

Data hiding in file systems: Current state, novel methods,
and a standardized corpus

By:

Anton Schwietert, Jan-Niclas Hilgert

From the proceedings of
The Digital Forensic Research Conference

DFRWS APAC 2025
Nov 10-12, 2025

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.
https://dfrws.org

DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC

Data hiding in file systems: Current state, novel methods, and a
standardized corpus

Anton Schwietert, Jan-Niclas Hilgert *

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE Fraunhofer FKIE, Zanderstr. 5, 53177, Bonn, Germany

A R T I C L E I N F O

Keywords:
Data hiding
Anti forensics
File system forensics
Data corpus

A B S T R A C T

File systems are a fundamental component of virtually all modern computing devices. While their primary
purpose is to manage and organize data on persistent storage, they also offer a range of opportunities for con
cealing information in unintended ways—a practice commonly referred to as data hiding. Given the challenges
these techniques pose to forensic analysis, it becomes essential to understand where and how hidden data may
reside within file system structures. In response, this paper systematically examines the current state of research
on data hiding techniques in file systems, consolidating known methods across widely used file systems including
NTFS, ext, and FAT. Building on this comprehensive survey, we explore how existing methods can be adapted or
extended and identify previously unexamined data hiding opportunities, particularly in underexplored file sys
tems. Furthermore, we propose and discuss novel data hiding techniques leveraging unique properties of
contemporary file systems such as the misuse of snapshots. To support future research and evaluation, we apply a
range of data hiding techniques across multiple file systems and present the first publicly available, scenario-
based dataset dedicated to file system data hiding. As no comparable dataset currently exists, this contribu
tion addresses a critical gap by supporting systematic evaluation and encouraging the development of effective
detection methods.

1. Introduction

File systems are essential for organizing storage space and are
therefore a fundamental component of every modern computing device.
While recovering deleted files is a well-established aspect of file system
analysis, prior research has also revealed the potential for concealing
data within the file system itself, e.g. in slack space. Depending on the
technique used, data hiding in file systems can offer a robust and high-
capacity means of storing information covertly. Given the ubiquity of
file systems, understanding both the methods for storing hidden data
and the techniques for uncovering it is crucial for a file system forensic
analysis. However, due to the diversity of file systems and the wide
range of possible hiding techniques, it is often difficult to know which
methods exist and which file systems they target.

In this work, we address this gap by first offering a comprehensive
overview of data hiding techniques in file systems covering known
methods. While a recent study conducted a similar survey, their work
only included a subset of existing methods, as acknowledged by the
authors themselves Toolan and Humphries (2025a). Building on our

comprehensive survey, we further explore how established data hiding
techniques can be adapted to lesser-studied, contemporary file systems
and introduce novel strategies that leverage their unique features. To
support the development and evaluation of detection techniques, we
also present the first detailed and comprehensive dataset specifically
dedicated to data hiding in file systems.

In summary, this paper makes the following contributions:

• Provide an overview of the current state of data hiding techniques in
file systems.

• Discuss the potential for extending existing data hiding methods to
different file systems or structures.

• Highlight novel possibilities for data hiding in contemporary file
systems.

• Implement and share a corpus for evaluating data hiding detection
methods.

The remainder of the paper is structured as follows: Section 2 reviews
existing data hiding techniques and prior research. Section 3 extends

* Corresponding author.
E-mail addresses: anton.schwietert@fkie.fraunhofer.de (A. Schwietert), jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301984

Forensic Science International: Digital Investigation 54 (2025) 301984

Available online 3 November 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:anton.schwietert@fkie.fraunhofer.de
mailto:jan-niclas.hilgert@fkie.fraunhofer.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301984
https://doi.org/10.1016/j.fsidi.2025.301984
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301984&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

these concepts to underexplored file systems and new hiding locations,
while Section 4 presents novel techniques for contemporary file systems.
Based on these results, Section 5 describes the standardized corpus
containing representative examples of various data hiding strategies
across multiple file systems. Section 6 concludes the paper and outlines
directions for future research.

2. Current state of data hiding

Data hiding in file systems is a well-established area of research in
digital forensics. To provide an overview of existing techniques, we
reviewed 24 key scientific publications published between 2005 and
2025 that describe various methods for concealing data within file
systems. In the sections that follow, we discuss these techniques using
the commonly applied categorization based on the location of hidden
data: slack space, reserved space, and misuse of file system structures Göbel
and Baier (2018a). For a more detailed overview and to pinpoint exactly
which components are exploited, we adopt the categorization proposed
by Brian Carrier (2005), which divides file system structures into various
data categories: file system, content, metadata, and filename. This
fine-grained structure is reflected in Table 1, where each cell references
the publication that describes a specific data hiding method in a given
file system and location. The following sections provide a detailed
overview of these existing data hiding techniques.

2.1. Slack space

One of the most common methods of hiding information in all file
systems is the use of slack space. Slack space is the unused storage space
in the last block1 of a file that is created by the difference between the
actual file size and the fixed block size. As these areas are not visible to
standard users and leave the file size unchanged, they are particularly
well-suited for data hiding. In addition, Srinivasan and Pieper also

present a new steganographic method that leverages the file slack space
to hide an entire filesystem volume Srinivasan and Pieper (2022).

Slack space can occur not only at the end of files, but also at the end
of other file system structures. Examples include the superblock Piper
et al. (2005); Göbel and Baier (2018a); Toolan and Humphries (2025b),
block and inode bitmaps Göbel and Baier (2018a), inodes Göbel and
Baier (2018a); Toolan and Humphries (2025b), the group descriptor
table Piper et al. (2005); Göbel and Baier (2018a) and the boot sector
Berghel et al. (2008); Piper et al. (2005); Göbel and Baier (2018a).

In recent years, research has increasingly turned to underexplored
file systems such as APFS and Btrfs. In the case of APFS, slack space
located at the end of key structures—including the container superblock,
volume superblocks, and the object map—has been analyzed for its
potential use as covert storage for hidden data Koolhaas and van
Steenbergen (2020).

For Btrfs, prior work has shown that file slack can be leveraged to
conceal data Göbel et al. (2024). However, Btrfs enforces data integrity
through checksums on its data blocks, which must be updated when
modifications are made, posing an additional challenge for data hiding.
Beyond file slack, Btrfs node structures, including internal and leaf
nodes, also provide hiding opportunities through their inherent slack
space. This is particularly true for underutilized internal nodes. Overall,
the available hiding capacity increases with the size and complexity of
the file system Göbel et al. (2024).

A novel method recently introduced leverages symbolic links in to
create slack space suitable for data hiding Toolan and Humphries
(2025a). In most file systems, the target path of a symbolic link is stored
directly within the metadata structure. However, if the path exceeds this
available space, e.g. beyond 60 bytes in ext2, a separate data block is
allocated to store the link target. This block is typically underutilized,
leaving slack space at the end that can be exploited to conceal data.
While the technique proved effective in most of the file systems
analyzed, it did not succeed in APFS and Btrfs. Nonetheless, their

Table 1
Categorization of data hiding techniques across different file systems based on prior research.

ext2/ext3 ext4 APFS FAT NTFS XFS exFAT Btrfs

File System Category
Superblock 2 9 22 ​ ​ 7 ​ 20
Group Descriptor (Table) 2,16 9 ​ ​ ​ ​ ​ ​
Boot Sector 2 9 ​ 1 ​ ​ ​ ​
Content Category
File Slack 6,17,19 8,24 ​ 5,8,14,18,19 3,8,17,18 ​ ​ 20
Deleted Files ​ ​ ​ 5 5 ​ ​ ​
Alternate Data Streams ​ ​ ​ ​ 1,3,5,16,17,18, 19 ​ ​ ​
Bad Blocks 1 8 ​ 1,5,8,14 1,3,8,17 ​ ​ ​
Block Bitmap ​ 9 ​ ​ ​ ​ ​ ​
Additional Data Units ​ ​ ​ ​ 17 ​ ​ ​
Metadata Category
Metadata Entries 2,6 8,9 10, 22 ​ 3 7 4, 23 ​
MFT/FAT ​ 8 ​ 8,13 1, 3 ​ ​ ​
$DATA Attribute ​ ​ ​ ​ 3 ​ ​ ​
Timestamps ​ 8,9,11 10 ​ 8,12 7 4,23 20
Extended Attributes 17 ​ ​ ​ ​ 17 ​ ​
Allocation Bitmap ​ 9 ​ ​ ​ ​ ​ ​
Symbolic Link Slack 21 21 ​ ​ 21 21 ​ ​
File Name Category
File Names 6,19 ​ ​ ​ 19 ​ ​ ​
Directory Entries ​ 9 ​ 15 ​ ​ ​ ​

1 Berghel et al. (2008), 2 Piper et al. (2005), 3 Huebner et al. (2006), 4 Heeger et al. (2022), 5 Davis et al. (2010), 6 Eckstein and Jahnke (2005), 7 Toolan and
Humphries (2025b), 8 Göbel and Baier (2018b), 9 Göbel and Baier (2018a), 10 Göbel et al. (2019), 11 Göbel and Baier (2018a,b), 12 Neuner et al. (2016), 13) Khan
et al. (2011), 14 Liu et al. (2009), 15 Kim et al. (2022), 16 Piper et al. (2006), 17 Krenhuber and Niederschick (2007), 18 Hassan and Hijazi (2016), 19 Dillon (2006),
20 Göbel et al. (2024), 21 Toolan and Humphries (2025a), 22 Koolhaas and van Steenbergen (2020), 23 Heeger et al. (2021), 24 Srinivasan and Pieper (2022)

1 Block and cluster refer to the smallest I/O unit of a file system; hereafter,
we use ‘block’ exclusively.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

2

inclusion in the evaluation highlights the growing relevance of modern
file systems in data hiding research.

The combination of potentially large amounts of slack space across
multiple blocks and file system structures, together with the simplicity
of the approach, makes slack space a promising target for data hiding.
However, since slack space may be reused when files or structures are
extended, any hidden data stored in these areas is at risk of being quickly
overwritten.

2.2. Reserved space

The various reserved areas within a file system provide another way
to hide data. These areas are usually reserved for future use or byte-
alignment and not considered useable by the file system, thus mini
mizing the risk of data being overwritten in these areas. As a result, they
serve as effective locations for concealing data.

Examples of using these areas to hide data are provided by Piper
et al. (2005), who stored data in reserved areas of the superblock and its
backup copies. Other reserved areas can be found in the boot sector
Göbel and Baier (2018a), the group descriptor table Piper et al. (2005),
and inodes Göbel and Baier (2018b). In inodes, data can be stored in
reserved areas within the inodes as well as in entire reserved inodes
Göbel and Baier (2018a); Toolan and Humphries (2025b). In APFS, up to
10 bytes of padding per inode can potentially be used to hide informa
tion Koolhaas and van Steenbergen (2020). In the ext2 file system,
inodes 7 to 10 are reserved for future use, providing 512 bytes that can
be repurposed for data hiding. In ext3, however, inodes 7 and 8 are used,
reducing the available space Piper et al. (2005). In ext4, inodes 9 and 10
can be utilized to hide information without affecting the functionality of
the file system Göbel and Baier (2018a). Additionally, the last two bytes
of the 12-byte osd2 field—located at offset 0x74 within each ino
de—can serve as a hiding space Göbel and Baier (2018b).

In the Btrfs file system, each superblock is preceded by a 64 KiB
reserved region that remains unmodified during normal operation. This
area can serve as a potential location for covert data storage Göbel et al.
(2024).

In XFS, each allocation group includes a free list area containing four
reserved blocks designated for future expansion of the inode B + Tree.
These blocks, which collectively offer 64 KiB of space, can be repurposed
for data hiding Toolan and Humphries (2025b).

2.3. Misuse of file system structures

Beyond slack and reserved space as methods for data hiding, existing
file system structures themselves can also be misused to conceal data.

2.3.1. Timestamps
One notable example involves embedding data in the nanosecond

portion of file system timestamps Göbel et al. (2019); Göbel and Baier
(2018); Neuner et al. (2016). This technique has already been success
fully demonstrated in several file systems. Detecting such hidden data is
difficult because common file browsers do not usually display the
nanosecond fields. Even when using terminal commands like stat,
which reveal full timestamps, subtle variations in the nanosecond range
are not easily noticeable. However, the method suffers from limited
robustness. Timestamps are frequently overwritten during regular file
system operations. To address this issue Neuner et al. (2016) incorpo
rated error correction codes to enhance the reliability of this technique.
The capacity of this approach depends on the level of nanosecond pre
cision supported by the file system. For instance Göbel and Baier (2018)
evaluated this technique on ext4 and successfully embedded up to 6.5
bytes per timestamp.

Another method demonstrates that Btrfs allows data hiding by
exploiting the 4-byte sub-second portion of inode timestamps Göbel
et al. (2024). This technique avoids modifying the main 8-byte time
stamp value, thereby reducing the risk of detection through standard file
system integrity checks. The process involves locating the relevant inode
offsets, embedding the input data within the sub-second timestamp
fields, and recalculating the inode’s checksum to maintain file system
integrity.

For exFAT, more advanced data hiding techniques that exploit
timestamp metadata have been proposed Heeger et al. (2021, 2022).
One such method conceals information in the file directory entry fields
Create10msIncrement and LastModified10msIncrement, each 1
byte, by modifying only the 6 least significant bits. This technique
supports data hiding in both existing and deleted files. A related method,
known as exHide, targets only deleted files and embeds data into various
metadata fields, including timestamp components, Crea

te10msIncrement, FirstCluster, and file size. To maintain plau
sible values and reduce the likelihood of detection, it alters only the least
significant bytes of these fields and distributes the encrypted,
error-corrected embedded data across selected metadata using a pseu
dorandom scheme derived from a shared password.

2.3.2. Block allocation manipulation
Another data hiding method exploits bad block management in file

systems. NTFS stores the addresses of unusable blocks in the $BadClus
attribute of the eighth MFT record Berghel et al. (2008). FAT marks such
blocks in the File Allocation Table, and ext file systems reserve the first
inode for this purpose. By adding non-defective blocks to these lists,
users can create storage areas that are ignored by the file system and
could be used to conceal data Göbel and Baier (2018b); Davis et al.
(2010); Huebner et al. (2006); Krenhuber and Niederschick (2007).

In contrast to methods that rely on bad block manipulation, Kren
huber and Niederschick (2007) describe a technique that alters the MFT
or FAT to allocate additional, unrelated blocks to a file. This artificially
increases the file’s allocated space, creating slack space suitable for
hiding data. A more file system–specific variant of this technique targets
the $DATA attribute in NTFS Huebner et al. (2006). It allows hidden data
to be appended to existing metadata files without affecting their inten
ded functionality. Static files such as $Boot, $Bitmap, or $UpCase are
especially suited for this, as their $DATA attributes are rarely updated.
By manipulating block allocation, additional space can be reserved and
covertly filled with hidden content.

2.3.3. Deleted files
In file systems such as FAT, deleting a file typically involves

removing its references from the file allocation table, while the actual
data remains on disk. To optimize performance, many file systems avoid
immediately overwriting deleted content. Davis et al. (2010) highlight
that this behavior can be exploited to hide data in deleted files. How
ever, unless specific precautions are taken, such hidden content is at
high risk of being overwritten by subsequent file system activity.

2.3.4. Hierarchy manipulation
Certain data hiding methods target the directory structures of file

systems to obscure files without altering their content. In FAT file sys
tems, for instance, directory entries store short file names and metadata.
Kim et al. (2022) introduced a technique called NULL byte injection,
where null bytes are inserted into the directory entry. As a result,
affected files become effectively hidden. However, depending on the
specific manipulation, the technique may lack robustness, as the file
system may treat the altered directory entries as free space and over
write them.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

3

Similar manipulation is possible in ext file systems. One technique
involves setting the inode and name_len fields of a directory entry to
zero, causing the entry to appear unused. The rec_len field can then be
extended to cover the entire block, allowing arbitrary data to be hidden
in the name field Göbel and Baier (2018a).

A simple yet effective way to hide files is to use unconventional file
names. By inserting special characters, such as carriage returns, into file
names, certain tools may not parse or display them correctly, potentially
skipping these files during analysis Eckstein and Jahnke (2005).

2.3.5. Alternate data streams
The NTFS file system supports multiple data streams for a single file,

with the primary stream holding the visible content. Additional streams,
known as Alternate Data Streams (ADS), can be added without affecting
the file’s apparent size. These streams are often not shown by standard
file management tools and may therefore be easily overlooked. Multiple
ADS can be associated with one file, and their storage capacity is
generally constrained only by the available disk space on the NTFS
volume Hassan and Hijazi (2016); Davis et al. (2010); Berghel et al.
(2008); Huebner et al. (2006); Krenhuber and Niederschick (2007);
Dillon (2006).

2.3.6. Extended Attributes
Linux supports a feature known as Extended Attributes, available

across several file systems. These attributes are stored as name/value
pairs associated with files or directories and allow metadata to be
attached beyond the standard set of file system attributes. Although
support must be enabled in the kernel configuration, it is widely avail
able and easy to use once activated. Since these attributes are stored
separately from file content and are not visible in standard file man
agers, they can be misused to conceal data Krenhuber and Niederschick
(2007).

2.4. Tools for data hiding

In this section, we present tools that have been developed to hide
data in file systems. During our research, we found that there are very
few tools that are publicly available, trustworthy, and function as
promised. The only one that stands out is the fishy framework, which we
will discuss in greater detail at the end of this section.

slacker.exe2 is a tool designed to hide data in NTFS slack space.
Originally developed by James C. Foster and Vincent Liu, it was part of
the Metasploit Anti-Forensics Project. However, it is no longer hosted on
the project’s official website.

bmap is a Linux-based tool that also targets slack space, specifically
within NTFS file systems. It appears to be unmaintained and currently no
reliable repositories or documentation are available.

FragFS, developed by Irby Thompson and Mathew Monroe, in
troduces a technique to hide data in the last 8 bytes of NTFS Master File
Table (MFT) entries. Like the others, it seems to have been abandoned
and is not available through verified distribution channels.

While the previously discussed tools focus primarily on the NTFS file
system, a number of data hiding tools have also been developed for the
ext family—though most target the now outdated ext2 file system. As a
result, many of these tools are no longer actively maintained or may not
be compatible with modern file systems.

One example is KY FS, which manipulates directory entries to make
them appear unused to the file system, allowing hidden data to be stored
within them. Another is the Waffen FS toolkit, which extends an ext2 file
system by adding an ext3-style journal, creating up to 32 MB of useable
space for data hiding. The Data Mule FS tool takes a different approach
by utilizing reserved areas in key file system structures, such as super
blocks, inodes, and group descriptor tables, to conceal data. On a 1 GB

ext2 file system image, this technique can offer up to 1 MB of covert
storage.

More recent developments include slack_hider3 as well as timestamps-
magic, both designed for use with the ext4 file system. slack_hider is a
Python-based tool that stores and retrieves data from file slack space. It
identifies all available slack regions and creates a Slack Allocation Table
(SAT) to manage the location of hidden content. The SAT itself is stored
in the first slack sector and is used for subsequent file retrieval. time
stamps-magic takes a different approach by embedding data into the
nanosecond fields of inode timestamps. This tool has since been inte
grated into the fishy framework.

The fishy framework4 is a Python-based toolkit for implementing and
analyzing data hiding techniques at the file system level. Developed as
part of an academic research project, it is publicly available and well
documented. Fishy supports multiple file systems, including FAT, NTFS,
ext4, and more recently, APFS Göbel et al. (2019). The framework ag
gregates a variety of established data hiding methods that exploit file
system structures, such as slack space, manipulation of bad block re
cords, and alternate data streams. By offering a unified platform for
experimentation and evaluation, fishy serves as a valuable resource for
research and education in digital forensics and information hiding.

2.5. Summary

Our literature review demonstrates that a wide range of data hiding
techniques for file systems have been developed and evaluated over the
years. These techniques vary significantly in terms of maximum data
capacity, robustness, and ease of use. While file slack space remains a
well-known and general method that forensic investigators should be
aware of, recent approaches increasingly exploit specific file system
structures while also addressing the challenges of more advanced data
hiding methods such as integrity checks. This diversity complicates the
development of generic detection methods.

Moreover, prior research has primarily focused on established file
systems such as ext, FAT, and NTFS. In contrast, data hiding techniques
for more contemporary file systems—such as ZFS, APFS, and
Btrfs—have received comparatively little attention. The following sec
tions address this gap by examining underexplored data hiding tech
niques in modern file systems that should be considered in forensic
analysis and tool development. Although not exhaustive, these insights
contribute to the broader understanding of emerging anti-forensic
strategies.

3. Extending existing data hiding techniques

In this section we identify additional hiding locations across both
new and well-studied file systems based on existing data hiding
methods.

3.1. Slack space

Although file slack is a well-established concept in data hiding, it
gains renewed relevance in the context of contemporary file systems that
employ dynamically sized extents, as noted by Beebe et al. (2009).
Furthermore, the use of checksums in modern file systems can compli
cate this otherwise straightforward hiding technique and increase the
likelihood of detection.

3.1.1. Content data (file slack)
Table 2 summarizes the minimum, maximum, and default block sizes

for various file systems, along with their use of integrity checks to pro
vide a better overview. Furthermore, the following section discusses the

2 https://resources.bishopfox.com/resources/tools/other-free-tools/mafia/.

3 https://github.com/exembly/slack_hider.
4 https://github.com/dasec/fishy.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

4

https://resources.bishopfox.com/resources/tools/other-free-tools/mafia/
https://github.com/exembly/slack_hider
https://github.com/dasec/fishy

challenges and intricacies of data hiding in file slack specifically for ZFS.

3.1.1.1. ZFS. Unlike many traditional file systems, where the block size
is fixed at creation, ZFS uses a flexible scheme based on the record
size property. This parameter defines the maximum block size used for
storing file data and can be set during dataset creation (i.e., the creation
of a ZFS file system). Although it can be modified later, the new value
only affects files created thereafter.

Our experiments confirmed, that the recordsize serves as an
upper limit. For files smaller than or equal to this value, ZFS allocates a
single logical block whose size is rounded up to the next multiple of 512
bytes. For files larger than recordsize, ZFS splits the content into
multiple blocks of exactly recordsize, with the final block padded to
recordsize.

This padding behavior leads to slack space that can be exploited for
data hiding. For instance, with a recordsize of 2 KiB (2048 bytes), a
1400-byte file would be stored in a single block rounded up to 1536
bytes, leaving 112 bytes of slack. In contrast, a 2100-byte file would be
split into two full 2048-byte blocks (4096 bytes total), even though only
2100 bytes are needed—resulting in 1996 bytes of slack space in the
second block. Given that recordsize can be configured up to 16 MiB,
this mechanism enables the creation of substantial slack space, making
ZFS an attractive target for data hiding.

ZFS also supports transparent data compression at the block level.
Although this feature is available, it is disabled by default for newly
created datasets. For the slack space–based data hiding method to
function as intended, compression should remain disabled, as it could
otherwise eliminate or alter slack space during storage.

In addition, ZFS ensures data integrity through mandatory check
sums on all data blocks. If slack space is modified, these checksums must
be recalculated to avoid detection. While it is technically possible to
disable checksumming, this is strongly discouraged in ZFS documenta
tion due to the risk of data corruption. However, from the perspective of
an attacker, disabling checksums makes it significantly easier to hide
data undetected. As such, the absence of checksums should be consid
ered a strong forensic red flag.

As highlighted by Hilgert et al. (2017), the mapping of a logical file
system address to the physical device and offset in ZFS depends on the
specific pool configuration and involves additional steps. Consequently,
this mapping is also essential for accurately locating slack space used for
data hiding.

3.1.2. File system data
As discussed earlier, slack space can also exist at the end of various

file system structures, including the superblock. This structure, which
stores essential metadata such as file system size and block allocation,

has been shown to allow data hiding in ext file systems. Other file sys
tems rely on similar metadata structures, which may likewise contain
slack space that can be exploited, as summarized in Table 3.

3.1.2.1. exFAT. In the exFAT file system, the main boot region is
located at the beginning of the volume and spans 12 sectors, starting
with the main boot sector in the first sector. This boot sector contains the
bootstrapping code and key exFAT parameters and has a defined size of
512 bytes. If the physical sector size exceeds 512 bytes, unused space
remains within the sector. This slack space can be exploited for data
hiding. The actual sector size is defined at offset 108 within the boot
sector and can be up to 4 KiB.

Sector 9 of the main boot region is reserved for OEM parameters and
typically occupies only 480 bytes, leaving unused space that can be
repurposed for data hiding. Sector 11 serves as a checksum sector,
containing checksums calculated over the entire boot region. To modify
the boot region without detection, the corresponding checksums must
be recalculated and Sector 11 must be updated accordingly.

Immediately following the main boot region is a backup boot region
with an identical structure, which provides the same potential for data
hiding.

3.1.3. Allocation structures
Some file systems use bitmaps to track the allocation status of data

blocks, where each bit corresponds to a single block: a value of one in
dicates that the block is allocated, while zero denotes an unallocated
block. Since the total number of data blocks does not always align
perfectly with the number of bits that fit into a block-sized bitmap,
unused bits may remain—creating slack space. This slack can be
exploited for data hiding, as previously demonstrated for the ext4 file
system Göbel and Baier (2018a).

3.1.3.1. FAT. The FAT file system does not rely on a bitmap to track
allocation status. Instead, it uses the File Allocation Table, which records
the usage of each cluster. Similar to other file system structures, slack
space can occur at the end of the FAT, particularly when it does not align
perfectly with the underlying sector size—i.e., when the table ends in
the middle of a sector. Since the FAT file system does not implement
checksums for integrity verification, no further modifications are
required when hiding data in this slack space.

3.1.3.2. exFAT. The exFAT file system uses an allocation bitmap to
track the allocation status of blocks. A bit value of 0 indicates that a
block is free, whereas a value of 1 indicates that it is in use. This
approach differs from traditional FAT file systems, which determine
block allocation directly through the FAT table by setting an entry to
zero for free blocks. In exFAT, the FAT is still present and used to
maintain block chains for fragmented files, but the allocation bitmap
serves as the primary mechanism for identifying free blocks.

The allocation bitmap is stored in the data area of the volume, and its
metadata—such as the start blocks and total size—is recorded in a
dedicated directory entry. The size of the bitmap can be retrieved from
the data_length field at offset 24 of this entry. Slack space may occur
if the size of the bitmap is not an exact multiple of the block size.

Since exFAT does not employ checksums or other integrity

Table 2
Overview of block size configurations and checksum support across common file
systems.

FS Block Size Checksum

default min max meta data

ext2/3 1/4 KiB 1 KiB 4 KiBb ⨯ ⨯
ext4 4 KiB 1 KiB 64 KiB ⨯ ⨯
XFS 4 KiB 512 B 64 KiBc ✓ ⨯
NTFS 4 KiB 512 B 2048 KiBd ⨯ ⨯
FAT a 512 B 512 KiBe ⨯ ⨯
exFAT a 512 B 32 MB ✓ ⨯
Btrfs 4 KiB 512 B 64 KiB ✓ ✓
APFS 4 KiB 4 KiB 64 KiB ✓ ⨯
ZFS 128 KB 512 B 16 MiB ✓ ✓

a Default block size increases with partition size.
b 8 KiB on Alpha systems.
c Limited by the system’s memory page size.
d Since version 1709. Before 64 KiB.
e Using the official maximum sector size of 4096 B.

Table 3
Slack capacity details for FAT, exFAT, and ZFS.

FS Location Capacity Quantity

FAT FAT Table sz – (FAT length mod sz) 2
exFAT Boot Sector sz – 512 B 2

OEM Sector sz – 480 B 2
Alloc. Bitmap sz – ((Block count/8) mod sz) 2

ZFS Indirect Block bs – (pointer count × 128 B) per indirect block

sz: Sector size; bs: Block size.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

5

verifications for standard data blocks, this slack space may be exploited
for hiding data without detection by the file system.

3.1.4. Metadata

3.1.4.1. ZFS. In ZFS, a block pointer is a 128-byte structure used to
reference a data block. Each file is represented by a dnode, which holds
up to three direct block pointers, allowing it to address data up to three
times the configured block size. When additional space is required, ZFS
employs a hierarchy of indirect blocks. For example, if a file exceeds the
capacity provided by the three direct block pointers, a level-1 block
pointer is used to reference an indirect block, which in turn contains
level-0 block pointers to the actual data blocks.

If an indirect block is not fully populated with block pointers, the
remaining slack space can be used for data hiding. However, if check
summing is enabled, the corresponding checksum must also be updated
to avoid detection.

3.2. Reserved space

As highlighted in the previous section, various reserved areas in file
systems—often intended for alignment or future use—have already been
exploited to hide data. In this section, we extend the analysis by iden
tifying additional reserved regions that have not yet been examined for
data hiding, both in the file systems discussed earlier and in others not
yet considered. These details are summarized in Table 4.

3.2.1. File system data

3.2.1.1. FAT. In the FAT file system, the BIOS Parameter Block (BPB)
includes fields—specifically, BPB_FATSz16 for FAT12 or FAT16 and
BPB_FATSz32 for FAT32—that define the number of sectors allocated
to each FAT. These values are typically set during formatting based on
the volume size and block configuration. However, it is possible to
manually set these fields to values larger than necessary, resulting in
unused sectors at the end of each FAT. These surplus sectors can
potentially be used to hide data.

3.2.1.2. NTFS. NTFS manages metadata through the Master File Table
(MFT), a sequence of fixed-size file records (typically 1024 bytes, as
defined in the boot sector). Each file and directory is represented by one
or more of these records, which are functionally similar to inodes in
Unix-based systems. An MFT record consists of a header, a series of
variable-length attributes, and an standard end marker.

While MFT entries 12–15 are reserved for future use, entries 16–23
are also initially marked as unused and could potentially be exploited for
data hiding. However, since these entries are not officially documented,
they may be allocated by the file system during normal operation.

3.2.1.3. exFAT. In exFAT, the 10th sector of both the main and backup
boot regions is reserved and can range from 512 bytes to 4 KiB,
depending on the sector size. When hiding data in this sector, the

corresponding checksums in the subsequent checksum sectors must be
updated to avoid simple detection.

3.2.1.4. Btrfs. As described by Göbel et al. Göbel et al. (2024), Btrfs
reserves 64 KiB of space preceding each superblock, which can be used
to hide data. Beyond that, the superblock itself also contains unused and
reserved areas suitable for data hiding. Each Btrfs superblock is 4096
bytes in size. The last 565 bytes—starting at offset 0xDCB—are currently
unused, and an additional 240 bytes at offset 0x23B are reserved for
future extensions. Together, these regions provide 805 bytes per su
perblock that can potentially be repurposed for concealed data.

The primary superblock is located at offset 0x10000, with additional
mirror copies stored at predefined locations.5 The superblock checksum
is stored in its first 32 bytes and covers the content starting from offset
0x20. As such, any modifications to the reserved areas must be followed
by a checksum update to maintain integrity and avoid detection.

3.2.2. FSInfo
FAT32 features a FSInfo structure, which is referenced via the

BPB_FSInfo field in the boot sector, which stores additional metadata
about the file system. The primary FSInfo sector usually resides in
logical sector 1, with an additional backup copy at sector 7. This
structure includes two reserved fields: FSI_Reserved1 (480 bytes)
and FSI_Reserved2 (12 bytes). Although these fields are usually
zeroed during formatting, they are not validated and can be repurposed
for hidden data. Furthermore, the FSInfo structure contains the
FSI_Free_Count and FSI_Nxt_Free fields, which store the number
of free blocks and the next free block. However, with a combined size of
only 8 bytes, these fields offer limited capacity, even when considering
the additional FSInfo backup structure, and may be modified by the
file system driver during normal operation.

3.2.3. Vdev labels
ZFS storage pools consist of one or more virtual devices (vdevs),

which typically correspond to physical storage devices such as disks.
Each vdev contains four 256 KB structures known as vdev labels: two are
located at the beginning of the device, and two at the end.

The first 8 KB of each vdev label is reserved for a potential Volume
Table of Contents (VTOC) and is intentionally left blank. The following
8 KB is marked as reserved for future use. Together, these sections
provide 16 KB of reserved space per label that can potentially be used to
hide data.

Additionally, ZFS reserves a 3.5 MB region between the second and
third vdev label for future use. This area begins at offset 0x8000,
directly following the second label, and offers a significantly larger
opportunity for data hiding.

3.2.4. Metadata

3.2.4.1. ZFS. 24 bytes of a block pointer in ZFS are reserved as padding
for future use. These bytes are unused by default and may be leveraged
to hide data. The final 32 bytes of the block pointer store a checksum for
verifying the integrity of the referenced data block. However, since ZFS
allows checksums to be disabled, this region may no longer be validated.
In such cases, the checksum field itself could potentially be repurposed
for data hiding. In addition, the dnode structure includes several padding
fields, most notably dn_pad3, located at offset 0x48 and spanning 32
bytes. As the number of dnodes scales with the number of files in the file
system, this reserved area may offer substantial cumulative capacity for
data hiding.

3.2.4.2. Btrfs. In Btrfs, inodes store metadata for files and directories.

Table 4
Reserved space locations and capacities.

FS Location Description Capacity

FAT32 FSInfoa FSI_Reserved{1,2} 492 B
exFAT Boot Regiona 10th sector Sector Size
NTFS MFT Entries 12-15 4 × 1024 B
Btrfs Superblock Offset 0 × 23B and 0xDCB 805 B

inode Offset 0x50 inode count x 32 B
ZFS vdev label First 16 KB 4 × 16 KB

vdev label After second vdev label 3.5 MB
dnode dn_pad3 dnode count x 32 B

a Applies also to backup structure.

5 https://btrfs.readthedocs.io.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

6

https://btrfs.readthedocs.io

Each inode is represented by the btrfs_inode_item structure, which
is 160 bytes in size. Within this structure, 32 bytes at offset 0x50 are
reserved for future use making them a potential target for data hiding.
Since the number of inodes scales with the number of files in the file
system, this can result in a considerable amount of aggregate hiding
space. Since Btrfs uses checksums to ensure the integrity of its metadata,
any modifications to these reserved fields may require updating the
associated checksums to avoid detection.

3.3. Misuse of file system structures

In addition to slack and reserved space, various file system structures
can be misused to conceal data.

3.3.1. Bad blocks
As previously discussed, several file systems, such as ext, FAT, and

NTFS, allow data to be hidden by marking blocks as bad, causing the file
system to ignore them. This method is not applicable to XFS, APFS, Btrfs
and ZFS which delegate bad block handling to lower layers like hard
ware or drivers. In the case of exFAT, however, a similar hiding tech
nique is possible. If a block is marked as allocated in the bitmap but its
corresponding FAT entry is set to 0xFFFFFFF7, the file system in
terprets the block as defective and ignores it. Manually specifying bad
blocks this way can be used to create additional space to hide data.

3.3.2. Timestamp hiding
As previously noted, the nanosecond portions of timestamps can be

exploited to conceal data. In this section, we extend the analysis to file
systems not previously examined, providing an overview of available
timestamps, their locations, precision, and the presence of integrity
mechanisms. These details are summarized in Table 5.

As shown, file systems such as FAT, exFAT, and HFS + do not support
nanosecond-resolution timestamps, making them unsuitable for this
data hiding technique. In contrast, Btrfs and ZFS use 64-bit timestamps
with nanosecond precision, splitting seconds and nanoseconds into the
upper and lower 32 bits, respectively. While this method has already
been applied to Btrfs Göbel et al. (2024), it has not yet been examined for
ZFS.

In ZFS, timestamps are stored within dnodes, which serve a similar
role to inodes in ext-based file systems. Like Btrfs, ZFS protects its
metadata and data blocks with checksums (see Table 2). However, ZFS
offers the option to disable checksumming, which enables the modifi
cation of timestamp fields without triggering integrity violations. This
makes the 32-bit nanosecond portion of each timestamp a viable
candidate for data hiding.

As a well-established technique, timestamp-based hiding offers a
capacity that scales with the number of files. However, due to the

volatility of timestamp fields during regular file system activity, it is best
suited for static files where metadata is unlikely to be modified.

4. Novel techniques for data hiding

While the previous section examined how existing data hiding
techniques can be adapted to file systems where they have not yet been
applied—and identified additional potential hiding locations—this
section presents novel techniques that, to the best of our knowledge,
have not been previously described in the literature. These methods
leverage architectural properties and features unique to contemporary
file systems to conceal data in new and previously unexplored ways.

4.1. Snapshots

Snapshots are a feature of modern file systems such as ZFS and Btrfs
allowing users to preserve and later revert to a consistent state of the file
system at a specific point in time. This functionality is typically enabled
through the Copy-on-Write (CoW) mechanism, where modified data is
written to a new location rather than overwriting the original. As a
result, snapshots can be maintained efficiently, since only modified data
consumes additional space.

In order to hide data using this feature, a snapshot can be created
while sensitive files are still present. Afterward, the files can be deleted
or moved from the active file system. However, since the snapshot re
tains references to the original data blocks, the deleted files remain
intact and are not overwritten. By reverting to the snapshot, the data
becomes accessible again. This technique offers a simple yet effective
method for concealing information within the file system.

However, this method remains effective only as long as an analyst is
unaware of the presence or relevance of certain snapshots or of the
snapshot feature itself. In ZFS, for example, snapshots are stored in a
hidden directory at the root of the file system: .zfs/snapshot.
Although this directory is not displayed by default in standard utilities, it
can still be accessed and inspected. Moreover, investigators can use
administrative tools to enumerate available snapshots. While basic
obfuscation techniques, such as misleading naming, may be applied,
fully concealing the existence of a snapshot typically requires more
invasive manipulation.

To achieve this, file system structures must be directly altered—for
example, by removing the snapshot from the list of active snapshots.
However, this can lead to the snapshot and its associated data being
overwritten, depending on the specific file system’s behavior. Conse
quently, such an approach is highly dependent on the file system’s in
ternal implementation.

4.2. Lower file slack

While slack space is a well-established target for data hiding across
various structures, modern file systems introduce a new variant: lower
file slack Hilgert et al. (2024). This form of slack emerges in stacked file
systems, which do not store data directly on volumes but instead rely on
a lower file system to store their data. In this case, files from the upper
(stacked) file system are stored as ordinary files—lower files—on the
underlying file system.

These lower files are often allocated in fixed-size extents (e.g., 4 KiB).
If the upper file’s content does not fully utilize the last extent, unused
space remains between the actual end of the file’s content and the end of
the lower file—the lower file slack. Moreover, because lower files behave
like regular files, arbitrary data can easily be appended to them without
affecting the upper file system’s view. If the lower file has reached a
predefined maximum size, this appended data may not even be over
written, creating what is referred to as extra lower file slack.

In our experiments, we successfully applied this technique to stacked
file systems such as MooseFS and GlusterFS. In particular, Moose
FS—with its 64 MiB maximum size for lower files—results in extra lower

Table 5
Comparison of file timestamp properties across different filesystems.

FS Time-
stamps

Size
(bit)

Nano
part

Location Checksum

ext2/3 m,a,c 32 0 inode ⨯
ext4 m,a,c,cr 64 32 inode ✓
NTFS m,a,c,cr 64 24 MFT record ⨯
exFAT m,a,cr 32 0 Directory entry ⨯
FAT m,a,cra 32,16a 0 Directory entry ⨯
APFS m,a,c,cr 64 32 inode ✓
XFS m,a,c,cr 64 32 inode ✓
ZFS m,a,c,cr 64 32 znode ✓
Btrfs m,a,c,cr 64 32 inode ✓
HFS+ m,a,c,cr 32 0 Catalog file

entry
⨯

m: last modification time; a: last access time; c: last metadaten modification
time; cr: creation time.

a Creation timestamp only 16bit.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

7

file slack that is not overwritten, making it a particularly interesting
location for data hiding that forensic analysts should be aware of.

4.3. Volume management structures

Contemporary file systems such as ZFS and Btrfs offer integrated
volume management capabilities, allowing multiple physical disks to be
combined into logical storage pools using configurations like mirrors or
striped arrays. While these features enhance flexibility and redundancy,
they also introduce new possibilities for data hiding.

Even in traditional software or hardware RAID setups, combining
disks of unequal size—such as using a larger disk in a mirrored config
uration—can leave unused space on the larger device. This residual
space is typically ignored by the RAID system and remains unallocated,
making it a viable location for concealing data without affecting normal
operation. File systems like ZFS and Btrfs, which include native volume
management features, can also span multiple asymmetric disks. As a
result, similar slack space may arise within these configurations, offering
comparable opportunities for data hiding.

Another potential method for hiding data in volume-managed file
systems like ZFS or Btrfs involves exploiting how data is distributed
across multiple physical devices, similar to RAID configurations. In
mirrored setups, data could be hidden by modifying only one of the
mirrors, assuming the file system does not regularly cross-verify them. If
reads consistently occur from a single mirror and no active integrity
checks are triggered, concealed data may remain undetected. Likewise,
in parity-based configurations such as RAID-Z or Btrfs RAID5/6, unused
or infrequently verified parity areas could be repurposed for data hiding.

A more advanced technique can leverage the file system’s internal
mapping mechanism, which translates logical block addresses to phys
ical offsets on specific devices in the storage pool. By manipulating these
mapping structures, such as block pointers in ZFS, to always resolve to a
single mirror member or specific disk, the file system can be tricked to
ignore other devices. This effectively isolates those devices from regular
access, allowing hidden data to persist without interference from normal
file system operations. However, this method may be easily detected
within file systems that enforce validation.

5. Standardized corpus

Data hiding in file systems is a well-established and extensively
studied topic. Consequently, the reliable detection of such hidden data
remains a critical task in forensic analysis. Effective detection methods
must be thoroughly developed, adopted, and evaluated to ensure
comprehensive identification of hidden data.

While the Cyber Forensics Lab at the University of New Haven6 offers
an overview of various forensic datasets, there appears to be no dedi
cated including file system images with data hiding techniques. How
ever, a standardized corpus is crucial for the evaluation of detection
approaches, enabling reproducibility and ensuring comparability of re
sults across different tools and methodologies.

One notable attempt to synthesize such data is the fishy framework.
However, its repository has not been maintained in recent years and
lacks coverage of several techniques discussed in this work. To address
this gap, we developed and publicly release a comprehensive corpus
focused on file system-based data hiding techniques.

The dataset comprises file system images across multiple file sys
tems, each embedding hidden data according to predefined scenarios
derived from current techniques. Each image is accompanied by a
ground truth file specifying the location (e.g., inode slack space), offset,
length, and an extracted copy of the hidden content for validation.
Image creation was performed using existing tools or frameworks where
applicable, but primarily carried out manually.

The dataset currently includes the scenarios as shown in Table 6.
For some cases, we provide multiple images per scenario and file

system to reflect different data hiding methods (e.g., data hidden in
different file system structures). All such variations are documented in
the corresponding ground truth files distributed with the dataset.7

6. Conclusion

In the field of anti-forensics, data hiding in file systems remains a
well-established technique that has been the focus of ongoing research
for many years, with new methods continually emerging to target both
legacy and modern file systems. Some techniques, such as hiding data in
file slack, are simple and easy to deploy, while others are more complex
and difficult to detect. This dual nature reinforces the importance of
understanding and addressing file system-based data hiding, making it a
critical area of focus for forensic analysts and tool developers.

Our work provides a comprehensive overview of established data
hiding methods and the file systems they target. By revisiting and
extending these techniques, we demonstrate that the potential for file
system-based data hiding is far from exhausted—even as modern fea
tures like checksumming introduce new challenges and increase the
complexity of such methods. Beyond this, we present three novel ap
proaches that exploit specific features of contemporary file systems,
which underscores the ongoing innovation in this space.

Given the evolving landscape of data hiding methods, it is crucial to
continuously develop, evaluate, and refine detection strategies to ensure
comprehensive coverage. To support this effort, we present and release
the first standardized corpus for data hiding techniques in file systems.
Rather than offering a tool that could be misused, this corpus provides a
controlled and transparent foundation for evaluating detection tools and
techniques in a reproducible and comparable manner to foster research
in this area.

References

Beebe, N., Mandes, S., Stuckey, D., 2009. Digital forensic implications of zfs. Digit.
Invest. 6, S99–S107.

Berghel, H., Hoelzer, D., Sthultz, M., 2008. Data hiding tactics for windows and unix file
systems. Adv. Comput. 74, 1–17.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Davis, J., MacLean, J., Dampier, D., 2010. Methods of information hiding and detection

in file systems. In: 2010 Fifth IEEE International Workshop on Systematic
Approaches to Digital Forensic Engineering. IEEE, pp. 66–69.

Dillon, S., 2006. Hide and Seek: Concealing and Recovering Hard Disk Data, vol. 35.
James Madison University Infosec Techreport, p. 17.

Eckstein, K., Jahnke, M., 2005. Data hiding in journaling file systems. In: DFRWS.
Göbel, T., Baier, H., 2018a. Anti-forensic capacity and detection rating of hidden data in

the ext 4 filesystem. In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics
XIV. Springer International Publishing, Cham, pp. 87–110.

Göbel, T., Baier, H., 2018b. Fishy-a framework for implementing filesystem-based data
hiding techniques. In: International Conference on Digital Forensics and Cyber
Crime. Springer, pp. 23–42.

Table 6
Overview of data hiding scenarios in the corpus.

Scenario Description

Scenario 1 Data hidden in general file slack space.
Scenario 2 Data hidden in file timestamps.
Scenario 3 Data hidden in bad units.
Scenario 4 Data hidden in additional data units.
Scenario 5 Data hidden in slack space structures.
Scenario 6 Data hidden in reserved areas of structures.
Scenario 7 Data hidden in hidden snapshots.
Scenario 8 Data hidden in lower file slack.
Scenario 9 Data hidden in the slack space of physical members in pooled file

systems.

6 https://datasets.fbreitinger.de/datasets/. 7 https://github.com/fkie-cad/hide-and-seek-dataset.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

8

http://refhub.elsevier.com/S2666-2817(25)00124-6/sref1
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref1
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref2
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref2
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref3
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref4
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref4
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref4
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref5
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref5
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref6
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref7
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref7
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref7
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref8
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref8
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref8
https://datasets.fbreitinger.de/datasets/
https://github.com/fkie-cad/hide-and-seek-dataset

Göbel, T., Baier, H., Türr, J., 2024. Generating useable and assessable datasets containing
anti-forensic traces at the filesystem level. In: IFIP International Conference on
Digital Forensics. Springer, pp. 225–246.

Göbel, T., Türr, J., Baier, H., 2019. Revisiting data hiding techniques for apple file
system. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security, pp. 1–10.

Göbel, T., Baier, H., 2018. Anti-forensics in ext4: on secrecy and usability of timestamp-
based data hiding. Digit. Invest. 24, S111–S120. https://doi.org/10.1016/j.
diin.2018.01.014. URL: https://www.sciencedirect.com/science/article/pii/S17
4228761830046X.

Hassan, N.A., Hijazi, R., 2016. Data Hiding Techniques in Windows OS: a Practical
Approach to Investigation and Defense. Syngress.

Heeger, J., Yannikos, Y., Steinebach, M., 2021. Exhide: hiding data within the exfat file
system. In: Proceedings of the 16th International Conference on Availability,
Reliability and Security, pp. 1–8.

Heeger, J., Yannikos, Y., Steinebach, M., 2022. An introduction to the exfat file system
and how to hide data within. J. Cyber Sec. Mob. 239–264.

Hilgert, J.N., Lambertz, M., Baier, D., 2024. Forensic implications of stacked file systems.
Forensic Sci. Int.: Digit. Invest. 48, 301678.

Hilgert, J.N., Lambertz, M., Plohmann, D., 2017. Extending the sleuth kit and its
underlying model for pooled storage file system forensic analysis. Digit. Invest. 22,
S76–S85.

Huebner, E., Bem, D., Wee, C.K., 2006. Data hiding in the ntfs file system. Digit. Invest. 3,
211–226. https://doi.org/10.1016/j.diin.2006.10.005. https://www.sciencedirect.
com/science/article/pii/S1742287606001265.

Khan, H., Javed, M., Khayam, S.A., Mirza, F., 2011. Designing a cluster-based covert
channel to evade disk investigation and forensics. Comput. Secur. 30, 35–49.
https://doi.org/10.1016/j.cose.2010.10.005. https://www.sciencedirect.com/sci
ence/article/pii/S016740481000088X.

Kim, D., Lee, Y.K., Jeong, J., 2022. Null byte injection: anti-forensic technique for data
hiding in fat32 file system. In: Proceedings of the Twenty-Third International
Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing, pp. 265–270.

Koolhaas, A., van Steenbergen, W., 2020. Apfs slack analysis and detection of hidden
data. Secur. Netw. Eng. 2019–2020.

Krenhuber, A., Niederschick, A., 2007. Forensic and anti-forensic on modern computer
systems. Johannes Kepler Universität Linz 11.

Liu, S.f., Pei, S., Huang, X.y., Tian, L., 2009. File hiding based on fat file system. In: 2009
IEEE International Symposium on IT in Medicine & Education, pp. 1198–1201.
https://doi.org/10.1109/ITIME.2009.5236280.

Neuner, S., Voyiatzis, A.G., Schmiedecker, M., Brunthaler, S., Katzenbeisser, S.,
Weippl, E.R., 2016. Time is on my side: Steganography in filesystem metadata. Digit.
Invest. 18, S76–S86. https://doi.org/10.1016/j.diin.2016.04.010. https://www.sci
encedirect.com/science/article/pii/S1742287616300433.

Piper, S., Davis, M., Manes, G., Shenoi, S., 2005. Detecting hidden data in ext2/ext 3 file
systems. In: Pollitt, M., Shenoi, S. (Eds.), Advances in Digital Forensics. Springer US,
Boston, MA, pp. 245–256.

Piper, S., Davis, M., Shenoi, S., 2006. Countering hostile forensic techniques. In:
Olivier, M.S., Shenoi, S. (Eds.), Advances in Digital Forensics II. Springer US, Boston,
MA, pp. 79–90.

Srinivasan, A., Pieper, B., 2022. Steganography with filesystem-in-slackspace. In: 2022
IEEE International Conference on Networking, Architecture and Storage (NAS).
IEEE, pp. 1–4.

Toolan, F., Humphries, G., 2025a. Data hiding in symbolic link slack space. Forensic Sci.
Int.: Digit. Invest. 53, 301919. https://doi.org/10.1016/j.fsidi.2025.301919.
https://www.sciencedirect.com/science/article/pii/S2666281725000587.

Toolan, F., Humphries, G., 2025b. Data hiding in the xfs file system. Forensic Sci. Int.:
Digit. Invest. 52, 301884. https://doi.org/10.1016/j.fsidi.2025.301884. https://
www.sciencedirect.com/science/article/pii/S266628172500023X.

A. Schwietert and J.-N. Hilgert Forensic Science International: Digital Investigation 54 (2025) 301984

9

http://refhub.elsevier.com/S2666-2817(25)00124-6/sref9
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref9
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref9
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref10
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref10
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref10
https://doi.org/10.1016/j.diin.2018.01.014
https://doi.org/10.1016/j.diin.2018.01.014
https://www.sciencedirect.com/science/article/pii/S174228761830046X
https://www.sciencedirect.com/science/article/pii/S174228761830046X
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref12
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref12
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref13
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref13
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref13
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref14
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref14
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref15
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref15
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref16
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref16
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref16
https://doi.org/10.1016/j.diin.2006.10.005
https://www.sciencedirect.com/science/article/pii/S1742287606001265
https://www.sciencedirect.com/science/article/pii/S1742287606001265
https://doi.org/10.1016/j.cose.2010.10.005
https://www.sciencedirect.com/science/article/pii/S016740481000088X
https://www.sciencedirect.com/science/article/pii/S016740481000088X
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref19
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref20
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref20
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref21
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref21
https://doi.org/10.1109/ITIME.2009.5236280
https://doi.org/10.1016/j.diin.2016.04.010
https://www.sciencedirect.com/science/article/pii/S1742287616300433
https://www.sciencedirect.com/science/article/pii/S1742287616300433
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref24
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref24
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref24
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref25
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref25
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref25
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref26
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref26
http://refhub.elsevier.com/S2666-2817(25)00124-6/sref26
https://doi.org/10.1016/j.fsidi.2025.301919
https://www.sciencedirect.com/science/article/pii/S2666281725000587
https://doi.org/10.1016/j.fsidi.2025.301884
https://www.sciencedirect.com/science/article/pii/S266628172500023X
https://www.sciencedirect.com/science/article/pii/S266628172500023X

	Data hiding in file systems: Current state, novel methods, and a standardized corpus
	1 Introduction
	2 Current state of data hiding
	2.1 Slack space
	2.2 Reserved space
	2.3 Misuse of file system structures
	2.3.1 Timestamps
	2.3.2 Block allocation manipulation
	2.3.3 Deleted files
	2.3.4 Hierarchy manipulation
	2.3.5 Alternate data streams
	2.3.6 Extended Attributes

	2.4 Tools for data hiding
	2.5 Summary

	3 Extending existing data hiding techniques
	3.1 Slack space
	3.1.1 Content data (file slack)
	3.1.1.1 ZFS

	3.1.2 File system data
	3.1.2.1 exFAT

	3.1.3 Allocation structures
	3.1.3.1 FAT
	3.1.3.2 exFAT

	3.1.4 Metadata
	3.1.4.1 ZFS

	3.2 Reserved space
	3.2.1 File system data
	3.2.1.1 FAT
	3.2.1.2 NTFS
	3.2.1.3 exFAT
	3.2.1.4 Btrfs

	3.2.2 FSInfo
	3.2.3 Vdev labels
	3.2.4 Metadata
	3.2.4.1 ZFS
	3.2.4.2 Btrfs

	3.3 Misuse of file system structures
	3.3.1 Bad blocks
	3.3.2 Timestamp hiding

	4 Novel techniques for data hiding
	4.1 Snapshots
	4.2 Lower file slack
	4.3 Volume management structures

	5 Standardized corpus
	6 Conclusion
	References

