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Communication data, such as instant messenger exchanges, SMS records, and emails, plays a critical role in
digital forensic investigations by revealing criminal intent, interpersonal dynamics, and the temporal structure of
events. However, existing Al-based forensic tools frequently hallucinate unverifiable content, obscure their
reasoning paths, and ultimately fail to meet the traceability and legal admissibility standards required in criminal
investigations. To overcome these challenges, we propose pr-GRAPH, a graph-based retrieval-augmented genera-
tion (Graph-RAG) framework designed for forensic question answering over communication data. DF-GRAPH
constructs structured knowledge graphs from message logs, retrieves query-relevant subgraphs based on se-
mantic and structural cues, and generates answers guided by forensic-specific prompts. It further enhances legal
transparency through rule-based reasoning traces and citation of message-level evidence. We comprehensively
evaluate DF-GRAPH across real-world, public, and synthetic datasets, including a narrative dataset adapted from
Crime and Punishment. Our evaluation compares four approaches: (1) a direct generation approach using only a
language model without retrieval; (2) a BERT embedding-based selective retrieval approach that identifies
relevant messages before generation; (3) a conventional text-based retrieval approach; and (4) our proposed
graph-based retrieval approach (pr-GrapH). Empirical results show that pr-GrapH consistently outperforms all
baseline approaches in exact match accuracy (57.23 %), semantic similarity (BERTScore F1: 0.8597), and
contextual faithfulness. A user study with eight forensic experts confirms that pr-Graru delivers more explainable,
accurate, and legally defensible outputs, making it a practical solution for Al-assisted forensic investigations.

1. Introduction

In high-stakes criminal investigations, digital communication re-
cords such as emails, chat logs, and social media interactions serve as
critical evidence for revealing intent, planning, and interpersonal re-
lationships essential to reconstructing events and establishing timelines
(Mehta et al., 2024). However, their unstructured and
context-dependent nature creates significant analytical challenges that
extend beyond what conventional methods can address (Sun et al.,
2021).

Traditional approaches, such as keyword searches and tabular rep-
resentations, fail to capture the deeper semantic coherence and speaker
dynamics embedded within these communications. The evidentiary
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value depends not merely on individual message content, but on broader
contextual elements including temporal sequencing, interaction pat-
terns, and psychological signals—all of which remain difficult to extract
through standard techniques (Shahbazi and Byun, 2022). Furthermore,
to ensure admissibility in legal proceedings, any analytical approach
must provide traceable and explainable results (Palmer, 2001).

Recent advances in large language models (LLMs) have introduced
new possibilities for analyzing text-based digital evidence. These models
can interpret communication context, infer implicit relationships, and
generate coherent summaries from unstructured input. However, these
benefits come with critical limitations: generative models like GPT are
prone to hallucination and lack verifiability, classifiers often rely on
surface-level lexical cues, and dense retrievers typically fail to capture
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communication data structure or participant interactions. Most impor-
tantly, these systems operate as black boxes, making it difficult to audit
their reasoning—a crucial requirement in legal contexts (Khalid et al.,
2024). In response, global Al governance bodies, including the European
Union’s Al Act (European Parliament and Council of the European
Union, 2024), UNESCO (UNESCO, 2024), and the U.S. Federal Judicial
Center (Baker et al., 2023), emphasize explainability and accountability
as legal prerequisites for high-risk Al systems.

To address the limitations of generic LLMs in forensic communica-
tion data analysis, we propose Dr-GrRaPH, a graph-based retrieval-
augmented generation (Graph-RAG, https://github.com/microsoft/
graphrag) framework specifically designed for digital forensic in-
vestigations. pr-GrapH enhances traditional RAG architectures by incor-
porating a structured knowledge graph that models message sequences,
participant interactions, and temporal relationships. This structured
representation enables more accurate context modeling, question un-
derstanding, and evidence grounding.

Unlike conventional models that treat communication data logs as
flat text, pr-GrapH transforms them into a graph of messages and edges,
enabling graph-based subgraph retrieval and rule-based reasoning. This
design allows the system to explicitly reconstruct how a conclusion is
derived, offering traceable explanations that align with legal standards
of accountability and procedural fairness.

Through its multi-stage pipeline—data acquisition and preprocess-
ing, graph construction from communication logs, query-relevant sub-
graph retrieval, evidence-guided answer generation, and explainable
reasoning traces—br-GrRAPH delivers high-fidelity forensic reasoning with
legal transparency. Comprehensive evaluations across real, public, and
synthetic datasets combine quantitative metrics with expert user studies
to validate its effectiveness.

Our key contributions are as follows.

e We introduce pr-GrapH, a Graph-RAG-based framework designed for
digital forensic question answering (QA) over communication data.
By integrating discourse-aware graph construction, semantic and
structural subgraph retrieval, and rule-based trace generation, pr-
GrAPH supports interpretable, legally defensible responses in high-
stakes investigative contexts (see Section 4).

e We develop a rigorous quantitative evaluation pipeline, comparing
four representative models—GPT only, Hybrid (BERT + GPT), Naive
RAG, and pr-GrRAPH—across automatic metrics including exact match
accuracy, BERTScore-F1, and SummaC-based faithfulness. This
benchmarking confirms the superiority of pr-GrapH in contextual
alignment and factual grounding across diverse forensic datasets (see
Section 5).

e We conduct a controlled user study with eight experienced digital
forensic professionals affiliated with government investigative units.
Participants evaluated model outputs across multiple forensic sce-
narios, assessing factual accuracy, reasoning transparency, inter-
pretability, and task efficiency. The results show that pr-GraPH
consistently delivers more reliable, explainable, and faster responses
than baseline models, demonstrating its operational suitability for
real-world forensic workflows (see Section 6).

2. Related work
2.1. Principles and legal requirements in digital forensics

Digital forensics has traditionally relied on foundational principles
such as reliability, integrity, and verifiability (Palmer, 2001; Stoykova and
Franke, 2023). These principles ensure that digital evidence is both
scientifically valid and legally admissible by requiring analytical pro-
cesses to be consistent, reproducible, and methodologically transparent.

Modern legal and ethical frameworks have expanded these re-
quirements to address emerging technologies in judicial contexts. The
European Union’s 2024 AI Act (European Parliament and Council of the
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European Union, 2024) mandates that high-risk systems deployed in
judicial and law enforcement settings provide explainable outputs,
transparent documentation of decision logic, and meaningful human
oversight (Cabrera et al., 2025). Similarly, UNESCO’s 2023 Recom-
mendation on Al Ethics emphasizes fairness, transparency, and con-
testability (UNESCO, 2021), while Article 22 of the GDPR affirms
individuals’ rights to understand and contest decisions based solely on
automated processing (European Parliament and Council of the Euro-
pean Union, 2016).

These developments establish that modern forensic systems must
uphold not only traditional scientific rigor but also legal accountability
and interpretability to be deemed credible and admissible in legal pro-
ceedings (Grimm et al., 2021).

2.2. Al integration in digital forensic analysis

The integration of AI into forensic workflows presents both sub-
stantial opportunities and critical challenges. While Al offers efficiency
gains in analyzing large-scale, heterogeneous datasets, it often operates
as a black-box system, raising concerns about verifiability and inter-
pretability that directly conflict with established forensic principles.

Existing Al applications include convolutional networks for detect-
ing illicit imagery (Rondeau et al., 2022; Roopak et al., 2023), NLP
methods for suspect identification and semantic extraction from
communication logs (Adkins et al., 2024), and linguistic models for
authorship attribution (Huang et al., 2025). Additionally, Al-assisted
triage tools help prioritize evidence and detect anomalies (Dunsin
et al., 2024).

Building on these foundational applications, recent studies have
begun integrating NLP with graph-based modeling to better capture
discourse structure, temporal context, and relational dynamics. Yin et al.
(2025) demonstrate that combining LLMs with knowledge graphs fa-
cilitates the reconstruction of fragmented messages into coherent
investigative narratives. Similarly, Zhang et al. (2021) model
sentence-level semantic relations using hierarchical document graphs,
while Zhao et al. (Zhao and Gao, 2024) incorporate emotional dynamics
and topic transitions in multi-party dialogues using graph neural
networks.

However, these approaches face critical limitations in forensic con-
texts. Technical constraints include insufficient modeling of speaker
roles (DialogueGCN (Ghosal et al., 2019)), temporal progression
(MuserGCN (Zhang et al., 2021)), and causal inference capabilities
(RAMAS (Barradas et al., 2019)). More fundamentally, concerns about
model bias, hallucination, and opaque decision-making processes
(Tynan, 2024) limit their legal defensibility. Without transparent
reasoning paths and verifiable sources (Garrett and Rudin, 2023),
Al-generated outputs may fail to meet the evidentiary standards
required for judicial proceedings.

2.3. Graph-RAG and explainability in forensic analysis

To address these technical and legal limitations, recent work has
explored RAG methods with structural enhancements designed to
improve forensic traceability and interpretability. RAG enhances LLMs
by grounding their responses in external documents, thereby improving
factual accuracy and contextual coherence. However, conventional RAG
systems typically rely on vector similarity over chunked texts, which
often fails to preserve essential structural semantics, such as temporal
event sequences, inter-actor interactions, and causal relations, that are
essential for forensic analysis (Fang et al., 2024).

Existing RAG variants attempt to address these limitations but
remain inadequate for forensic requirements. While approaches like
Mindful-RAG (Agrawal et al., 2024), Hybrid-RAG (Sarmah et al., 2024),
and Modular RAG (Gao et al., 2024) offer improvements in specific
areas, they lack full support for structural reasoning, discourse
modeling, and evidentiary traceability demanded by forensic
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applications.

In contrast, graph-structured retrieval and reasoning better support
forensic requirements by encoding message relationships, participant
roles, and temporal progression. Graph-RAG structures domain knowl-
edge into graphs where nodes represent entities such as messages, ac-
tors, and timestamps, and edges encode relations like ‘replies-to’ or
‘temporally-after.” This enables retrieval of structurally coherent sub-
graphs that maintain narrative flow (Han et al., 2024) and evidence
alignment (Larson and Truitt, 2024), while supporting human verifica-
tion of inference steps (Wu et al., 2024).

Explainable Artificial Intelligence (XAI) is particularly crucial in
forensic contexts, where legal standards demand interpretability and
defensibility (Hall et al., 2022). Recent XAl techniques include adapting
SHAP to graph components, attention-based subgraph visualization (Du
etal., 2019), and rule-based tracing of inference paths. Building on these
insights, pr-GrapH advances Graph-RAG by integrating actor-aware
temporal reasoning, message-level citation tracking, and rule-based
traceability within a unified framework, producing structured, inter-
pretable, legally defensible outputs tailored for forensic communication
analysis.

3. Motivation and Problem Statement

Transformer-based models, such as BERT, GPT, and RAG, are gaining
attention in digital forensics but still fall short of meeting the strict legal
and evidentiary demands of the field. In Section 2, we discuss how these
models have been applied to tasks like keyword filtering, semantic
retrieval, and triage classification. However, forensic settings demand
more than raw performance; they require traceability, reproducibility,
and structured reasoning aligned with investigative logic and legal
standards.

LLMs such as GPT-3 and GPT-4 demonstrate strong linguistic fluency
and contextual understanding, but frequently produce hallucinated or
unverifiable content (Rudin, 2019), undermining their admissibility in
court. BERT-based classifiers are effective for short-text classification
(Devlin et al., 2019), but suffer from narrow context windows and
opaque reasoning processes (Kelly et al., 2020). RAG models improve
factual grounding by retrieving external documents (Zhang and Zhang,
2025), yet lack support for modeling the structural elements of
communication data, such as conversational flow, speaker identity, or
temporal causality (Han et al., 2024). Furthermore, their inference paths
are often non-transparent, failing to meet legal explainability standards.

Recent studies confirm that these AI models fall short of forensic
expectations for structured inference, traceable evidence paths, and
explainable logic (Bokolo and Liu, 2024). These limitations are espe-
cially acute when dealing with communication records (e.g., emails,
chats, or messages) that are linguistically complex and structurally rich.
Accordingly, new methods are needed that incorporate both the se-
mantic and structural dimensions of forensic communication data.

Problem Statement. In digital forensic investigations involving
communication records, it is essential to generate answers that are ac-
curate, legally traceable, and grounded in the communication structure.
Existing Al systems often overlook speaker dynamics and temporal flow,
which limits their interpretability and legal defensibility.

We ask: How can we design an Al framework that supports accurate,
structure-aware, and legally transparent reasoning over communication data
in forensic settings?

To address this, we propose pr-GrapH, a graph-based retrieval-
augmented generation framework that encodes message relations,
speaker roles, and temporal links into a knowledge graph. This structure
enables transparent, evidence-grounded reasoning for forensic question
answering.
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4. System architecture and implementation
4.1. Overview

To address the structural and legal limitations of existing LLM-based
approaches in forensic QA, we propose DF-GRAPH, a graph-based RAG
framework tailored to communication data. pr-GrapH operates through a
multi-stage pipeline that integrates data structuring, graph-based
retrieval, and explainable answer generation, as illustrated in Fig. 1.

The pipeline begins with the acquisition and preprocessing of raw
message data from sources such as chat applications or SMS records,
which are transformed into a structured schema suitable for downstream
processing (see Section 4.2). A knowledge graph is then constructed
from these normalized communication logs, capturing both temporal
and communication structure to support interaction-aware reasoning
(see Section 4.3). Next, given a forensic query, Dr-GRAPH retrieves a
semantically and structurally relevant subgraph by combining
embedding-based filtering with topological graph expansion. This pro-
cess ensures that the retrieved context maintains narrative continuity
and role-aware coherence (see Section 4.4). The selected messages are
then linearized and combined with system-generated instructions to
construct a structured input prompt, which guides an LLM (GPT-40) to
generate an answer grounded in the retrieved evidence (see Section 4.5).
Finally, br-GraPH extracts rule-based reasoning traces from the retrieved
subgraph, identifying interpretable paths between evidence-bearing
messages and the final conclusion. These human-readable explana-
tions improve forensic transparency and support legal admissibility of
Al-generated responses (see Section 4.6).

4.2. Data acquisition and preprocessing

In realistic investigative scenarios, communication records are
typically collected from smartphone apps such as instant messengers (e.
g., WhatsApp and Line) or SMS via digital forensic tools. These raw data
sources contain heterogeneous formats, incomplete timestamps, and
personal identifiers. To ensure compatibility with downstream pro-
cessing, DF-GRAPH applies a standardized preprocessing pipeline:

First, all records are transformed into a structured schema containing
sender, receiver, timestamp, and message content. For real-case data-
sets, an anonymization process is applied by semantically replacing
personally identifiable information (PII) to comply with legal obliga-
tions mandated by national forensic data handling regulations. Public
and synthetic datasets do not require anonymization but are subjected to
the same structural normalization for consistency.

For the synthetic dataset adapted from Dostoevsky’s Crime and
Punishment, we convert internal monologues into messenger-style di-
alogues by introducing a fictional psychiatrist character who acts as

RawData | | (1)Data A and Prepr (2) Graph Construction from Communication Logs
eati Structural
(@] Communication P T
;\@"’ Data Collection ation & p|Graph c & e
Anonymization o
Knowlege Graph

(3) Subgraph Retrieval Based on Query Relevance -
Semantic 5 Graph 5| Retrieved o Py
Filtering Expansion Subgraph ‘
Subgraph
* 1
(4) Evi -Guided Answer i ¢
FINAL . (6}
ANSWER A'(‘:ﬁwe.' with GPT-4o le—| Prompt le—— Linearization
3 itations [
I
| T
(5) Explainable Reasoning Traces ¢
Path Trace
Generated Sub h G
Response Msg# A — Evi B— C—cC jonD  [«——{ Subgraph Gq

Fig. 1. Overview of pr-GrapH: A multi-stage framework for forensic QA over
communication data.
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Raskolnikov’s interlocutor, and reorder the sequence chronologically.
This design simulates high-stakes investigative communication flows in
a legally constrained setting.

4.3. Graph construction from communication logs

After preprocessing, each communication dataset is transformed into
a directed graph G = (V, E), where each node v € V corresponds to a
message annotated with metadata such as speaker, timestamp, and
dialog thread. Edges e < E represent structural or semantic relationships
between messages and support downstream QA and reasoning.

We define two base edge types: temporal edges, capturing chrono-
logical order, and communication edges, indicating reply links or same-
speaker continuity. To enable higher-level reasoning and improve
interpretability, we additionally incorporate semantic edges represent-
ing abstract relations. These include CAUSES, SUPPORTS, MENTIONS,
and CONTRADICTS, each inferred via prompt-based LLM reasoning.

Relations are extracted via pairwise prompting with GPT-40, then
refined through semantic clustering of the model’s explanations. Instead
of relying on fixed thresholds, each candidate relation is mapped to one
of four predefined types using similarity-based consensus, ensuring
structural consistency while preserving LLM expressiveness and miti-
gating the impact of outlier generations. For example, the following
pairs illustrate typical semantic edges:

Message A: “She was coming back unexpectedly.”

Message B: “This compelled him to act quickly.”

Relation: CAUSES

Message A: “1 only wanted to have the means of living.”

Message B: “Yes, poverty drives a man to madness and crime.”
Relation: SUPPORTS

Message A: “She mentioned something about the library meeting.”
Message B: “Yeah, the event she texted me about.”

Relation: MENTIONS

Message A: “I never killed the old woman. There’s no evidence.”
Message B: “But you knelt before me and confessed everything.”
Relation: CONTRADICTS

Message A: “He wasn’t making any sense during the conversation.”
Message B: “Yeah, he sounded completely detached from reality.”
Relation: SUPPORTS

To improve retrieval granularity, the graph is clustered using the
Leiden algorithm (Traag et al., 2019), grouping semantically coherent
messages into subgraphs. This supports efficient selection of context for
each query and preserves thematic unity.

While the semantic edge extraction pipeline showed high consis-
tency across multiple datasets, reproducibility remains a challenge.
Inference results may vary due to LLM nondeterminism and ambiguity
in message content. We acknowledge this limitation and suggest future
work exploring chain-of-thought prompting and domain adaptation to
improve stability and generalization.

This graph-based representation enables structured, explainable
reasoning over digital conversations and supports forensic QA by
modeling both surface structure and latent semantics.

4.4. Subgraph retrieval based on query relevance
Given a forensic query g, pr-GrapH retrieves a focused and contextu-

ally coherent subgraph G, = (Vy, Eg) from the full communication graph
G to serve as the answer context. The retrieval process consists of two
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sequential stages designed to balance semantic precision with discourse
continuity.

In the first stage, semantic filtering is performed by embedding both
the query ¢ and all message nodes using SentenceTransformers. Cosine
similarity is then computed between the query and each node embed-
ding to identify top-k semantically relevant nodes, which serve as an-
chors for subgraph construction. In the second stage, graph expansion is
applied to recover local discourse structure around the selected anchors.
Using a radius-limited breadth-first search, we include temporally and
conversationally adjacent nodes, such as replies and sequential utter-
ances from the same speaker. This step ensures that the retrieved sub-
graph maintains narrative coherence, speaker-role continuity, and
causal flow, all of which are critical for accurate forensic reasoning.

The resulting subgraph G, contains a concise yet informative set of
message nodes that are both semantically aligned with the query and
structurally situated within the broader communication context. This
graph serves as the foundation for the subsequent prompt construction
and answer generation phases.

4.5. Evidence-guided answer generation

To generate context-grounded forensic answers, DF-GrRaPH leverages
the subgraph Gy retrieved in the previous stage. This subgraph captures
the temporally and semantically relevant message nodes, which are then
linearized into a chronologically ordered sequence . Each message
retains its metadata, including speaker, timestamp, and textual content,
to preserve evidentiary fidelity and dialog continuity.

The linearized context &, is paired with a forensic question g to
construct an input prompt P = concat( g,q), which is then passed to a
pre-trained generative language model (GPT-40). To ensure consistency
with forensic reasoning standards, pr-GrapH prepends structured system
instructions that constrain the model’s behavior in three key ways. First,
the model is required to generate answers strictly based on the provided
message context, without relying on external or speculative information.
Second, it must explicitly cite identifiable evidence sources, including
message IDs (e.g., Msg#A), and when applicable, structured references
such as report IDs, entity IDs, and relationship IDs. Third, the answer
must be presented in a concise and interpretable format that meets the
standards of legal admissibility.

This citation scheme enables traceable reasoning, allowing forensic
analysts to verify each inference step against underlying data. By
grounding outputs in explicit message and knowledge references, pr-
GrapH strengthens the auditability and legal defensibility of its responses.
An example of the complete prompt structure used to guide GPT-4o is
shown in Fig. 2.

Unlike naive RAG architectures that retrieve semantically related
text without structural awareness, DF-GRAPH constrains generation to
causally coherent, role-aware, and temporally grounded contexts. This
architecture supports both high semantic fidelity and explainability,
properties critical for real-world digital forensic deployments.

4.6. Explainable reasoning traces

To enhance transparency and legal defensibility, Dr-GrapH generates a
reasoning trace for each answer. This trace is constructed by identifying
paths within the retrieved subgraph G, that link premise-bearing nodes
to the node corresponding to the final answer. Each path is expressed as
a human-readable explanation, such as: Message A — Evidence B —
Statement C — Conclusion D.

These traces are stored alongside the generated response and serve as
supporting evidence in forensic workflows. They can be used for
auditing, court presentation, or model verification. Unlike attention-
based explainability methods that offer soft, probabilistic cues, rule-
based traces provide discrete, logically ordered steps that align more
closely with the procedural rigor required in digital forensics.
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Prompt for Graph-RAG forensic answer generation

Role

You are a digital forensic analyst using a
knowledge graph-based AI system. Your role

is to analyze structured communication data
from a digital investigation and provide
evidence-grounded answers to forensic questions.
Below is a communication context extracted from
case evidence. Based on this context, answer the
forensic question.

Context (chronologically ordered message nodes
from the knowledge graph):

o Msg#A: RASKOLNIKOV to DC at 2025-07-05 18:00
| "I’ve decided to visit Alyona tonight.
She’ll be alomne."

e Msg#B: RASKOLNIKOV to DC at 2025-07-05 18:20
| "I wrapped the axe inside my coat."

e Msg#C: RASKOLNIKOV to DC at 2025-07-05 19:10
| "It’s done. There’s no turning back."

Instruction

1. Base your answer strictly on the provided
message context.

2. Cite not only the message IDs(e.g., Msg#h),
but also any identifiable sources such as
reports, entities, relationships, and raw
data entries whenever possible.

3. Consider temporal relationship and
communication flows.

4. Format your response as either "Yes" or
"No" followed by a brief, evidence-based
explanation.

5. Do not use external knowledge or assumptions
beyond the provided text.

6. Ensure your answer supports legal
defensibility by grounding it in
verifiable message evidence and maintaining
transparency in reasoning.

Forensic QA Example

- Question: Did Raskolnikov plan the murder in
advance?

- Your answer: Yes. Msg#A shows that
Raskolnikov intentionally chose a time when
Alyona would be alone, while Msg#B confirms that
he had concealed a weapon in advance. Msg#C
further indicates that he was aware the act

had already been carried out. Taken together,
these messages provide verifiable evidence of
premeditation and preparation, thereby supporting
a legally defensible conclusion.

[Source Information: Reports (7, 21); Entities
(3157, 2726, 2962); Relationships (1106, 1218,
999); Sources (Msg#A, Msg#B, +more)]

Fig. 2. Prompt format for evidence-grounded forensic answers in DF-GRAPH.

4.7. Implementation details

DF-GRAPH is designed as a modular system to ensure flexibility and
scalability in forensic QA. It integrates three main components: graph-
based knowledge representation, semantic retrieval, and LLM-based
response generation.

Graph Engine and Storage. The knowledge graph is implemented
using Microsoft GraphRAG (v0.5.0) as the backend. Each message is
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modeled as a node containing metadata such as sender, receiver, time-
stamp, and message ID. Directed edges encode structural relationships
such as REPLY_TO and BEFORE. Additional edges such as CAUSES can
be defined through prompt-based entity extraction. Graph construction
and traversal utilize the built-in pipeline, supporting contextual sub-
graph reconstruction for downstream retrieval and analysis.

Semantic Embeddings and Retrieval. The framework interfaces
with external embedding models, such as OpenAI's text-embedding-
3-small, to map both queries and message chunks into a shared vector
space. Input texts are chunked and embedded asynchronously. The
embeddings are stored in a LanceDB index and queried using cosine
similarity to retrieve the top-k relevant chunks. These are expanded via
radius-1 breadth-first search using relational edges to form a contextual
subgraph.

Prompt Generation. GraphRAG analyzes input data using the
prompt-tune command to automatically generate structured prompt
templates. During this process, the input text is chunked and processed
by an LLM to extract entities, infer relationships, and generate sum-
maries. The resulting templates are aligned with local, global, and drift
retrieval strategies (as shown in Fig. 3), enabling context-optimized QA
tailored to the target domain.

Language Model Backend. All generations were performed using
OpenAl's GPT-40 via the Chat Completion API (model = gpt-4o-
2024-05-13, temperature = 0.2, max tokens = 512). A low tempera-
ture was chosen to promote deterministic and legally defensible outputs,
while the token limit ensured concise, audit-friendly responses consis-
tent with forensic reporting practices.

Traceability Module. For each generated answer, a path-tracing
module reconstructs the shortest evidence path within the subgraph
that logically supports the response. This trace is rendered in both graph-
based and textual formats, and stored alongside the output for evalua-
tion or audit purposes.

Experimental Environment. Experiments were conducted using
the Google Colab Pro + environment and conda. We utilized an NVIDIA
A100 GPU for accelerated computation and implemented all compo-
nents in Python (v.3.12). For semantic embedding, we used the text-
embedding-3-small model provided by OpenAl. Answer generation
was performed via OpenAI's GPT-40 model using the Chat Completion
APL Graph construction and traversal were handled using the official
Microsoft GraphRAG framework.

5. Evaluation: Quantitative results
5.1. Evaluation methodology

We conduct a quantitative evaluation to compare the forensic
reasoning capabilities of four representative model architectures: GPT
only, Hybrid (BERT + GPT), Naive RAG, and pr-GrapH. All models are
given the same communication-based input and are evaluated on their

DFgraph Query

GraphRAG Index

@ gobal

@ dift

are the real estate information with B or others?

Fig. 3. DF-Graph query interface. The user enters a forensic question and se-
lects the relevant subgraph search scopes (local, global, and drift) before
executing the query.
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ability to generate contextually grounded and factually correct answers
to forensic questions.

The evaluation focuses on measurable accuracy-related dimensions.
We apply three metrics: Exact Match Accuracy (for binary correctness),
BERTScore-F1 (for semantic similarity), and Faithfulness via SummacC-
Conv (for logical support from retrieved evidence). These metrics cap-
ture complementary aspects of answer quality relevant to legal and
forensic standards.

5.2. Approaches compared
We evaluate four modeling approaches for forensic QA.

5.2.1. GPT only

A baseline using GPT-40 with no retrieval or structural augmenta-
tion. The model receives 35 messages as input and generates responses
based only on this limited context. Despite prompt tuning and few-shot
examples, the model frequently produces hallucinated or ungrounded
answers, limiting its forensic reliability.

5.2.2. Hybrid (BERT + GPT)

This pipeline uses a BERT classifier to infer the intent category of
each forensic question (e.g., motive, planning), which guides both
message filtering and prompt construction for GPT-40. While this im-
proves precision over GPT, errors in classification can propagate, and
the lack of structural awareness limits deeper reasoning.

5.2.3. Naive RAG

This model performs dense retrieval using FAISS over MiniLM-based
embeddings. Retrieved message chunks are prepended to the input
question and sent to GPT-40. Though more contextually informed than
GPT or hybrid, this method is vulnerable to irrelevant or tangential re-
trievals due to a lack of structural constraints.

5.2.4. DF-graph (Graph-RAG)

DF-GRAPH builds a communication graph encoding message order,
reply structure, and speaker roles. Given a question, it identifies a sub-
graph aligned both semantically and structurally, constructs a context-
aware prompt, and generates responses using GPT-40. By grounding
generation in the graph, pr-rapa achieves higher fidelity, traceability,
and legal defensibility.

5.3. Data sources and preparation

To evaluate our forensic QA framework, we curated three types of
datasets.

e Real-Case Datasets: Five anonymized datasets were reconstructed
from prior digital forensic investigations. These contain authentic
communication patterns—including planning, justification, and
concealment—used in criminal contexts.

Public Datasets: (1) The NIST Messenger Dataset (Stockholm
Stealer) simulates an organized crime case involving multi-user
mobile messages with timestamped interactions. (2) The Cornell
Movie Dialog Corpus provides multi-party scripted communication,
useful for evaluating dialog structure and temporal flow.

Synthetic Dataset: Adapted from Dostoevsky’s Crime and Punish-
ment, this dataset reimagines the novel’s narrative as a digital
communication log by converting internal monologues and plot
events into chronological messages, emails, and chat dialogues be-
tween characters. The simulated interactions preserve core story
elements while reflecting realistic digital formats. The dataset is
annotated with forensic reasoning tasks designed to test temporal,
relational, and causal inference, mirroring challenges in real-world
digital investigations.
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All datasets were preprocessed to ensure structural consistency, legal
compliance, and model compatibility. Real-world data underwent two-
stage anonymization: semantic-preserving substitution of PII and noise
injection in embeddings, following the guidelines of GDPR Article 25
(European Parliament and Council of the European Union, 2016) and
ISO/IEC 30141 (International Organization for Standardization, 2024).
Messages from all datasets were converted into a standardized schema
(sender, receiver, timestamp, content) to enable unified parsing. For the
synthetic dataset, we preserved psychological continuity by mapping
introspective narratives to realistic dialogic exchanges. Table 1 sum-
marizes the dataset types, sizes, and message counts used in our
experiments.

5.4. Evaluation metrics

To assess the forensic reasoning capabilities of the compared models,
we constructed 35 structured questions across five categories commonly
encountered in investigative settings: Motive, Execution, Concealment,
Relationship, and Confession. Each question is paired with a ground-truth
answer based on domain knowledge or case annotations. For example, a
question under the “Motive” category might ask, “Did [Person A] share
the investment plan with [B] in order to mislead?”—requiring the model to
infer intent based on contextual messages.

We evaluate model performance using three quantitative metrics and
one structural interpretability indicator, chosen to reflect the unique
demands of forensic QA: factual correctness, semantic fidelity, contex-
tual justification, and traceability.

5.4.1. Exact match accuracy
This metric evaluates whether the model’s binary response (Yes/No)
exactly matches the gold-standard label:

13,
Accuracy = N Z 1(y;,=x)
i=1

where N is the number of evaluation instances, y; is the predicted answer
for instance i, y; is the corresponding ground truth, and 1(-) is the in-
dicator function returning 1 when the prediction is correct and
0 otherwise.

This metric is critical in forensic analysis where binary de-
terminations (e.g., “Was the act premeditated?”) have direct legal im-
plications. High accuracy indicates alignment with expert-labeled truth.

5.4.2. BERTScore-F1
To measure semantic similarity between the model’s generated
answer and the gold reference, we compute BERTScore-F1:

i 2-P;R;
T PitRi

where P; and R; denote the precision and recall for instance i, derived
from cosine similarity between contextual token embeddings using a
pre-trained BERT model.

This metric reflects whether the model’s response captures the

BERTScore — F1 =

Z| =

Table 1
Overview of real, public, and synthetic datasets used in the study.

Dataset Size Message Count
Real-Case Dataset 1 2.79 MB 16,653
Real-Case Dataset 2 58.3 KB 500

Real-Case Dataset 3 38.9 KB 500

Real-Case Dataset 4 32.3 KB 500

Real-Case Dataset 5 26.7 KB 500

Public Dataset 1 (Stockholm Stealer) 872 KB 6,302

Public Dataset 2 (Cornell Movie Dialogs) 41.4 KB 365

Synthetic Dataset (Crime and Punishment) 345 KB 2,367
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intended meaning of the correct answer, even when wording differs. In
forensic contexts, semantic misalignment can lead to misinterpretation
or ambiguity in expert reports.

5.4.3. Faithfulness (SummaCConv)

Faithfulness assesses whether the generated answer is logically
entailed by the retrieved message context. For each instance i, it is
computed as:

Faithfulness; =

=

k
E Sij
=

where k is the number of retrieved context sentences, and s;; is the
entailment confidence score (ranging from O to 1) between the model’s
answer and the j-th context sentence, as predicted by the SummaCConv
natural language inference model.

This metric is essential for legal admissibility, as it quantifies
whether a model’s output is justifiable based on available evidence.
Faithfulness ensures that the answer is not only plausible but grounded
in retrievable, case-specific information.

5.5. Results

Table 2 presents the performance of all four models on exact match
accuracy, semantic similarity (BERTScore-F1), and contextual faithful-
ness. pF-GRAPH outperforms all baselines across all metrics.

pF-GRAPH achieved the highest exact match accuracy (57.23 %), sub-
stantially outperforming Naive RAG (40.51 %), Hybrid (33.06 %), and
GPT (21.04 %). However, errors were observed in cases involving
ambiguous speakers, temporally disordered evidence, or fragmented
conversational contexts.

In semantic similarity, pr-Grapu again led with a BERTScore-F1 of
0.859, indicating a strong match with reference answers. GPT produced
more speculative content, while Naive RAG occasionally overlooked
relevant message flow.

Contextual faithfulness was also highest for pr-grapH (0.561), con-
firming that its answers were most consistently grounded in retrieved
evidence. This is particularly critical for forensic QA tasks requiring
traceable justification.

We further tested statistical significance using the Shapiro-Wilk and
Friedman tests. With non-normal distributions in Hybrid and pr-GrarH
scores, we applied the Friedman test, revealing significant differences
across all metrics (p < 1078). Bonferroni-corrected post-hoc compari-
sons confirmed that all model pairs differed significantly (p < 0.05),
reinforcing the reliability of pr-GrapH’s performance.

DF-GRAPH consistently outperforms existing LLM-based and retrieval-
augmented baselines across all evaluation dimensions. Its structured
retrieval, graph-based reasoning, and evidence-grounded prompting
collectively support more accurate, interpretable, and legally defensible
outputs for digital forensic analysis.

6. Evaluation: User study
6.1. Study design and evaluation protocol
We conducted a within-subjects user study to evaluate four QA

Table 2
Comparison of Forensic QA Performance across Four Models. Each value rep-
resents the mean + standard deviation over 30 runs.

Model Exact Match (%) BERTScore-F1 Faithfulness

GPT 21.04 + 4.65 0.823 + 0.001 0.430 £ 0.018
Hybrid 33.06 + 2.78 0.841 + 0.000 0.361 + 0.000
Naive RAG 40.51 + 0.88 0.809 + 0.001 0.542 + 0.005
DF-GRAPH 57.23 +£1.95 0.859 + 0.005 0.561 + 0.005

Forensic Science International: Digital Investigation 54 (2025) 301981

models—GPT only, Hybrid (BERT + GPT), Naive RAG, and pF-GrRAPH—oON
realistic forensic tasks. Model order was counterbalanced using a Latin
Square method (Keppel and Wickens, 1992).

Each participant completed four tasks, each corresponding to a
different model and forensic category: motive, action, relationship, or
confession. Tasks were constructed from real-world-inspired message
logs (chat, SMS, email) and reviewed by forensic experts to ensure
comparable evidentiary complexity, ambiguity, and message length.

Each task presented a short, timestamped communication exchange
(around 500 messages) and a forensic question requiring contextual
interpretation (e.g., “Why did Person A attempt to share the sales infor-
mation with Person B or others?”). Participants received one model-
generated answer per task and were asked to write a brief forensic
conclusion based solely on the answer and highlight supporting evi-
dence in the model output.

For example, one task presented the exchange shown in Fig. 4, where
Person A suggests alternative packaging methods and Person B expresses
concern about name traceability.

Participants were expected to infer that Person A aimed to mask
ownership and reduce legal exposure. For each task, participants.

1. Wrote their own answer (Q1), later scored for Accuracy against
expert-curated gold standards.
2. Rated the model’s answer on four 5-point Likert items:
e Faithfulness (Q2): Grounded in message content?
o Explainability (Q3): Clear reasoning?
e Clarity (Q4): Specific and unambiguous?
o Interpretability (Q5): Easy to understand?
3. Optionally submitted clarification questions or comments.

We also measured Efficiency by recording task completion time and
the number of clarification queries, which indirectly indicates each
model’s cognitive load and practical usability in forensic workflows.

6.2. Participants

Eight digital forensic professionals from government-affiliated
investigative units participated in the study. All participants special-
ized in communication log analysis and technical digital forensics,
routinely examining messaging data (SMS, messenger logs) as part of
their official duties. Table 3 provides detailed participant demographics.

The participants had an average of 8.7 years of professional experi-
ence (SD = 3.8), with a range from 5 to 16 years. Among them, 5 were
female and 3 were male, representing a diverse and experienced prac-
titioner pool. All participants reported regular exposure to communi-
cation data, with six indicating daily handling and two indicating
weekly analysis, consistent with high operational relevance for the study
tasks.

6.3. Results

We report model performance across the evaluation dimensions
defined in Section 6.1. Each dimension corresponds to either structured
participant responses (Q2-Q5) or behavioral indicators (task time,

Person A — Person F (2025-01-04 00:40)
“These days, just mentioning digital assets gets people
hooked. Dress it up nicely, and no one will question it.”

Person F — Person A (2025-01-04 00:52)
“Yeah, B’s getting suspicious again. Let’s bring E in as a
buffer. We’ll make it look like it’s coming from a third party.”

Fig. 4. Example suspicious messenger conversation from a task in the motive
category, showing a possible attempt to conceal financial activities.
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Table 3
Participant demographics (N = 8).

ID Gender Experience (yrs) Data Handling Frequency
P1 Male 9 daily

P2 Male 16 weakly

P3 Female 5 daily

P4 Male 5 daily

P5 Female 8 daily

P6 Female 13 weakly

pP7 Female 7 daily

P8 Female 7 daily

clarification queries), offering a multifaceted view of each model’s
forensic utility in realistic investigation settings.

6.3.1. Accuracy (Q1)

pr-GRAPH achieved the highest task accuracy at 78.1 %, followed by
Naive RAG (56.2 %), Hybrid (43.8 %), and GPT (40.6 %). This metric
reflects whether participants could infer the correct forensic conclusion
using only the model’s response. As forensic conclusions must be not
only plausible but also evidentially defensible, these results underscore
the advantage of structure-aware context retrieval for high-confidence
decision-making.

6.3.2. Faithfulness (Q2)

As shown in Fig. 5 (top), 90.6 % of participants “Strongly Agreed” or
“Agreed” that pr-GrapH’s output was grounded in actual message content.
In contrast, 40.6 % of responses for GPT fell into the “Disagree” range,
citing unsupported or hallucinated assertions. Hybrid and Naive RAG
performed moderately, but frequently failed to provide verifiable cita-
tions or message references.

Faithfulness

GP_T 40.6% : 34_14% 1 25.0%
Hybrid |48 79, 46.9% il | 34.3%)
Naive RAG [42.7% 46.9% : 9.4%
Graph RAG |0% 9.3% _
100 ! 50 ' 0 ' 50 " 100
Explainability
GPT (57 5% § 53.1% | | 9.4%
Hybrid | 45 70, 31.2% 1 25.0%
Naive RAG |53.1% § 31.5% i 15.6%
Graph RAG |0% : 125% L A
_ 100 ' 50 ' 0 : 50 " 100
3 .
EO Clarity
GPTl46.6% 312% i 21.9%
Hybrid 46 994 37.5% 1 15.6%)
Naive RAG (53.2% 40.6% i 6.2%
Graph RAG [0% 15.6% . 844%
00 ' 50 ' o0 ' 50 ' 100
Interpretability
GPT 62.5% 188% |l 18.7%
Hybrid |43 g9, § 43:8% | 11.5%
Naive RAG |71.8% ; 21:8% § 6.2%
Graph RAG [9.4% § 9.4% L s
00 ' 50 0 " s T 100
Persentage
Strongly Disagree Disagree Neutral Agree -StronegAgree

Fig. 5. Distribution of Likert-scale responses across three evaluation di-
mensions. Ratings were collected per task on a 5-point scale.
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6.3.3. Explainability (Q3)

Fig. 5 (second top) shows that 87.4 % of participants “Strongly
Agreed” or “Agreed” that pr-GrapH’s answers provided traceable, logi-
cally structured justifications. In comparison, GPT (37.5 %) and Naive
RAG (53.1 %) received “Disagree” or “Strongly Disagree” ratings, indi-
cating opaque reasoning or insufficient causal explanation.

6.3.4. Clarity (Q4)

Clarity evaluates whether the response is specific and unambiguous.
Fig. 5 (third top) indicates that 84.4 % of pr-GrapPH outputs were rated as
“Strongly Agree” or “Agree” for clarity. Naive RAG scored the lowest,
with 53.2 % of responses rated “Strongly Disagree,” largely due to vague
language and verbose answers. GPT and Hybrid performed better, but
often included redundant phrasing that reduced interpretive precision.

6.3.5. Interpretability (Q5)

Interpretability assesses how easily users can extract meaning and
rationale from the model output. As shown in Fig. 5 (bottom), pF-GRAPH
again led with 81.2 % positive agreement. GPT followed at 18.7 %, with
Hybrid (11.5 %) and Naive RAG (6.2 %) trailing. Participants noted that
DF-GRAPH’S use of message IDs and temporal structure made the expla-
nation path easier to follow and verify.

6.3.6. Efficiency (Behavioral metrics)

Efficiency was measured through task duration and clarification
frequency. pr-GrapH enabled the shortest average task time (41 s) and the
fewest clarification queries (1.3 per task), suggesting minimal ambiguity
and faster decision support. In contrast, GPT required the most time (58
s) and the highest number of clarification queries (3.3), pointing to a
heavier cognitive burden during interpretation. Hybrid and Naive RAG
showed intermediate performance.

6.3.7. Qualitative feedback

The participants described pr-GrarH as “methodical,” “justifiable,” and
“aligned with real forensic workflows” (P2, P5). Specifically, P8 noted,
“The structure helped me see the logic path immediately.” However, P2
noticed that the model occasionally generated overly detailed outputs
that obscured the main point. In contrast, GPT was described as
“imprecise” and “detached,” with several responses failing to cite relevant
context. Naive RAG was often perceived as “repetitive” or “incomplete,”
particularly in motive and relationship inference tasks.

DF-GRAPH consistently outperforms baseline models across subjective
evaluations and behavioral metrics. Its integration of graph-based
context and source-grounded prompting enables more accurate, inter-
pretable, and operationally reliable outputs, making it a strong candi-
date for Al-assisted digital forensic investigation.

7. Discussion
7.1. Alignment with forensic reasoning

pF-GRAPH was designed to reflect how forensic analysts reason—by
constructing structured chains of evidence grounded in temporal
sequence, speaker roles, and causal relationships. Unlike generative-
only or retrieval-based models that treat text as a flat sequence, Dr-
GrapH encodes discourse structure using a graph representation and re-
trieves subgraphs that preserve conversational and evidentiary context.

Findings from the user study confirm that this structural alignment
translates into improved interpretability. In tasks such as motive
reconstruction and relationship inference, participants consistently
rated Dr-GRAPH'S responses as more faithful and explainable. Notably,
87.4 % of answers received “Strongly Agree” or “Agree” ratings for
explainability, highlighting the model’s ability to support traceable and
coherent reasoning. In contrast, baseline models like GPT and Naive
RAG often failed to establish clear cause-and-effect links, resulting in
fragmented or ambiguous outputs.
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7.2. Traceability and legal transparency

Legal admissibility in forensic analysis requires not only factual ac-
curacy but also justification of how conclusions were reached. pr-GrAPH
addresses this through rule-based trace generation, which maps the
answer to a sequence of evidence-bearing message nodes (e.g., Message
A — Statement B — Motive C — Conclusion D). This format aligns with
documentation practices of forensic reports and court testimony.

Participants strongly endorsed this transparency. As shown in Fig. 5,
pr-GraPH achieved a 90.6 % “Strongly Agree” or “Agree” rating for
faithfulness, with no negative responses. Qualitative feedback echoed
this trust: “Since the sources are clear, it can be used as evidence, and I
hope it will be implemented in actual practice” (P5). These findings
highlight that traceability is not merely a desirable property but a crit-
ical prerequisite for operational deployment in legal contexts.

7.3. Deployment considerations

While pr-GrapH achieves strong performance under controlled con-
ditions, real-world deployment presents critical challenges for forensic
practice.

7.3.1. Scalability

Investigative cases often involve massive, unstructured datasets such
as full-device extractions or month-long chat histories, where efficient
retrieval becomes essential. Although our implementation supports
graph clustering, operational deployment requires advances in hierar-
chical partitioning, dynamic subgraph caching, and real-time forensic
filtering to handle large-scale data processing.

7.3.2. Uncertainty handling

Forensic environments often involve incomplete records, ambiguous
language, and multiple plausible interpretations. Future versions of ps-
GrapH should incorporate human-in-the-loop workflows, probabilistic
reasoning, and multi-hypothesis generation. Each interpretation must be
grounded in distinct, traceable evidence subsets, enabling analysts to
evaluate alternative explanations systematically.

7.3.3. Infrastructure constraints

GPT-40’s reliance on commercial cloud APIs raises concerns about
data sovereignty, chain-of-custody compliance, and cost-effectiveness in
high-throughput forensic environments. To address these limitations,
we propose integrating self-hosted lightweight language models (sLLMs)
into pr-GrapH. While sLLMs may underperform on open-ended reasoning,
they excel at structured forensic QA tasks and offer superior local
deployment, privacy assurance, and cost control. A hybrid architecture
where sLLMs handle routine queries and selectively invoke commercial
models under strict anonymization protocols would optimize the bal-
ance between performance and compliance requirements.

8. Conclusion

DF-GRAPH is a graph-based RAG framework for forensic QA. Inte-
grating temporal, structural, and semantic edges into a dynamic mes-
sage graph and subgraph-guided prompting, br-GraPH enables
interpretable, traceable reasoning over complex dialogues.

Empirical results on real-case, public, and synthetic datasets show
that pr-grapH outperforms GPT, hybrid, and naive RAG baselines in all
major metrics—achieving 57.2 % exact match accuracy, 0.859
BERTScore-F1, and the highest contextual faithfulness. Statistical anal-
ysis confirmed the robustness of these gains across 30 trials. In-
vestigators in a user study rated pr-GrapH highest in clarity of reasoning,
evidentiary alignment, and overall decision-making support.

While pr-GrapH targets text-based communication, real investigations
often involve multimodal evidence, such as call logs, images, and audio.
Future work will extend bpr-GrapH by redesigning evidence
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representation, temporal alignment, and causal reasoning to support
multimodal inputs while preserving interpretability and legal validity.
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