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A B S T R A C T

Communication data, such as instant messenger exchanges, SMS records, and emails, plays a critical role in 
digital forensic investigations by revealing criminal intent, interpersonal dynamics, and the temporal structure of 
events. However, existing AI-based forensic tools frequently hallucinate unverifiable content, obscure their 
reasoning paths, and ultimately fail to meet the traceability and legal admissibility standards required in criminal 
investigations. To overcome these challenges, we propose DF-GRAPH, a graph-based retrieval-augmented genera
tion (Graph-RAG) framework designed for forensic question answering over communication data. DF-GRAPH 

constructs structured knowledge graphs from message logs, retrieves query-relevant subgraphs based on se
mantic and structural cues, and generates answers guided by forensic-specific prompts. It further enhances legal 
transparency through rule-based reasoning traces and citation of message-level evidence. We comprehensively 
evaluate DF-GRAPH across real-world, public, and synthetic datasets, including a narrative dataset adapted from 
Crime and Punishment. Our evaluation compares four approaches: (1) a direct generation approach using only a 
language model without retrieval; (2) a BERT embedding-based selective retrieval approach that identifies 
relevant messages before generation; (3) a conventional text-based retrieval approach; and (4) our proposed 
graph-based retrieval approach (DF-GRAPH). Empirical results show that DF-GRAPH consistently outperforms all 
baseline approaches in exact match accuracy (57.23 %), semantic similarity (BERTScore F1: 0.8597), and 
contextual faithfulness. A user study with eight forensic experts confirms that DF-GRAPH delivers more explainable, 
accurate, and legally defensible outputs, making it a practical solution for AI-assisted forensic investigations.

1. Introduction

In high-stakes criminal investigations, digital communication re
cords such as emails, chat logs, and social media interactions serve as 
critical evidence for revealing intent, planning, and interpersonal re
lationships essential to reconstructing events and establishing timelines 
(Mehta et al., 2024). However, their unstructured and 
context-dependent nature creates significant analytical challenges that 
extend beyond what conventional methods can address (Sun et al., 
2021).

Traditional approaches, such as keyword searches and tabular rep
resentations, fail to capture the deeper semantic coherence and speaker 
dynamics embedded within these communications. The evidentiary 

value depends not merely on individual message content, but on broader 
contextual elements including temporal sequencing, interaction pat
terns, and psychological signals—all of which remain difficult to extract 
through standard techniques (Shahbazi and Byun, 2022). Furthermore, 
to ensure admissibility in legal proceedings, any analytical approach 
must provide traceable and explainable results (Palmer, 2001).

Recent advances in large language models (LLMs) have introduced 
new possibilities for analyzing text-based digital evidence. These models 
can interpret communication context, infer implicit relationships, and 
generate coherent summaries from unstructured input. However, these 
benefits come with critical limitations: generative models like GPT are 
prone to hallucination and lack verifiability, classifiers often rely on 
surface-level lexical cues, and dense retrievers typically fail to capture 
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communication data structure or participant interactions. Most impor
tantly, these systems operate as black boxes, making it difficult to audit 
their reasoning—a crucial requirement in legal contexts (Khalid et al., 
2024). In response, global AI governance bodies, including the European 
Union’s AI Act (European Parliament and Council of the European 
Union, 2024), UNESCO (UNESCO, 2024), and the U.S. Federal Judicial 
Center (Baker et al., 2023), emphasize explainability and accountability 
as legal prerequisites for high-risk AI systems.

To address the limitations of generic LLMs in forensic communica
tion data analysis, we propose DF-GRAPH, a graph-based retrieval- 
augmented generation (Graph-RAG, https://github.com/microsoft/ 
graphrag) framework specifically designed for digital forensic in
vestigations. DF-GRAPH enhances traditional RAG architectures by incor
porating a structured knowledge graph that models message sequences, 
participant interactions, and temporal relationships. This structured 
representation enables more accurate context modeling, question un
derstanding, and evidence grounding.

Unlike conventional models that treat communication data logs as 
flat text, DF-GRAPH transforms them into a graph of messages and edges, 
enabling graph-based subgraph retrieval and rule-based reasoning. This 
design allows the system to explicitly reconstruct how a conclusion is 
derived, offering traceable explanations that align with legal standards 
of accountability and procedural fairness.

Through its multi-stage pipeline—data acquisition and preprocess
ing, graph construction from communication logs, query-relevant sub
graph retrieval, evidence-guided answer generation, and explainable 
reasoning traces—DF-GRAPH delivers high-fidelity forensic reasoning with 
legal transparency. Comprehensive evaluations across real, public, and 
synthetic datasets combine quantitative metrics with expert user studies 
to validate its effectiveness.

Our key contributions are as follows. 

• We introduce DF-GRAPH, a Graph-RAG-based framework designed for 
digital forensic question answering (QA) over communication data. 
By integrating discourse–aware graph construction, semantic and 
structural subgraph retrieval, and rule-based trace generation, DF- 
GRAPH supports interpretable, legally defensible responses in high- 
stakes investigative contexts (see Section 4).

• We develop a rigorous quantitative evaluation pipeline, comparing 
four representative models—GPT only, Hybrid (BERT + GPT), Naive 
RAG, and DF-GRAPH—across automatic metrics including exact match 
accuracy, BERTScore-F1, and SummaC-based faithfulness. This 
benchmarking confirms the superiority of DF-GRAPH in contextual 
alignment and factual grounding across diverse forensic datasets (see 
Section 5).

• We conduct a controlled user study with eight experienced digital 
forensic professionals affiliated with government investigative units. 
Participants evaluated model outputs across multiple forensic sce
narios, assessing factual accuracy, reasoning transparency, inter
pretability, and task efficiency. The results show that DF-GRAPH 

consistently delivers more reliable, explainable, and faster responses 
than baseline models, demonstrating its operational suitability for 
real-world forensic workflows (see Section 6).

2. Related work

2.1. Principles and legal requirements in digital forensics

Digital forensics has traditionally relied on foundational principles 
such as reliability, integrity, and verifiability (Palmer, 2001; Stoykova and 
Franke, 2023). These principles ensure that digital evidence is both 
scientifically valid and legally admissible by requiring analytical pro
cesses to be consistent, reproducible, and methodologically transparent.

Modern legal and ethical frameworks have expanded these re
quirements to address emerging technologies in judicial contexts. The 
European Union’s 2024 AI Act (European Parliament and Council of the 

European Union, 2024) mandates that high-risk systems deployed in 
judicial and law enforcement settings provide explainable outputs, 
transparent documentation of decision logic, and meaningful human 
oversight (Cabrera et al., 2025). Similarly, UNESCO’s 2023 Recom
mendation on AI Ethics emphasizes fairness, transparency, and con
testability (UNESCO, 2021), while Article 22 of the GDPR affirms 
individuals’ rights to understand and contest decisions based solely on 
automated processing (European Parliament and Council of the Euro
pean Union, 2016).

These developments establish that modern forensic systems must 
uphold not only traditional scientific rigor but also legal accountability 
and interpretability to be deemed credible and admissible in legal pro
ceedings (Grimm et al., 2021).

2.2. AI integration in digital forensic analysis

The integration of AI into forensic workflows presents both sub
stantial opportunities and critical challenges. While AI offers efficiency 
gains in analyzing large-scale, heterogeneous datasets, it often operates 
as a black-box system, raising concerns about verifiability and inter
pretability that directly conflict with established forensic principles.

Existing AI applications include convolutional networks for detect
ing illicit imagery (Rondeau et al., 2022; Roopak et al., 2023), NLP 
methods for suspect identification and semantic extraction from 
communication logs (Adkins et al., 2024), and linguistic models for 
authorship attribution (Huang et al., 2025). Additionally, AI-assisted 
triage tools help prioritize evidence and detect anomalies (Dunsin 
et al., 2024).

Building on these foundational applications, recent studies have 
begun integrating NLP with graph-based modeling to better capture 
discourse structure, temporal context, and relational dynamics. Yin et al. 
(2025) demonstrate that combining LLMs with knowledge graphs fa
cilitates the reconstruction of fragmented messages into coherent 
investigative narratives. Similarly, Zhang et al. (2021) model 
sentence-level semantic relations using hierarchical document graphs, 
while Zhao et al. (Zhao and Gao, 2024) incorporate emotional dynamics 
and topic transitions in multi-party dialogues using graph neural 
networks.

However, these approaches face critical limitations in forensic con
texts. Technical constraints include insufficient modeling of speaker 
roles (DialogueGCN (Ghosal et al., 2019)), temporal progression 
(MuserGCN (Zhang et al., 2021)), and causal inference capabilities 
(RAMAS (Barradas et al., 2019)). More fundamentally, concerns about 
model bias, hallucination, and opaque decision-making processes 
(Tynan, 2024) limit their legal defensibility. Without transparent 
reasoning paths and verifiable sources (Garrett and Rudin, 2023), 
AI-generated outputs may fail to meet the evidentiary standards 
required for judicial proceedings.

2.3. Graph-RAG and explainability in forensic analysis

To address these technical and legal limitations, recent work has 
explored RAG methods with structural enhancements designed to 
improve forensic traceability and interpretability. RAG enhances LLMs 
by grounding their responses in external documents, thereby improving 
factual accuracy and contextual coherence. However, conventional RAG 
systems typically rely on vector similarity over chunked texts, which 
often fails to preserve essential structural semantics, such as temporal 
event sequences, inter-actor interactions, and causal relations, that are 
essential for forensic analysis (Fang et al., 2024).

Existing RAG variants attempt to address these limitations but 
remain inadequate for forensic requirements. While approaches like 
Mindful-RAG (Agrawal et al., 2024), Hybrid-RAG (Sarmah et al., 2024), 
and Modular RAG (Gao et al., 2024) offer improvements in specific 
areas, they lack full support for structural reasoning, discourse 
modeling, and evidentiary traceability demanded by forensic 
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applications.
In contrast, graph-structured retrieval and reasoning better support 

forensic requirements by encoding message relationships, participant 
roles, and temporal progression. Graph-RAG structures domain knowl
edge into graphs where nodes represent entities such as messages, ac
tors, and timestamps, and edges encode relations like ‘replies-to’ or 
‘temporally-after.’ This enables retrieval of structurally coherent sub
graphs that maintain narrative flow (Han et al., 2024) and evidence 
alignment (Larson and Truitt, 2024), while supporting human verifica
tion of inference steps (Wu et al., 2024).

Explainable Artificial Intelligence (XAI) is particularly crucial in 
forensic contexts, where legal standards demand interpretability and 
defensibility (Hall et al., 2022). Recent XAI techniques include adapting 
SHAP to graph components, attention-based subgraph visualization (Du 
et al., 2019), and rule-based tracing of inference paths. Building on these 
insights, DF-GRAPH advances Graph-RAG by integrating actor-aware 
temporal reasoning, message-level citation tracking, and rule-based 
traceability within a unified framework, producing structured, inter
pretable, legally defensible outputs tailored for forensic communication 
analysis.

3. Motivation and Problem Statement

Transformer-based models, such as BERT, GPT, and RAG, are gaining 
attention in digital forensics but still fall short of meeting the strict legal 
and evidentiary demands of the field. In Section 2, we discuss how these 
models have been applied to tasks like keyword filtering, semantic 
retrieval, and triage classification. However, forensic settings demand 
more than raw performance; they require traceability, reproducibility, 
and structured reasoning aligned with investigative logic and legal 
standards.

LLMs such as GPT-3 and GPT-4 demonstrate strong linguistic fluency 
and contextual understanding, but frequently produce hallucinated or 
unverifiable content (Rudin, 2019), undermining their admissibility in 
court. BERT-based classifiers are effective for short-text classification 
(Devlin et al., 2019), but suffer from narrow context windows and 
opaque reasoning processes (Kelly et al., 2020). RAG models improve 
factual grounding by retrieving external documents (Zhang and Zhang, 
2025), yet lack support for modeling the structural elements of 
communication data, such as conversational flow, speaker identity, or 
temporal causality (Han et al., 2024). Furthermore, their inference paths 
are often non-transparent, failing to meet legal explainability standards.

Recent studies confirm that these AI models fall short of forensic 
expectations for structured inference, traceable evidence paths, and 
explainable logic (Bokolo and Liu, 2024). These limitations are espe
cially acute when dealing with communication records (e.g., emails, 
chats, or messages) that are linguistically complex and structurally rich. 
Accordingly, new methods are needed that incorporate both the se
mantic and structural dimensions of forensic communication data.

Problem Statement. In digital forensic investigations involving 
communication records, it is essential to generate answers that are ac
curate, legally traceable, and grounded in the communication structure. 
Existing AI systems often overlook speaker dynamics and temporal flow, 
which limits their interpretability and legal defensibility.

We ask: How can we design an AI framework that supports accurate, 
structure-aware, and legally transparent reasoning over communication data 
in forensic settings?

To address this, we propose DF-GRAPH, a graph-based retrieval- 
augmented generation framework that encodes message relations, 
speaker roles, and temporal links into a knowledge graph. This structure 
enables transparent, evidence-grounded reasoning for forensic question 
answering.

4. System architecture and implementation

4.1. Overview

To address the structural and legal limitations of existing LLM-based 
approaches in forensic QA, we propose DF-GRAPH, a graph-based RAG 
framework tailored to communication data. DF-GRAPH operates through a 
multi-stage pipeline that integrates data structuring, graph-based 
retrieval, and explainable answer generation, as illustrated in Fig. 1.

The pipeline begins with the acquisition and preprocessing of raw 
message data from sources such as chat applications or SMS records, 
which are transformed into a structured schema suitable for downstream 
processing (see Section 4.2). A knowledge graph is then constructed 
from these normalized communication logs, capturing both temporal 
and communication structure to support interaction-aware reasoning 
(see Section 4.3). Next, given a forensic query, DF-GRAPH retrieves a 
semantically and structurally relevant subgraph by combining 
embedding-based filtering with topological graph expansion. This pro
cess ensures that the retrieved context maintains narrative continuity 
and role-aware coherence (see Section 4.4). The selected messages are 
then linearized and combined with system-generated instructions to 
construct a structured input prompt, which guides an LLM (GPT-4o) to 
generate an answer grounded in the retrieved evidence (see Section 4.5). 
Finally, DF-GRAPH extracts rule-based reasoning traces from the retrieved 
subgraph, identifying interpretable paths between evidence-bearing 
messages and the final conclusion. These human-readable explana
tions improve forensic transparency and support legal admissibility of 
AI-generated responses (see Section 4.6).

4.2. Data acquisition and preprocessing

In realistic investigative scenarios, communication records are 
typically collected from smartphone apps such as instant messengers (e. 
g., WhatsApp and Line) or SMS via digital forensic tools. These raw data 
sources contain heterogeneous formats, incomplete timestamps, and 
personal identifiers. To ensure compatibility with downstream pro
cessing, DF-GRAPH applies a standardized preprocessing pipeline:

First, all records are transformed into a structured schema containing 
sender, receiver, timestamp, and message content. For real-case data
sets, an anonymization process is applied by semantically replacing 
personally identifiable information (PII) to comply with legal obliga
tions mandated by national forensic data handling regulations. Public 
and synthetic datasets do not require anonymization but are subjected to 
the same structural normalization for consistency.

For the synthetic dataset adapted from Dostoevsky’s Crime and 
Punishment, we convert internal monologues into messenger-style di
alogues by introducing a fictional psychiatrist character who acts as 

Fig. 1. Overview of DF-GRAPH: A multi-stage framework for forensic QA over 
communication data.
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Raskolnikov’s interlocutor, and reorder the sequence chronologically. 
This design simulates high-stakes investigative communication flows in 
a legally constrained setting.

4.3. Graph construction from communication logs

After preprocessing, each communication dataset is transformed into 
a directed graph G = (V, E), where each node v ∈ V corresponds to a 
message annotated with metadata such as speaker, timestamp, and 
dialog thread. Edges e ∈ E represent structural or semantic relationships 
between messages and support downstream QA and reasoning.

We define two base edge types: temporal edges, capturing chrono
logical order, and communication edges, indicating reply links or same- 
speaker continuity. To enable higher-level reasoning and improve 
interpretability, we additionally incorporate semantic edges represent
ing abstract relations. These include CAUSES, SUPPORTS, MENTIONS, 
and CONTRADICTS, each inferred via prompt-based LLM reasoning.

Relations are extracted via pairwise prompting with GPT-4o, then 
refined through semantic clustering of the model’s explanations. Instead 
of relying on fixed thresholds, each candidate relation is mapped to one 
of four predefined types using similarity-based consensus, ensuring 
structural consistency while preserving LLM expressiveness and miti
gating the impact of outlier generations. For example, the following 
pairs illustrate typical semantic edges: 

Message A: “She was coming back unexpectedly.”

Message B: “This compelled him to act quickly.”

Relation: CAUSES

Message A: “I only wanted to have the means of living.”

Message B: “Yes, poverty drives a man to madness and crime.”

Relation: SUPPORTS

Message A: “She mentioned something about the library meeting.”

Message B: “Yeah, the event she texted me about.”

Relation: MENTIONS

Message A: “I never killed the old woman. There’s no evidence.”

Message B: “But you knelt before me and confessed everything.”

Relation: CONTRADICTS

Message A: “He wasn’t making any sense during the conversation.”

Message B: “Yeah, he sounded completely detached from reality.”

Relation: SUPPORTS

To improve retrieval granularity, the graph is clustered using the 
Leiden algorithm (Traag et al., 2019), grouping semantically coherent 
messages into subgraphs. This supports efficient selection of context for 
each query and preserves thematic unity.

While the semantic edge extraction pipeline showed high consis
tency across multiple datasets, reproducibility remains a challenge. 
Inference results may vary due to LLM nondeterminism and ambiguity 
in message content. We acknowledge this limitation and suggest future 
work exploring chain-of-thought prompting and domain adaptation to 
improve stability and generalization.

This graph-based representation enables structured, explainable 
reasoning over digital conversations and supports forensic QA by 
modeling both surface structure and latent semantics.

4.4. Subgraph retrieval based on query relevance

Given a forensic query q, DF-GRAPH retrieves a focused and contextu
ally coherent subgraph Gq = (Vq, Eq) from the full communication graph 
G to serve as the answer context. The retrieval process consists of two 

sequential stages designed to balance semantic precision with discourse 
continuity.

In the first stage, semantic filtering is performed by embedding both 
the query q and all message nodes using SentenceTransformers. Cosine 
similarity is then computed between the query and each node embed
ding to identify top-k semantically relevant nodes, which serve as an
chors for subgraph construction. In the second stage, graph expansion is 
applied to recover local discourse structure around the selected anchors. 
Using a radius-limited breadth-first search, we include temporally and 
conversationally adjacent nodes, such as replies and sequential utter
ances from the same speaker. This step ensures that the retrieved sub
graph maintains narrative coherence, speaker-role continuity, and 
causal flow, all of which are critical for accurate forensic reasoning.

The resulting subgraph Gq contains a concise yet informative set of 
message nodes that are both semantically aligned with the query and 
structurally situated within the broader communication context. This 
graph serves as the foundation for the subsequent prompt construction 
and answer generation phases.

4.5. Evidence-guided answer generation

To generate context-grounded forensic answers, DF-GRAPH leverages 
the subgraph Gq retrieved in the previous stage. This subgraph captures 
the temporally and semantically relevant message nodes, which are then 
linearized into a chronologically ordered sequence C q. Each message 
retains its metadata, including speaker, timestamp, and textual content, 
to preserve evidentiary fidelity and dialog continuity.

The linearized context C q is paired with a forensic question q to 
construct an input prompt P = concat(C q,q), which is then passed to a 
pre-trained generative language model (GPT-4o). To ensure consistency 
with forensic reasoning standards, DF-GRAPH prepends structured system 
instructions that constrain the model’s behavior in three key ways. First, 
the model is required to generate answers strictly based on the provided 
message context, without relying on external or speculative information. 
Second, it must explicitly cite identifiable evidence sources, including 
message IDs (e.g., Msg#A), and when applicable, structured references 
such as report IDs, entity IDs, and relationship IDs. Third, the answer 
must be presented in a concise and interpretable format that meets the 
standards of legal admissibility.

This citation scheme enables traceable reasoning, allowing forensic 
analysts to verify each inference step against underlying data. By 
grounding outputs in explicit message and knowledge references, DF- 
GRAPH strengthens the auditability and legal defensibility of its responses. 
An example of the complete prompt structure used to guide GPT-4o is 
shown in Fig. 2.

Unlike naive RAG architectures that retrieve semantically related 
text without structural awareness, DF-GRAPH constrains generation to 
causally coherent, role-aware, and temporally grounded contexts. This 
architecture supports both high semantic fidelity and explainability, 
properties critical for real-world digital forensic deployments.

4.6. Explainable reasoning traces

To enhance transparency and legal defensibility, DF-GRAPH generates a 
reasoning trace for each answer. This trace is constructed by identifying 
paths within the retrieved subgraph Gq that link premise-bearing nodes 
to the node corresponding to the final answer. Each path is expressed as 
a human-readable explanation, such as: Message A → Evidence B → 
Statement C → Conclusion D.

These traces are stored alongside the generated response and serve as 
supporting evidence in forensic workflows. They can be used for 
auditing, court presentation, or model verification. Unlike attention- 
based explainability methods that offer soft, probabilistic cues, rule- 
based traces provide discrete, logically ordered steps that align more 
closely with the procedural rigor required in digital forensics.
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4.7. Implementation details

DF-GRAPH is designed as a modular system to ensure flexibility and 
scalability in forensic QA. It integrates three main components: graph- 
based knowledge representation, semantic retrieval, and LLM-based 
response generation.

Graph Engine and Storage. The knowledge graph is implemented 
using Microsoft GraphRAG (v0.5.0) as the backend. Each message is 

modeled as a node containing metadata such as sender, receiver, time
stamp, and message ID. Directed edges encode structural relationships 
such as REPLY_TO and BEFORE. Additional edges such as CAUSES can 
be defined through prompt-based entity extraction. Graph construction 
and traversal utilize the built-in pipeline, supporting contextual sub
graph reconstruction for downstream retrieval and analysis.

Semantic Embeddings and Retrieval. The framework interfaces 
with external embedding models, such as OpenAI’s text-embedding- 
3-small, to map both queries and message chunks into a shared vector 
space. Input texts are chunked and embedded asynchronously. The 
embeddings are stored in a LanceDB index and queried using cosine 
similarity to retrieve the top-k relevant chunks. These are expanded via 
radius-1 breadth-first search using relational edges to form a contextual 
subgraph.

Prompt Generation. GraphRAG analyzes input data using the 
prompt-tune command to automatically generate structured prompt 
templates. During this process, the input text is chunked and processed 
by an LLM to extract entities, infer relationships, and generate sum
maries. The resulting templates are aligned with local, global, and drift 
retrieval strategies (as shown in Fig. 3), enabling context-optimized QA 
tailored to the target domain.

Language Model Backend. All generations were performed using 
OpenAI’s GPT-4o via the Chat Completion API (model = gpt-4o- 

2024-05-13, temperature = 0.2, max tokens = 512). A low tempera
ture was chosen to promote deterministic and legally defensible outputs, 
while the token limit ensured concise, audit-friendly responses consis
tent with forensic reporting practices.

Traceability Module. For each generated answer, a path-tracing 
module reconstructs the shortest evidence path within the subgraph 
that logically supports the response. This trace is rendered in both graph- 
based and textual formats, and stored alongside the output for evalua
tion or audit purposes.

Experimental Environment. Experiments were conducted using 
the Google Colab Pro + environment and conda. We utilized an NVIDIA 
A100 GPU for accelerated computation and implemented all compo
nents in Python (v.3.12). For semantic embedding, we used the text- 
embedding-3-small model provided by OpenAI. Answer generation 
was performed via OpenAI’s GPT-4o model using the Chat Completion 
API. Graph construction and traversal were handled using the official 
Microsoft GraphRAG framework.

5. Evaluation: Quantitative results

5.1. Evaluation methodology

We conduct a quantitative evaluation to compare the forensic 
reasoning capabilities of four representative model architectures: GPT 
only, Hybrid (BERT + GPT), Naive RAG, and DF-GRAPH. All models are 
given the same communication-based input and are evaluated on their 

Fig. 2. Prompt format for evidence-grounded forensic answers in DF-GRAPH.

Fig. 3. DF-Graph query interface. The user enters a forensic question and se
lects the relevant subgraph search scopes (local, global, and drift) before 
executing the query.
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ability to generate contextually grounded and factually correct answers 
to forensic questions.

The evaluation focuses on measurable accuracy-related dimensions. 
We apply three metrics: Exact Match Accuracy (for binary correctness), 
BERTScore-F1 (for semantic similarity), and Faithfulness via SummaC
Conv (for logical support from retrieved evidence). These metrics cap
ture complementary aspects of answer quality relevant to legal and 
forensic standards.

5.2. Approaches compared

We evaluate four modeling approaches for forensic QA.

5.2.1. GPT only
A baseline using GPT-4o with no retrieval or structural augmenta

tion. The model receives 35 messages as input and generates responses 
based only on this limited context. Despite prompt tuning and few-shot 
examples, the model frequently produces hallucinated or ungrounded 
answers, limiting its forensic reliability.

5.2.2. Hybrid (BERT + GPT)
This pipeline uses a BERT classifier to infer the intent category of 

each forensic question (e.g., motive, planning), which guides both 
message filtering and prompt construction for GPT-4o. While this im
proves precision over GPT, errors in classification can propagate, and 
the lack of structural awareness limits deeper reasoning.

5.2.3. Naive RAG
This model performs dense retrieval using FAISS over MiniLM-based 

embeddings. Retrieved message chunks are prepended to the input 
question and sent to GPT-4o. Though more contextually informed than 
GPT or hybrid, this method is vulnerable to irrelevant or tangential re
trievals due to a lack of structural constraints.

5.2.4. DF-graph (Graph-RAG)
DF-GRAPH builds a communication graph encoding message order, 

reply structure, and speaker roles. Given a question, it identifies a sub
graph aligned both semantically and structurally, constructs a context- 
aware prompt, and generates responses using GPT-4o. By grounding 
generation in the graph, DF-GRAPH achieves higher fidelity, traceability, 
and legal defensibility.

5.3. Data sources and preparation

To evaluate our forensic QA framework, we curated three types of 
datasets. 

• Real-Case Datasets: Five anonymized datasets were reconstructed 
from prior digital forensic investigations. These contain authentic 
communication patterns—including planning, justification, and 
concealment—used in criminal contexts.

• Public Datasets: (1) The NIST Messenger Dataset (Stockholm 
Stealer) simulates an organized crime case involving multi-user 
mobile messages with timestamped interactions. (2) The Cornell 
Movie Dialog Corpus provides multi-party scripted communication, 
useful for evaluating dialog structure and temporal flow.

• Synthetic Dataset: Adapted from Dostoevsky’s Crime and Punish
ment, this dataset reimagines the novel’s narrative as a digital 
communication log by converting internal monologues and plot 
events into chronological messages, emails, and chat dialogues be
tween characters. The simulated interactions preserve core story 
elements while reflecting realistic digital formats. The dataset is 
annotated with forensic reasoning tasks designed to test temporal, 
relational, and causal inference, mirroring challenges in real-world 
digital investigations.

All datasets were preprocessed to ensure structural consistency, legal 
compliance, and model compatibility. Real-world data underwent two- 
stage anonymization: semantic-preserving substitution of PII and noise 
injection in embeddings, following the guidelines of GDPR Article 25 
(European Parliament and Council of the European Union, 2016) and 
ISO/IEC 30141 (International Organization for Standardization, 2024). 
Messages from all datasets were converted into a standardized schema 
(sender, receiver, timestamp, content) to enable unified parsing. For the 
synthetic dataset, we preserved psychological continuity by mapping 
introspective narratives to realistic dialogic exchanges. Table 1 sum
marizes the dataset types, sizes, and message counts used in our 
experiments.

5.4. Evaluation metrics

To assess the forensic reasoning capabilities of the compared models, 
we constructed 35 structured questions across five categories commonly 
encountered in investigative settings: Motive, Execution, Concealment, 
Relationship, and Confession. Each question is paired with a ground-truth 
answer based on domain knowledge or case annotations. For example, a 
question under the “Motive” category might ask, “Did [Person A] share 
the investment plan with [B] in order to mislead?”—requiring the model to 
infer intent based on contextual messages.

We evaluate model performance using three quantitative metrics and 
one structural interpretability indicator, chosen to reflect the unique 
demands of forensic QA: factual correctness, semantic fidelity, contex
tual justification, and traceability.

5.4.1. Exact match accuracy
This metric evaluates whether the model’s binary response (Yes/No) 

exactly matches the gold-standard label: 

Accuracy =
1
N

∑N

i=1
1(ŷi = yi)

where N is the number of evaluation instances, ̂yi is the predicted answer 
for instance i, yi is the corresponding ground truth, and 1(⋅) is the in
dicator function returning 1 when the prediction is correct and 
0 otherwise.

This metric is critical in forensic analysis where binary de
terminations (e.g., “Was the act premeditated?”) have direct legal im
plications. High accuracy indicates alignment with expert-labeled truth.

5.4.2. BERTScore-F1
To measure semantic similarity between the model’s generated 

answer and the gold reference, we compute BERTScore-F1: 

BERTScore − F1 =
1
N

∑N

i=1

2⋅Pi⋅Ri

Pi + Ri 

where Pi and Ri denote the precision and recall for instance i, derived 
from cosine similarity between contextual token embeddings using a 
pre-trained BERT model.

This metric reflects whether the model’s response captures the 

Table 1 
Overview of real, public, and synthetic datasets used in the study.

Dataset Size Message Count

Real-Case Dataset 1 2.79 MB 16,653
Real-Case Dataset 2 58.3 KB 500
Real-Case Dataset 3 38.9 KB 500
Real-Case Dataset 4 32.3 KB 500
Real-Case Dataset 5 26.7 KB 500
Public Dataset 1 (Stockholm Stealer) 872 KB 6,302
Public Dataset 2 (Cornell Movie Dialogs) 41.4 KB 365
Synthetic Dataset (Crime and Punishment) 345 KB 2,367
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intended meaning of the correct answer, even when wording differs. In 
forensic contexts, semantic misalignment can lead to misinterpretation 
or ambiguity in expert reports.

5.4.3. Faithfulness (SummaCConv)
Faithfulness assesses whether the generated answer is logically 

entailed by the retrieved message context. For each instance i, it is 
computed as: 

Faithfulnessi =
1
k
∑k

j=1
si,j 

where k is the number of retrieved context sentences, and si,j is the 
entailment confidence score (ranging from 0 to 1) between the model’s 
answer and the j-th context sentence, as predicted by the SummaCConv 
natural language inference model.

This metric is essential for legal admissibility, as it quantifies 
whether a model’s output is justifiable based on available evidence. 
Faithfulness ensures that the answer is not only plausible but grounded 
in retrievable, case-specific information.

5.5. Results

Table 2 presents the performance of all four models on exact match 
accuracy, semantic similarity (BERTScore-F1), and contextual faithful
ness. DF-GRAPH outperforms all baselines across all metrics.

DF-GRAPH achieved the highest exact match accuracy (57.23 %), sub
stantially outperforming Naive RAG (40.51 %), Hybrid (33.06 %), and 
GPT (21.04 %). However, errors were observed in cases involving 
ambiguous speakers, temporally disordered evidence, or fragmented 
conversational contexts.

In semantic similarity, DF-GRAPH again led with a BERTScore-F1 of 
0.859, indicating a strong match with reference answers. GPT produced 
more speculative content, while Naive RAG occasionally overlooked 
relevant message flow.

Contextual faithfulness was also highest for DF-GRAPH (0.561), con
firming that its answers were most consistently grounded in retrieved 
evidence. This is particularly critical for forensic QA tasks requiring 
traceable justification.

We further tested statistical significance using the Shapiro–Wilk and 
Friedman tests. With non-normal distributions in Hybrid and DF-GRAPH 

scores, we applied the Friedman test, revealing significant differences 
across all metrics (p < 10− 18). Bonferroni-corrected post-hoc compari
sons confirmed that all model pairs differed significantly (p < 0.05), 
reinforcing the reliability of DF-GRAPH’s performance.

DF-GRAPH consistently outperforms existing LLM-based and retrieval- 
augmented baselines across all evaluation dimensions. Its structured 
retrieval, graph-based reasoning, and evidence-grounded prompting 
collectively support more accurate, interpretable, and legally defensible 
outputs for digital forensic analysis.

6. Evaluation: User study

6.1. Study design and evaluation protocol

We conducted a within-subjects user study to evaluate four QA 

models—GPT only, Hybrid (BERT + GPT), Naive RAG, and DF-GRAPH—on 
realistic forensic tasks. Model order was counterbalanced using a Latin 
Square method (Keppel and Wickens, 1992).

Each participant completed four tasks, each corresponding to a 
different model and forensic category: motive, action, relationship, or 
confession. Tasks were constructed from real-world-inspired message 
logs (chat, SMS, email) and reviewed by forensic experts to ensure 
comparable evidentiary complexity, ambiguity, and message length.

Each task presented a short, timestamped communication exchange 
(around 500 messages) and a forensic question requiring contextual 
interpretation (e.g., “Why did Person A attempt to share the sales infor
mation with Person B or others?”). Participants received one model- 
generated answer per task and were asked to write a brief forensic 
conclusion based solely on the answer and highlight supporting evi
dence in the model output.

For example, one task presented the exchange shown in Fig. 4, where 
Person A suggests alternative packaging methods and Person B expresses 
concern about name traceability.

Participants were expected to infer that Person A aimed to mask 
ownership and reduce legal exposure. For each task, participants. 

1. Wrote their own answer (Q1), later scored for Accuracy against 
expert-curated gold standards.

2. Rated the model’s answer on four 5-point Likert items: 
• Faithfulness (Q2): Grounded in message content?
• Explainability (Q3): Clear reasoning?
• Clarity (Q4): Specific and unambiguous?
• Interpretability (Q5): Easy to understand?

3. Optionally submitted clarification questions or comments.

We also measured Efficiency by recording task completion time and 
the number of clarification queries, which indirectly indicates each 
model’s cognitive load and practical usability in forensic workflows.

6.2. Participants

Eight digital forensic professionals from government-affiliated 
investigative units participated in the study. All participants special
ized in communication log analysis and technical digital forensics, 
routinely examining messaging data (SMS, messenger logs) as part of 
their official duties. Table 3 provides detailed participant demographics.

The participants had an average of 8.7 years of professional experi
ence (SD = 3.8), with a range from 5 to 16 years. Among them, 5 were 
female and 3 were male, representing a diverse and experienced prac
titioner pool. All participants reported regular exposure to communi
cation data, with six indicating daily handling and two indicating 
weekly analysis, consistent with high operational relevance for the study 
tasks.

6.3. Results

We report model performance across the evaluation dimensions 
defined in Section 6.1. Each dimension corresponds to either structured 
participant responses (Q2–Q5) or behavioral indicators (task time, 

Table 2 
Comparison of Forensic QA Performance across Four Models. Each value rep
resents the mean ± standard deviation over 30 runs.

Model Exact Match (%) BERTScore-F1 Faithfulness

GPT 21.04 ± 4.65 0.823 ± 0.001 0.430 ± 0.018
Hybrid 33.06 ± 2.78 0.841 ± 0.000 0.361 ± 0.000
Naive RAG 40.51 ± 0.88 0.809 ± 0.001 0.542 ± 0.005
DF-GRAPH 57.23 ± 1.95 0.859 ± 0.005 0.561 ± 0.005

Fig. 4. Example suspicious messenger conversation from a task in the motive 
category, showing a possible attempt to conceal financial activities.
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clarification queries), offering a multifaceted view of each model’s 
forensic utility in realistic investigation settings.

6.3.1. Accuracy (Q1)
DF-GRAPH achieved the highest task accuracy at 78.1 %, followed by 

Naive RAG (56.2 %), Hybrid (43.8 %), and GPT (40.6 %). This metric 
reflects whether participants could infer the correct forensic conclusion 
using only the model’s response. As forensic conclusions must be not 
only plausible but also evidentially defensible, these results underscore 
the advantage of structure-aware context retrieval for high-confidence 
decision-making.

6.3.2. Faithfulness (Q2)
As shown in Fig. 5 (top), 90.6 % of participants “Strongly Agreed” or 

“Agreed” that DF-GRAPH’s output was grounded in actual message content. 
In contrast, 40.6 % of responses for GPT fell into the “Disagree” range, 
citing unsupported or hallucinated assertions. Hybrid and Naive RAG 
performed moderately, but frequently failed to provide verifiable cita
tions or message references.

6.3.3. Explainability (Q3)
Fig. 5 (second top) shows that 87.4 % of participants “Strongly 

Agreed” or “Agreed” that DF-GRAPH’s answers provided traceable, logi
cally structured justifications. In comparison, GPT (37.5 %) and Naive 
RAG (53.1 %) received “Disagree” or “Strongly Disagree” ratings, indi
cating opaque reasoning or insufficient causal explanation.

6.3.4. Clarity (Q4)
Clarity evaluates whether the response is specific and unambiguous. 

Fig. 5 (third top) indicates that 84.4 % of DF-GRAPH outputs were rated as 
“Strongly Agree” or “Agree” for clarity. Naive RAG scored the lowest, 
with 53.2 % of responses rated “Strongly Disagree,” largely due to vague 
language and verbose answers. GPT and Hybrid performed better, but 
often included redundant phrasing that reduced interpretive precision.

6.3.5. Interpretability (Q5)
Interpretability assesses how easily users can extract meaning and 

rationale from the model output. As shown in Fig. 5 (bottom), DF-GRAPH 

again led with 81.2 % positive agreement. GPT followed at 18.7 %, with 
Hybrid (11.5 %) and Naive RAG (6.2 %) trailing. Participants noted that 
DF-GRAPH’s use of message IDs and temporal structure made the expla
nation path easier to follow and verify.

6.3.6. Efficiency (Behavioral metrics)
Efficiency was measured through task duration and clarification 

frequency. DF-GRAPH enabled the shortest average task time (41 s) and the 
fewest clarification queries (1.3 per task), suggesting minimal ambiguity 
and faster decision support. In contrast, GPT required the most time (58 
s) and the highest number of clarification queries (3.3), pointing to a 
heavier cognitive burden during interpretation. Hybrid and Naive RAG 
showed intermediate performance.

6.3.7. Qualitative feedback
The participants described DF-GRAPH as “methodical,” “justifiable,” and 

“aligned with real forensic workflows” (P2, P5). Specifically, P8 noted, 
“The structure helped me see the logic path immediately.” However, P2 
noticed that the model occasionally generated overly detailed outputs 
that obscured the main point. In contrast, GPT was described as 
“imprecise” and “detached,” with several responses failing to cite relevant 
context. Naive RAG was often perceived as “repetitive” or “incomplete,” 
particularly in motive and relationship inference tasks.

DF-GRAPH consistently outperforms baseline models across subjective 
evaluations and behavioral metrics. Its integration of graph-based 
context and source-grounded prompting enables more accurate, inter
pretable, and operationally reliable outputs, making it a strong candi
date for AI-assisted digital forensic investigation.

7. Discussion

7.1. Alignment with forensic reasoning

DF-GRAPH was designed to reflect how forensic analysts reason—by 
constructing structured chains of evidence grounded in temporal 
sequence, speaker roles, and causal relationships. Unlike generative- 
only or retrieval-based models that treat text as a flat sequence, DF- 
GRAPH encodes discourse structure using a graph representation and re
trieves subgraphs that preserve conversational and evidentiary context.

Findings from the user study confirm that this structural alignment 
translates into improved interpretability. In tasks such as motive 
reconstruction and relationship inference, participants consistently 
rated DF-GRAPH’s responses as more faithful and explainable. Notably, 
87.4 % of answers received “Strongly Agree” or “Agree” ratings for 
explainability, highlighting the model’s ability to support traceable and 
coherent reasoning. In contrast, baseline models like GPT and Naive 
RAG often failed to establish clear cause-and-effect links, resulting in 
fragmented or ambiguous outputs.

Table 3 
Participant demographics (N = 8).

ID Gender Experience (yrs) Data Handling Frequency

P1 Male 9 daily
P2 Male 16 weakly
P3 Female 5 daily
P4 Male 5 daily
P5 Female 8 daily
P6 Female 13 weakly
P7 Female 7 daily
P8 Female 7 daily

Fig. 5. Distribution of Likert-scale responses across three evaluation di
mensions. Ratings were collected per task on a 5-point scale.
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7.2. Traceability and legal transparency

Legal admissibility in forensic analysis requires not only factual ac
curacy but also justification of how conclusions were reached. DF-GRAPH 

addresses this through rule-based trace generation, which maps the 
answer to a sequence of evidence-bearing message nodes (e.g., Message 
A → Statement B → Motive C → Conclusion D). This format aligns with 
documentation practices of forensic reports and court testimony.

Participants strongly endorsed this transparency. As shown in Fig. 5, 
DF-GRAPH achieved a 90.6 % “Strongly Agree” or “Agree” rating for 
faithfulness, with no negative responses. Qualitative feedback echoed 
this trust: “Since the sources are clear, it can be used as evidence, and I 
hope it will be implemented in actual practice” (P5). These findings 
highlight that traceability is not merely a desirable property but a crit
ical prerequisite for operational deployment in legal contexts.

7.3. Deployment considerations

While DF-GRAPH achieves strong performance under controlled con
ditions, real-world deployment presents critical challenges for forensic 
practice.

7.3.1. Scalability
Investigative cases often involve massive, unstructured datasets such 

as full-device extractions or month-long chat histories, where efficient 
retrieval becomes essential. Although our implementation supports 
graph clustering, operational deployment requires advances in hierar
chical partitioning, dynamic subgraph caching, and real-time forensic 
filtering to handle large-scale data processing.

7.3.2. Uncertainty handling
Forensic environments often involve incomplete records, ambiguous 

language, and multiple plausible interpretations. Future versions of DF- 
GRAPH should incorporate human-in-the-loop workflows, probabilistic 
reasoning, and multi-hypothesis generation. Each interpretation must be 
grounded in distinct, traceable evidence subsets, enabling analysts to 
evaluate alternative explanations systematically.

7.3.3. Infrastructure constraints
GPT-4o’s reliance on commercial cloud APIs raises concerns about 

data sovereignty, chain-of-custody compliance, and cost-effectiveness in 
high-throughput forensic environments. To address these limitations, 
we propose integrating self-hosted lightweight language models (sLLMs) 
into DF-GRAPH. While sLLMs may underperform on open-ended reasoning, 
they excel at structured forensic QA tasks and offer superior local 
deployment, privacy assurance, and cost control. A hybrid architecture 
where sLLMs handle routine queries and selectively invoke commercial 
models under strict anonymization protocols would optimize the bal
ance between performance and compliance requirements.

8. Conclusion

DF-GRAPH is a graph-based RAG framework for forensic QA. Inte
grating temporal, structural, and semantic edges into a dynamic mes
sage graph and subgraph-guided prompting, DF-GRAPH enables 
interpretable, traceable reasoning over complex dialogues.

Empirical results on real-case, public, and synthetic datasets show 
that DF-GRAPH outperforms GPT, hybrid, and naive RAG baselines in all 
major metrics—achieving 57.2 % exact match accuracy, 0.859 
BERTScore-F1, and the highest contextual faithfulness. Statistical anal
ysis confirmed the robustness of these gains across 30 trials. In
vestigators in a user study rated DF-GRAPH highest in clarity of reasoning, 
evidentiary alignment, and overall decision-making support.

While DF-GRAPH targets text-based communication, real investigations 
often involve multimodal evidence, such as call logs, images, and audio. 
Future work will extend DF-GRAPH by redesigning evidence 

representation, temporal alignment, and causal reasoning to support 
multimodal inputs while preserving interpretability and legal validity.
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