dating method from Bahjat
and Jones (2019) in Section 4.

6. Conclusion

In this paper, we presented a slightly refined version of the fsstra-
tify tool and used it to produce a corpus of NTFS file system images for
testing and evaluating digital stratigraphic methods. The corpus covers
homogeneous edge cases of file system operations and can therefore be
used to benchmark and compare different methods because it comes with a
ground truth. We demonstrated the usefulness of the corpus (and indirectly
of the tool that created it) by evaluating the dating method of Bahjat and
Jones (2019) and comparing it to slight variations of it.

Future work should expand the corpus and consider further edge
cases like copying files across volumes or the application of defrag-
mentation operations. Images with a representative mixture of many file
operations would also be helpful, although a proper definition of
representativeness remains absent.

Regarding fsstratify, we are implementing features allowing
external files to be included in a simulation, which is relevant when
fsstratify is used to generate data sets to evaluate file carving or
other data recovery methods. Moreover, we want to include complex
operations reflecting more high-level events. Such events include actions
like “an editor saving a file” that comprise more than one of the oper-
ations described here (e.g., write the new content to a temporary file and
move it to the original file). Operations like these ease the evaluation of
effects like file tunneling, which Casey (2018) has already observed in
his work, where he introduced the concept of digital stratigraphy.

Apart from complex operations, encryption is another interesting
problem to tackle. Currently, fsstratify does not support encryp-
tion—neither at the volume level (e.g., via LUKS) nor file system
inherent encryption, as provided by, for example, ZFS. However,
incorporating encryption support at both levels is feasible without
requiring changes to the core architecture of fsstratify, and this

Forensic Science International: Digital Investigation 54 (2025) 301986

enhancement is planned for a future release. For the evaluations pre-
sented in this paper, encryption has only a limited impact. The method
of Bahjat and Jones needs three types of information: knowledge of the
existence of an interesting fragment in a certain block, the location of
files, and the timestamps of neighboring files. With file-based encryp-
tion, this metadata is often accessible without the key; with volume-
based encryption, the key is generally required. In controlled experi-
ments as we conducted them, the key is known; in real-world in-
vestigations, the key is a prerequisite for most analyses—Bahjat and
Jonesis no exception in this regard.

Acknowledgments

We thank the anonymous reviewers for their comments and our
shepherd Wietse Venema for his support in finalizing this paper. Work
was supported by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of the Research and Training Group 2475
“Cybercrime and Forensic Computing” (grant number 393541319/
GRK2475/2-2024).

References

Bahjat, A., Jones, J., 2023. File allocation chronology and its impact on digital forensics.
In: 2023 IEEE 13th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE, pp. 612-618. https://doi.org/10.1109/
CCWC57344.2023.10099265.

Bahjat, A.A., Jones, J., 2019. Deleted File Fragment Dating by Analysis of Allocated
Neighbors, vol. 28, pp. S60-S67. https://doi.org/10.1016/].diin.2019.01.015.
Bojic, N., Lambertz, M., Hilgert, J.N., 2020. Fsstratify: a Framework to Generate Used

File Systems. Poster at DFRWS EU 2020.

Bouma, J., Jonker, H., van der Meer, V., Aker, E.V.D., 2023. Reconstructing timelines:
from NTFS timestamps to file histories. In: Proceedings of the 18th International
Conference on Availability, Reliability and Security, ARES 2023, Benevento, Italy,
29 August 2023- 1 September 2023. ACM, pp. 154:1-154:9. https://doi.org/
10.1145/3600160.3605027.

Casey, E., 2018. Digital stratigraphy: contextual analysis of file system traces in forensic
science. J. Forensic Sci. 63, 1383-1391.

Chow, K., Law, F., Kwan, M., Lai, P., 2007. The Rules of Time on Ntfs File System,
pp. 71-85. https://doi.org/10.1109/SADFE.2007.22.

Dreier, L.M., 2025. Evaluation scripts for fragment dating. https://github.com/Li
sa-0x3/file-fragment-dating-evaluation.

Garfinkel, S.L., Farrell Jr., P.F., Roussev, V., Dinolt, G.W., 2009. Bringing science to
digital forensics with standardized forensic Corpora. Digit. Invest. 6, S2-S11.
https://doi.org/10.1016/J.DIIN.2009.06.016.

Garfinkel, S.L., Parker-Wood, A., Huynh, D., Migletz, J.J., 2010. An automated solution
to the multiuser carved data ascription problem. IEEE Trans. Inf. Forensics Secur.
(5), 868-882. https://doi.org/10.1109/TIFS.2010.2060484.

Harris, E.C., 1989. In: Priciples of Archaeological Stratigraphy, second ed. Academic
Press.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics.
Digit. Invest. 28, 163-175. https://doi.org/10.1016/J.DIIN.2019.01.009.

Karresand, M., 2023. Digital Forensic Usage of the Inherent Structures in NTFS.
Norwegian University of Science and Technology, Trondheim, Norway. Ph.D. thesis.
https://hdl.handle.net/11250/3069265.

Lambertz, M., Rybalka, M., 2025. Fsstratify. https://github.com/fkie-cad/fsstratify.

Metz, J., 2021. Pearls and pitfalls of timeline analysis. URL: https://osdfir.blogspot.com
/2021/10/pearls-and-pitfalls-of-timeline-analysis.html.

Nemetz, S., Schmitt, S., Freiling, F.C., 2018. A standardized corpus for SQLite database
forensics. Digit. Invest. 24 (Suppl. ment), S121-S130. https://doi.org/10.1016/J.
DIIN.2018.01.015.

Palmbach, D., Breitinger, F., 2020. Artifacts for detecting timestamp manipulation in
NTFS on windows and their reliability. Digit. Invest. 32 (Suppl. ment), 300920.
https://doi.org/10.1016/J.FSIDI.2020.300920.

Schneider, J., Eichhorn, M., Dreier, L.M., Hargreaves, C., 2024. Applying digital
stratigraphy to the problem of recycled storage media. Forensic Sci. Int.: Digit.
Invest. 49, 301761. https://doi.org/10.1016/j.fsidi.2024.301761. DFRWS USA 2024
- Selected Papers from the 24th Annual Digital Forensics Research Conference USA.

Uthoff, J., Lambertz, M., Rybalka, M., Dreier, L.M., 2025. The digital forensic corpus for
temporal stratigraphic file system analysis. https://zenodo.org/records/16637419.

Vanini, C., Hargreaves, C.J., van Beek, H., Breitinger, F., 2024. Was the clock correct?
Exploring timestamp interpretation through time anchors for digital forensic event
reconstruction. Forensic Sci. Int.: Digit. Invest. 49, 301759. https://doi.org/
10.1016/].fsidi.2024.301759. DFRWS USA 2024 - Selected Papers from the 24th
Annual Digital Forensics Research Conference USA.

Willassen, S.Y., 2008. Finding evidence of antedating in digital investigations. In:
Proceedings of the the Third International Conference on Availability, Reliability
and Security, ARES 2008, March 4-7, 2008, Technical University of Catalonia. IEEE
Computer Society, Barcelona , Spain, pp. 26-32. https://doi.org/10.1109/
ARES.2008.149.

https://doi.org/10.1109/CCWC57344.2023.10099265
https://doi.org/10.1109/CCWC57344.2023.10099265
https://doi.org/10.1016/j.diin.2019.01.015
http://refhub.elsevier.com/S2666-2817(25)00126-X/sref3
http://refhub.elsevier.com/S2666-2817(25)00126-X/sref3
https://doi.org/10.1145/3600160.3605027
https://doi.org/10.1145/3600160.3605027
http://refhub.elsevier.com/S2666-2817(25)00126-X/sref5
http://refhub.elsevier.com/S2666-2817(25)00126-X/sref5
https://doi.org/10.1109/SADFE.2007.22
https://github.com/Lisa-0x3/file-fragment-dating-evaluation
https://github.com/Lisa-0x3/file-fragment-dating-evaluation
https://doi.org/10.1016/J.DIIN.2009.06.016
https://doi.org/10.1109/TIFS.2010.2060484
http://refhub.elsevier.com/S2666-2817(25)00126-X/sref10
http://refhub.elsevier.com/S2666-2817(25)00126-X/sref10
https://doi.org/10.1016/J.DIIN.2019.01.009
https://hdl.handle.net/11250/3069265
https://github.com/fkie-cad/fsstratify
https://osdfir.blogspot.com/2021/10/pearls-and-pitfalls-of-timeline-analysis.html
https://osdfir.blogspot.com/2021/10/pearls-and-pitfalls-of-timeline-analysis.html
https://doi.org/10.1016/J.DIIN.2018.01.015
https://doi.org/10.1016/J.DIIN.2018.01.015
https://doi.org/10.1016/J.FSIDI.2020.300920
https://doi.org/10.1016/j.fsidi.2024.301761
https://zenodo.org/records/16637419
https://doi.org/10.1016/j.fsidi.2024.301759
https://doi.org/10.1016/j.fsidi.2024.301759
https://doi.org/10.1109/ARES.2008.149
https://doi.org/10.1109/ARES.2008.149

	Creating a standardized corpus for digital stratigraphic methods with fsstratify
	1 Introduction
	1.1 Related work
	1.2 Contributions
	1.3 Outline

	2 Revising fsstratify
	2.1 Simulation volumes and file system analyzer
	2.2 Playbooks and operations
	2.3 Differential logs

	3 Introducing the corpus
	3.1 Creating the corpus
	3.2 Corpus categories

	4 Leveraging the corpus for digital stratigraphic analyses
	4.1 File fragment dating
	4.2 Bahjat and Jones explained
	4.3 Variants and alternative approaches to file fragment dating
	4.4 Results
	4.4.1 Evaluating the upper bound
	4.4.2 Precision of the lower bound
	4.4.3 Accuracy of the lower bound

	4.5 Summary of results

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

