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A wide variety of applications have been developed to simplify the use of Large Language Models (LLMs), raising
the importance of systematically analyzing their forensic artifacts. This study proposes a structured framework
for LLM application environments, categorizing applications into backend runtime, client interface, and inte-
grated platform components. Through experimental analysis of representative applications, we identify and
classify artifacts such as chat records, uploaded fils, generated files, and model setup histories. These artifacts
provide valuable insight into user behavior and intent. For instance, LLM-generated files can serve as direct
evidence in criminal investigations, particularly in cases involving the creation or distribution of illicit media,
such as CSAM. The structured environment model further enables investigators to anticipate artifacts even in
applications not directly analyzed. This study lays a foundational methodology for LLM application forensics,
offering practical guidance for forensic investigations. To support practical adoption and reproducibility, we also

release LangurTrace, an open-source tool that automates the collection and analysis of these artifacts.

1. Introduction

Generative artificial intelligence models, particularly Large Lan-
guage Models (LLMs), have exerted a profound influence across various
sectors of society. They are increasingly being adopted in fields such as
education, work environments, law, healthcare, counseling, and content
creation, which is fundamentally transforming the nature of human-
—computer interaction. For example, a nationwide survey conducted in
late 2023 among 6300 university students in Germany found that almost
two-thirds had used Al-based tools in their academic work (Von Garrel
and Mayer (2023)). In the mental health domain, Siddals et al. (2024)
reported high engagement and positive impacts based on interviews
with nineteen individuals who used generative Al chatbots for mental
health. Among the most prominent LLM-based services, OpenAl’s
ChatGPT recently surpassed 400 million weekly active users, according
to a February 2025 report by Reuters (2025).

LLMs have primarily been deployed as cloud-based Saa$S platforms,
such as OpenAl’s ChatGPT. However, the consideration of local de-
ployments is enabled by lightweight models and driven by benefits such
as privacy and customization (Schillaci (2024)). LLMs typically require
high-performance GPUs and large memory capacities. To address this
limitation, a line of research has focused on lightweighting techniques
for LLMs. Notably, Guo et al. (2025) introduced DeepSeek-R1, an
open-source model that significantly reduces GPU and memory
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requirements while maintaining comparable performance, thereby
demonstrating the feasibility of running LLMs on consumer-grade
hardware. As platforms such as Hugging Face have made it increas-
ingly easy for users to download and run a wide variety of pre-trained
models (PTMs), and as user-friendly local LLM applications continue
to be released, accessibility has been further improved.

However, LLMs can also serve as potent tools for criminal activities.
For example, cybercriminals are leveraging generative artificial intelli-
gence tools such as ChatGPT to help craft sophisticated and targeted
business email compromise (BEC) attacks and other phishing messages
(Bob Violino (2023)). In addition, LLMs have been used to generate
malicious scripts, such as infostealers and basic forms of ransomware,
thereby effectively lowering the technical barrier for cybercriminals
(CheckPoint (2023)). Moreover, recent investigations have revealed that
generative Al has been exploited to produce synthetic child sexual abuse
material (CSAM), raising urgent concerns about this form of exploitation
(Sima Kotecha (2025)).

Cases of LLM misuse share similarities with those involving web
browsers, suggesting that LLM applications may contain valuable digital
artifacts, just as web browsers do. While web browsers significantly
improved information accessibility and usability, they have also been
exploited for illicit purposes, such as activities on the dark web (Kaur
and Randhawa (2020)). Consequently, artifacts such as browsing his-
tory, cached content, and search queries from browsers have long been
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regarded as critical sources of evidence in digital forensic investigations
(Varol and Sonmez (2017)). Similarly, LLM applications generate
distinctive digital traces reflecting a user’s intent, decision-making
processes, and behavior.

1.1. Contributions

Whether delivered through cloud-based SaaS platforms or operated
locally, LLM applications consistently generate valuable user interaction
artifacts. To the best of our knowledge, this study is the first to present a
comprehensive approach for data collection and forensic analysis of
both cloud-based and local LLM applications. More specifically, the
contributions of this work are as follows:

e We present a structured model of the LLM application environment,
categorizing key components and usage patterns to facilitate sys-
tematic analysis.

e We identify and categorize key forensic artifacts generated by
representative LLM applications, enabling their use in future analysis
of similar environments.

e We develop and release LangurTrace, an open-source forensic tool
that automates the extraction and parsing of LLM application arti-
facts, supporting reproducibility and operational use.

1.2. Outline

This paper is structured as follows: Section 2 reviews related work,
covering the intersection of Al and digital forensics and providing
technical background on LLM applications. Section 3 characterizes the
components of local LLM application environments, including backend
runtimes, client interfaces, and integrated platforms. Section 4 presents
the results of our forensic analysis, detailing the experimental setup,
dataset creation, and artifacts identified across various types of appli-
cations. Section 5 introduces the developed forensic tool, describes its
design and usage, and demonstrates its effectiveness using the collected
dataset. Section 6 discusses the broader implications and limitations of
the study, and Section 7 concludes the paper and suggests directions for
future research.

2. Related work
2.1. LLM-assisted digital forensics

Artificial intelligence (AI) has been actively adopted in the field of
digital forensics, offering new possibilities for automating evidence
analysis, improving investigative accuracy, and reducing human error.
Recently, large language models (LLMs) have gained significant atten-
tion across various research domains, leading to diverse applications
within the field of digital forensics.

Several studies have been conducted on where and how LLMs can
contribute to existing digital forensics procedures. For instance, Scanlon
et al. (2023) conducted an extensive empirical study on the applicability
of ChatGPT (GPT-4) in digital forensic investigations, concluding that
while LLMs can assist knowledgeable users, their current limitations
necessitate cautious and informed use. Michelet and Breitinger (2024)
conducted a case study evaluating how both cloud-based (ChatGPT) and
locally deployed (Llama-2) LLMs can assist digital forensic report
writing. Xu et al. (2024) presented a hands-on, case-study-driven tuto-
rial that demonstrates how LLMs can be integrated into digital forensic
workflows, automating tasks such as suspect profiling based on browser
history, summarization of digital artifacts, and knowledge graph
reconstruction. This practical approach highlights direct analysis tech-
niques using LLMs for digital forensic purposes. Finally, Wickramase-
kara et al. (2025a) conducted a comprehensive review on the feasibility
of applying LLMs throughout the entire digital forensic investigation
process, concluding that LLM adoption can enhance investigative
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efficiency when applied under appropriate constraints.

Other studies have provided a methodology that can benefit certain
areas of digital forensic by utilizing models directly, rather than simply
using LLM services. Oh et al. (2024) introduced volGPT, a
prompt-engineered LLM framework that combines Volatility plugins
and LLM to triage ransomware processes. Wickramasekara and Scanlon
(2024) proposed an integrated DF investigation framework built upon
Microsoft’s AutoGen, leveraging LLMs like LLaMA and StarCoder across
multiple collaborative AI agents. These agents decomposed forensic
tasks with reduced technical burden on human analysts, showed sig-
nificant potential to accelerate forensic workflows through agent-based
LLM orchestration. Voigt et al. (2024) presented Re-imagen, a frame-
work that leverages LLM to generate coherent user personas and back-
ground activities for scenario-based forensic disk images, integrating
LLM-driven scripts with VM automation to produce realistic synthetic
datasets for digital forensic training and research. Wickramasekara et al.
(2025b) introduced AutoDFBench, a benchmarking framework that tests
code generated by various LLMs against NIST’s CFTT forensic string
search standards, highlighting both the potential and limitations of
using generative models. Sharma et al. (2025) introduced ForensicLLM,
a fine-tuned LLaMA-3.1-8B model, optimized for digital forensics via
RAFT (Retrieval Augmented Fine-tuning), showing improved accuracy
and attribution over base and RAG (Retrieval-Augmented Generation)
models. Kim et al. (2025) proposed SERENA, which LLMs with prompt
engineering to extract meaningful insights from semi-structured and
unstructured application-to-person (A2P) message data across diverse
service providers.

2.2. Forensics on LLM-related systems

Large Language Models (LLMs) have been widely adopted as tools to
assist digital investigations—an area often labeled “LLM for Digital Fo-
rensics.” In contrast, relatively little research has examined the reverse
perspective: conducting digital forensic investigations on the Al systems
themselves, or “Digital Forensics for AL” The present study follows this
latter perspective.

Schneider and Breitinger (2023) proposed an Al-forensics framework
that applies grey-box analysis to identify maliciously crafted
deep-learning models. Their focus, however, lies in verifying the integ-
rity of the model itself, not in tracing malicious user activities conducted
through an LLM.

Other studies treated artifacts left by LLM services as valuable
forensic evidence. Dragonas et al. (2024) conducted the first forensic
analysis of OpenAI’s ChatGPT mobile application, identifying artifacts
across Android, iOS, and cloud storage. Cho et al. (2025) carried out a
comparative analysis of major cloud-based LLM services such as
ChatGPT, Gemini, Copilot, and Claude. These studies highlighted com-
mon artifacts generated through user interactions and demonstrated
their value in revealing user behavior and intentions. However, their
analyses primarily focus on vendor-hosted services, leaving locally
deployed LLM scenarios relatively underexamined.

Chernyshev et al. (2023) proposed a digital forensic framework
centered on LLM invocation log analysis to detect prompt injection at-
tacks. While their work provided a valuable foundation for detecting
such attacks and similarly recognizes locally deployed LLMs and their
logs as important forensic artifacts, its scope is primarily limited to
threat detection. Complementarily, this study broadens the investiga-
tion to encompass a wider variety of artifacts generated by LLM appli-
cations, with a particular emphasis on reconstructing user interactions.

3. Characterizing the architecture and components of a local
LLM system

This section introduces an abstract model of the general LLM appli-
cation environment and its key components. By examining common
usage patterns across various LLM applications, we developed a
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Fig. 1. Abstracted architecture and key components of local LLM systems.

generalized model that captures how these systems typically operate.
This modeling process enabled the systematic categorization of user
interactions and corresponding artifacts observed across different
applications.

Fig. 1 provides an overview of typical LLM application environ-
ments, encompassing both cloud-based services (e.g., OpenAl’s
ChatGPT) and local deployments. Users may utilize all or only a subset
of these components depending on their needs.

Although the accessibility of local LLMs has improved in recent
years, building models from low-level components still requires signif-
icant technical expertise. In contrast, cloud-based LLMs are easily
accessible via a web browser. Local LLM applications enable users to
deploy and use models intuitively, similar to accessing cloud-based
services via a web browser.

3.1. Backend runtime application and model hub

Model hubs, such as Hugging Face, serve as centralized platforms for
hosting, sharing, and distributing pre-trained machine learning models.
These repositories facilitate reproducibility and accessibility by allowing
users to easily download, fine-tune, or deploy models across a wide
range of applications. Recently, the adoption of unified formats such as
GGUF (GPT-generated Unified Format) has further improved compati-
bility and ease of use across tools and platforms. These standardized
formats allow consistent loading and execution of language models,
particularly in local LLM application environments.

Backend runtime applications enable users to automatically down-
load and deploy models from model hubs with minimal interaction.
These systems may also recommend suitable models based on the users’
hardware specifications and intended uses. Users can install multiple
models concurrently and switch between them as needed. Once a model
is deployed, conversations can be initiated directly via a command-line
interface (CLI). However, it is common practice to connect the backend
to a client interface application through an API, enabling more intuitive
interaction. This integration can typically be achieved with just a few
clicks.

3.2. Client interface application

Client interface applications are graphical user interfaces (GUIs) that
enables users to interact with large language models (LLMs). These in-
terfaces commonly resemble cloud-based platforms, such as OpenAI’s
ChatGPT. Users can create multiple conversation sessions, each config-
ured with a different model and customized system prompt. They can
intreract via chat with text or upload files, receiving responses in
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formats supported by the selected model, such as text or images.

When integrated with local LLMs, these interfaces utilize the APIs
exposed by the underlying backend runtime application. Popular
backends, such as Ollama, are typically pre-configured with a default
API endpoint, including localhost IP addresses and port settings, which
allows seamless connection with minimal user intervention. For cloud-
based LLMs, integration is typically achieved through the provision of
an API key issued by the respective service provider.

3.3. Integrated platform application

An integrated platform application refers to software that combines
backend runtime functionalities—such as LLM downloading and
deployment—and a client interface within a single environment.
Although connecting these components via API is relatively straight-
forward, integrated platforms eliminate even this step, contributing to
their increasing popularity. Because both components are integrated
into a single application, forensic artifacts from the backend and the
client interface appear simultaneously. Further details about these ar-
tifacts are provided in Section 4.

3.4. Cloud-based LLM

Cloud-based LLMs can be accessed either through a web browser or
via local LLM applications using API keys. This dual access method may
lead to the misconception that both interfaces share the same conver-
sation context. In practice, even if the API key and browser login belong
to the same user account, the conversation contexts are generally
managed independently.

Most API-based interactions are stateless—local LLM applications
store conversation history locally and supply it to the cloud service with
each API call. As a result, the cloud service typically does not persist this
context. However, exceptions exist depending on the type of APL certain
API implementations may retain limited conversational state or logs
associated with API keys for features such as session continuity or audit
trails. In contrast, when accessed via a web browser, conversation his-
tory is natively preserved within the cloud environment.

Therefore, forensic investigation strategies targeting cloud-based
LLMs must consider the access method used. Specifically, cloud
forensic analysis is generally not effective when the interaction occurred
through a local application using an stateless API key. Further details are
discussed in Section 4.

4. Forensic artifacts of local LLM environments

Section 4 details the target applications associated with each
component of local LLM environments and describes the types of
forensic artifacts they generate. Section 4.1 outlines the experimental
setup, including the list of analyzed applications. Section 4.2 presents
the dataset creation strategy, including representative user scenarios
and resulting data. The subsequent sections examine forensic artifacts
from three key components of the local LLM stack: backend runtime
applications, client interface applications, and integrated platform ap-
plications. For each application, we describe the storage locations, data
formats, and evidentiary value of the artifacts, with detailed examples
provided in dedicated subsections.

4.1. Experimental setup

This study aims to identify and analyze user-generated forensic ar-
tifacts produced by local LLM applications. To this end, we selected
multiple representative applications across different architectural cate-
gories, as summarized in Table 1. In the case of ChatGPT, its released
version is not clearly defined; instead, it was evaluated during the
experimental period from March 1 to April 30, 2025. On the ChatGPT
platform, users can obtain an API key through their account and use it
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Table 1 Table 2

Target LLM applications. Types of common artifacts of LLM applications.
Application Name Version Released Artifact Type Source
Backend Runtime Ollama 0.6.5 2025-04-06 Downloaded models Backend runtime
Client Interface Chatbox 1.11.8 2025-04-05 Model setup history Backend runtime
Integrated Platform LM Studio 0.3.14 2025-03-27 Conversation session configurations Client interface
Integrated Platform Msty 1.85 2025-03-12 Chat history Client interface
Integrated Platform Jan 0.5.16 2025-03-14 Uploaded/generated files Client interface
Integrated Platform Gpt4All 3.10.0 2025-02-24 API Keys Client interface
Cloud-based LLM ChatGPT - -

until their purchased token quota is exhausted. We used the GPT-3.5
Turbo and GPT-40 models for text-based interactions, and the stan-
dard DALL: E 3 model for image generation. These applications are, to
the best of our knowledge, among the most widely adopted in current
practice. In the case of integrated platform applications, we selected four
representative examples from among many that offer comparable
functionality.

To ensure consistency and comparability, all applications were
tested on Windows 11 Pro (24H2, build 26100.3775). While our ex-
periments were conducted on Windows, we expect the general types of
artifacts to remain consistent across other operating systems such as
Linux and macOS. Notably, the specific LLM model used does not
significantly affect the types of artifacts generated by each application,
as these artifacts are primarily shaped by the application architecture
and data handling behavior rather than the model itself.

4.2. Dataset creation

User interactions with LLM applications were categorized into spe-
cific behavioral patterns, as outlined below. Note that actions described
in either the backend runtime applications or the client interface ap-
plications also apply to integrated platform applications.

e (Backend)Local LLM Download and Deletion: Each downloaded model
may either be invoked via the client interface application or remain
unused.

(ClientUD)Cloud-based LLM Registration and Deletion: Registering or
removing API keys and cloud-based model endpoints. The registered
models may or may not be used.

(ClientUI)Conversation Session Creation and Deletion: Refers to the
preparation stage for interacting with a model. Session creation in-
volves specifying key parameters such as the selected model and the
system prompt.

(ClientUI)Conversation: Sending text(chat) or uploading files (e.g.,
images, PDFs), and receiving responses in text. Files, such as images,
can be generated if supported by the model.

To collect data, we varied the execution order of actions in each run
to minimize ordering bias, ensuring that each individual action was
performed at least 50 times per application. This design allowed us to
observe whether the order or repetition of actions affected the presence,
location, or content of the resulting artifacts. Backend runtime and client
interface applications were tested in a combined setup, and integrated
platforms were used independently. Disk forensics was conducted by
monitoring files created, modified, or deleted after each action. Sample
data and parsing results are presented in Section 5 using the parsing
automation tool.

4.3. Types of artifacts in local LLM applications

As a result of our experiments, we identified a variety of artifacts.
The most significant ones are summarized in Table 2. Artifacts identified
in backend runtime and client interface applications were likewise
observed in integrated platform applications. For a detailed breakdown
of artifacts by application type is presented in the following subsections.

The detailed file locations of all artifacts are provided in Appendix A.

Model setup history and conversation sessions configurations reveal
which models were downloaded and selected. Many pre-trained models
are developed for specific purposes. Therefore, identifying which
models were selected and when they were downloaded can provide
valuable insights into user intent. Conversation content, including chats,
uploaded files, and generated files, constitutes the most critical category
of artifacts. In particular, generated files may serve as direct evidence in
investigations involving the creation or distribution of illicit content,
such as CSAM. While API keys related to cloud-based LLM applications
may not hold substantial standalone forensic value, they may be shared
with service providers as part of a formal cooperation process to request
server-side data. Finally, login credentials can be used to directly
perform cloud forensic investigations targeting cloud-based LLM
applications.

4.4. Artifacts of backend runtime applications

LLM models generally do not manage conversations or context on
their own, and neither do backend runtime applications. The client
interface application retains this data and re-sends it to the backend at
each interaction. Accordingly, one of the primary artifacts found in
backend runtime applications is the API call logs, which relate to model
listing, downloading, deletion, and other operations. Table 3 summa-
rizes the artifacts identified from Ollama.

The most important artifacts are the server log, model manifest, and
model layers. The server log contains general backend activity, partic-
ularly API call records. API call records include the API type, time-
stamps, success status, latency, and caller IP (typically 127.0.0.1). Key
API operations are model listing, downloading, execution, deletion, and
chat requests. Notably, model download logs in Fig. 2 include detailed
model metadata, which allows investigators to determine which models
were previously installed—even if deleted later. Additional API end-
points are documented in the official Ollama API specification Ollama
(2025).

The model manifest is a Docker-style manifest file that describes the
model layers, including the model binary, template, license, and
parameter files. Each layer is identified by its SHA-256 digest and size.
Actual model layers are stored with filenames matching their digest.
Investigators can cross-reference these with public model hubs.

Other artifacts are comparatively less critical. The app log captures
generic startup and runtime information, but aside from this, it contains
little forensic value. The upgrade log documents software update events.
The CLI history file stores user-issued requests via the command-line
interface in timestamped order, but does not contain model responses.

Table 3
Summary of artifacts generated and managed by Ollama
Artifact Format Description
Server logs Text model setup, API calls

Model manifest Docker manifest Metadata of model layers

Model layers Binary Template, Parameters
App logs Text Application usage logs
Upgrade logs Text Software update history
CLI history Text User inputs via CLI
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INFO source=download.go:177 msg="downloading fad2a06e4cc7 in 4 100 MB part(s)"
INFO source=download.go:177 msg="downloading 41c2cf8c272f in 1 7.3 KB part(s)"
INFO source=download.go:177 msg="downloading 1da0581fd4ce in 1 130 B part(s)"@
INFO source=download.go:177 msg="downloading f02dd72bb242 in 1 59 B part(s)"
INFO source=download.go:177 msg="downloading ea0a531a015b in 1 485 B part(s)"
[GIN] 2025/04/24 - 23:48:42 | 200 | 14.7658661s | 127.0.0.1 | POST  “/api/pull”

llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from
C:#UserstUSERW.ollamawmodelswblobs#sha256-fad2a06e4cc705c2fa8bec5477ddb00d
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1 general.name str = Qwen2-beta-0_5B-Chat

©

Fig. 2. Example of server logs generated by Ollama. (a) Model downloading
logs, including the digests and sizes of each corresponding part; (b) API call to/
api/pull for model download; (c) Model loading (running) logs with file path
and model name.

Since most interactions occur via APIs, this artifact holds limited value
in practice, except where the user deliberately employs a local CLI-based
workflow for specific reasons.

4.5. Artifacts of client interface applications

Client interface applications are the primary source of critical
forensic artifacts in the LLM application environment. The artifacts
include information on the LLM used, system prompt configurations,
and conversation contents. Table 4 summarizes the artifacts identified
from Chatbox.

The most important artifact is the ‘config.json’ file. It stores a wide
array of data, including configuration details and chat contents. Under
the ‘settings’ key, the value contains configuration information such as
API keys, registered local and cloud-based models, and default prompts.
The ‘chat-sessions’ key includes metadata for each session, the system
prompt, the selected model, and conversation records. All conversation
contents are timestamped in Unix epoch format, and each response is
recorded with the model used at the time, as shown in Fig. 3. Uploaded
and generated files are noted by filename and MIME (Multipurpose
Internet Mail Extensions) type rather than full content. Additionally,
Chatbox periodically creates and deletes backup copies of ‘config.json’,
enabling recovery of recent data even after deletion.

Another key set of artifacts is uploaded and generated files, which
are stored locally in blob format. Uploaded files are stored as base64-
encoded blobs and can be directly decoded. Generated files are
embedded as Data URLs within application responses, which are also
stored locally, and their content part can be decoded from base64.
Notably, even if the user deletes these files through the application
interface, the underlying blob data remains in local storage, making
recovery straightforward.

Other artifacts include the main log, the API cache, and a model
availability store. The main log records the history of config.json backups
and software updates. In the API cache, only responses to model listing
API calls were found, and not all such requests are guaranteed to be
stored. Similarly, the model list—implemented using LevelDB—tracks
the list of available models per provider along with their expiration
timestamps. Due to the nature of LevelDB, it is sometimes possible to
retrieve remnants of previously deleted entries during forensic analysis.

Table 4

Summary of artifacts generated and managed by Chatbox
Artifact Format Description
config.json JSON Chat sessions, API keys
Uploaded files Base64-encoded User-uploaded files
Generated files Base64-encoded LLM-generated files
Main logs Text Backup and update history
API caches Chrome cache Responses to API calls
Model list LevelDB Model list per provider
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Fig. 3. An excerpt from a sample conversation stored in the chat-sessions
field of config. json managed by Chatbox

4.6. Integrated platform application artifacts

Integrated platform applications, by definition, contain artifacts
from both backend runtime and client interface components, as dis-
cussed in Sections 4.4 and 4.5. Since we examined four such applica-
tions, we provide a comparative summary of the artifact types in
Table 5. It has been confirmed that the key artifacts were found to be
identical regardless of provider. For reference, the notations used in
Table 5 are as follows:

e : Artifacts exist and can be recoverable even after users delete them

e vv: Artifacts exist but are generally not recoverable once deleted by
users

e x: Not found

e -: Functionality not supported

T “Deletion” refers to actions such as clearing chat history or
removing files via the application interface.

The subsequent subsections detail the unique or notable forensic
artifacts observed in each application. For a complete list of all identified
artifacts across the integrated platform applications introduced in Sec-
tions 4.6.1-4.6.4, refer to Appendix B.

Table 5
Summary of artifacts from integrated platform applications.
LM Studio Msty Jan Gpt4All

Downloaded models * * * g
Model setup history X X ¥ x
Chat configurations A * * I
Chat history A pAd * g
Uploaded files e * - I\
Generated files - - - -
API Keys - g * g
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"request”: {
"url”: "https://search.lmstudio.ai:443/v1/hf-proxy/NousResearch/Hermes
"subpath": "NousResearch/Hermes-3-Llama-3.2-3B-GGUF/Herz\s-3-Llama-3.2|
"saveDirType": “"downloads",
"Sha256":|"91776{96{6(d7483d9d5986162fdd1f8f0262(15ced2 791b4d96a655
"fileSizeBytes": 2019373888,

"headers™: [ ﬁ

s

"key": "User-Agent”, Model Hash Ll
", ". "|M Studio/e.3. S5 (win32/x64)"
value": "LM Studio/@.3.14+5 (win32/x64) Request URL

] : [ Unix Timestamp in Milliseconds }

T
"download": {
"identifier":|"1744805972048}0.570952936747884",
"jobIdentifier": "modelDownload:huggingface:NousResearc\ MAermes-3-L1lan|
"url™:| "https://search.lmstudio.ai:443/v1/hf-proxy/NousResearch/Hermes
"filename": “"Hermes-3-Llama-3.2-3B.Q4_K_M.gguf",

“targetPath": |"( :\\Users\\USER\\.Imstudio\\models\\NousResearch\\Herm
"progress": 108,

"speedBytesPerSecond”: @, ﬁ
"totalSizeBytes": 2019373888,

"downloadedSizeBytes": 2619373888'

"status”: "completed”,
"errorMessage”: null
Model Size

Fig. 4. An excerpt from a sample download-jobs-info.json

[ Download Path of Model ]

—

4.6.1. LM studio

LM Studio stored most of its information—such as model setup his-
tory, conversations, and metadata of uploaded files—in JSON format,
which facilitated artifact extraction. Notably, model setup history was
preserved separately in download-jobs-info. json, independent of
the downloaded model files themselves. As a result, even if a user
deleted a model after use, its download history could still be recovered.

download-jobs-info.json consists of request and response re-
cords related to model downloads, as shown in Fig. 4. The download
path of the model can be used to locate the model file on the local
machine. If the file has been deleted, the model’s name and hash can still
serve as identifiers to find the same file elsewhere. In particular, since
the request URL is preserved, it is possible to re-access the original web
endpoint and retrieve the identical file via the same route used by the
user.

4.6.2. Msty

A key characteristic of Msty is that it allows recovery of files
uploaded and later deleted by the user. Uploaded files are stored in the
attachments storage, and even if the corresponding upload messages are
deleted, the files themselves remain intact in storage. In addition, logs
related to model setup are recorded in the main log, enabling recovery of
deleted model download history, similar to the case of LM Studio.

Notably, a single SQLite 3 database file named msty.db contains
both the conversation contents and the configuration including API
keys. As aresult, the majority of artifacts expected from a client interface

Table 6

Key tables and fields in msty.db
Table Column Description
api_keys provider Cloud-based LLM service provider
api_keys key API key to access cloud-based LLM
api_keys created_at API key registered time
chat_sessions id Conversation session ID
chat_sessions title Conversation session title
chat_sessions created_at Conversation created time
chat_messages chat_id Conversation session ID
chat_messages text Conversation content(message)
chat_messages role User/Al

Name of used model
Message created time

chat_messages
chat_messages

model_name
created_at
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function can be obtained from this one file, as shown in Table 6.

4.6.3. Jan

Jan operates on top of the Cortex engine, a local Al engine capable of
running across diverse hardware environments, and consequently gen-
erates a log file named cortex. log. Jan configures the logging level
and categories in a rather coarse-grained manner, resulting in highly
verbose output. As a result, this log file includes extensive information
such as model setup events, conversation content, configuration set-
tings, and even API keys. Therefore, cortex. log serves as a key arti-
fact for recovering a wide range of user activities.

For example, in Fig. 5, (a) shows a user’s conversation request as
recorded in the verbose log. From this, information can be extracted
such as the timestamp of the request, its content, and the model used. (b)
presents an example log related to the configuration of a cloud-based
LLM service, where the user’s registered API key is clearly recorded in
plaintext. Finally, (c) shows a model download event, including the file
path on the local machine and the original URL from which the model
was downloaded.

4.6.4. GPT4All

GPT4All records each conversation in its own proprietary format, .
chat. A notable characteristic is that when a file is uploaded during a
conversation, its raw data is fully embedded within the.chat file, as
illustrated in Fig. 6. Other target applications store only the file path and

[ @ Conversation Content }

20256427 17:42:46.2480008 UTC 5976 DEBUG [ChatCompletion] request body
"engine” : "llama-cpp”,
"frequency_penalty" : o,
“max_tokens" : 4096,
"messages” :

[

“"content" : "its glad to use you gemma",
"role"” "user"

I,
“model” :
"presence_penalty” : @,
"stop"

[

“gemma2:2b",

"<end_of_turn>",
"<eos>"
1,
"stream” : true,
“"temperature" : 0.60999299009909996,
“"top p" : ©.94999899999999996

1
[ ® Cloud-based LLM Service Configuration ]

20250416 16:23:38.350000 UTC 50424 DEBUG [LoadModel] header: Authoriz:
Bearer sk-proi-tMi36XvpBfYTKE21PiVxQ-r3PtaPi0pdytsfaHMvKYxsKxUBmvI1IUE

© Model Setup Event (Download)

20250427 18:17:09.354000 UTC 21308 INFO Handle model input, model ha
20250427 18:17:09.588000 UTC 21308 INFO C:\Users\USER\AppData\Roamin
data\models\cortex.so\cogito-vi\3b successfully created! - file_manag
20250427 18:17:09.588000 UTC 21388 INFO Task added to queue: cogito-
20250427 18:17:09.589800 UTC 21388 INFO Origin: - main.cc:317
206250427 18:17:09.818000 UTC 32388 INFO Transfer completed for URL:
https://huggingface.co/cortexso/cogito-vl/resolve/3b/model.yml - down
20250427 18:17:99.947000 UTC 32308 INFO Transfer completed for URL:
https://huggingface.co/cortexso/cogito—vl/resolve/Bb/metadata.yml -d
28250427 18:17:29.310000 UTC 32388 INFO Transfer completed for URL:
https://cdn-1fs-us-1.hf.co/repos/e7/f6/e7f6f169facd88816053cb2e7caf7@
20250427 18:17:29.312000 UTC 32388 INFO Adding model to modellist wi

3b, path: C:\Users\USER\AppData\Roaming\Jan\data\models\cortex.so\cog

Fig. 5. An excerpt from a sample verbose log generated and managed by Jan.
(a) A conversation request from a user; (b) API key for ChatGPT; (c¢) Down-
loading a model from Hugging Face.
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metadata in the conversation record while managing the actual file data
separately. However, GPT4All embeds the entire file content inline
within the. chat file, thereby enabling direct recovery of both conver-
sation content (chat) and uploaded files from the binary with minimal
pre-processing.

5. Implementation and evaluation

5.1. LangurTrace: A tool for parsing artifacts generated by local LLM
applications in windows

To facilitate the practical application of our findings, we developed
an open-source tool named LangurTrace (Large language model
application user interaction tracer). This tool automates the collection
and parsing of artifacts generated by various LLM applications. It is
specifically designed to support digital forensic workflows by extracting
configuration files, conversation histories, model metadata, and other
artifacts identified in Section 4.

LangurTrace is designed to integrate seamlessly with a well-
known forensic triage tool KAPE (Kroll Artifact Parser and Extractor)
(Kroll LLC, 2023). The tool package includes pre-built Targets, Mod-
ules, and a compiled PE (Portable Executable) file (LangurTrace.
exe), enabling investigators to collect and analyze LLM-related artifacts
with minimal configuration. Once deployed, investigators can launch
KAPE and select the appropriate targets to retrieve and interpret arti-
facts from supported applications. While the collection process relies on
KAPE, parsing and reporting can be performed independently using the
accompanying open-source Python scripts.

Under the hood, LangurTrace follows a modular architecture to
support its collection and analysis capabilities. The tool is structured
into three main modules: the Collector, the Parser, and the Reporter.
First, the Collector scans the system for all accessible artifacts related to
the target application and copies them to a designated output directory
for analysis. Second, the Parser selectively extracts meaningful infor-
mation from a predefined subset of these artifacts and forwards the re-
sults to the Reporter. For example, in the case of Jan, the Parser
processes the verbose log file but skips local storage, which contains
relatively less meaningful information. Furthermore, within the verbose
log, it only extracts chat history and model configuration entries.
Finally, the Reporter converts the parsed data into a human-readable
report in HTML and other structured formats.

The Collector largely leverages KAPE’s built-in functionality, while
the Parser and Reporter components are embedded in the provided PE
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Fig. 6. An excerpt from a sample. chat file of GPT4AIL
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file (LangurTrace.exe). The source code, usage instructions, KAPE-
compatible components, sample dataset, and output results are pub-
licly available at (Sungjo Jeong, 2025).

Currently, LangurTrace supports a range of LLM applications,
including Chatbox, LM Studio, Jan, Msty, Ollama, and GPT4ALL.
Additional applications will be supported in future updates.

This tool enhances the reproducibility of our experimental results
and provides a practical foundation for automating the forensic analysis
of LLM application artifacts.

5.2. Usage and results

The tool can be easily used by copying the provided targets and
modules into relevant directories of KAPE. The KAPE offers two main
features: Targets (Collectors) and Modules (Parsers). A Target auto-
matically collects artifacts related to the selected applications from the
local system and copies them to a user-defined destination. A Module
then parses these collected artifacts, extracting and formatting key in-
formation in a way that is easy to review (Kroll LLC, 2023). For refer-
ence, detailed setup instructions can be found in the tool’s public
repository ((Sungjo Jeong, 2025)).

The developed parsing feature mainly focuses on configuration and
conversation data. Configuration information is organized in CSV or
XLSX format, enabling users to easily identify downloaded or registered
models, as well as any stored API keys for cloud-based LLM services.
Conversation data is saved as individual HTML files for each session,
allowing users to trace the flow of dialogue, as illustrated in Fig. 7.
Metadata such as the selected model and the timestamp of each message
is appended below each context.

In addition, LangurTrace provides application-specific parsing
results in structured CSV or XLSX files. For example, in the case of Jan,
the verbose_log_parsed.xlsx contains separate sheets for chat
logs and configuration data, as shown in Fig. 8. These can be used to
determine whether a user has deleted specific records. Similarly, for

Conversation:ITlger Image| Name of Chat Session |

Hello! I'm Chatbox Image Creator, an artistic Al companion that turns your
words into fantastic visual imagery. If you can imagine, | can create it—
fascinating I dynamic ch , app icons, or even abstract

Message from Model

concepts. I'm a silent robot, *just tell me the description of the image that
comes to mind**, and I'll focus every pixel and make your vision a reality. So,
let's make art!

Message from User |”"f!ke im?gel
about tiger

rom Model

2025-04-16 17:24:25 - OpenAl API (DALL-E-3 [ Timestamp — Used Model 1

Fig. 7. An excerpt from sample conversation records identified and extracted
by LangurTrace
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tag |
openai
20250416 16:23:38.444000 UTC 50424 DEBUG
[ChatCompletion] request body: {
"engine” : "openai”,
“frequency_penalty” : 0,
"max_tokens" : 4096,
"messages” :

[

message

‘content” : "hello, gpt",
‘role” : "user”

| Log of Chat

1

GetEngineByModelld "model” : "gpt-3.5-turbo”, |_Log of Used Model

GetEngineByModelld openai20250416 16:23:52.687000 UTC 50424 DEBUG [C
GetEngineByModelld llama-cpp20250416 16:24:13.288000 UTC 50424 DEBUG
GetEngineByModelld llama-cpp20250416 16:24:19.161000 UTC 50424 DEBUG
GetEngineByModelld llama-cpp20250416 16:25:01.317000 UTC 50792 DEBUG
GetEngineByModelld llama-cpp20250416 16:25:04.681000 UTC 50792 DEBUG
GetEngineByModelld llama-cpp20250416 16:25:08.657000 UTC 50792 DEBUG
GetEngineByModelld llama-cpp20250427 17:42:46.248000 UTC 5976 DEBUG
GetEngineByModelld llama-cpp20250427 17:42:48.004000 UTC 5976 DEBUG

GetEngineByMaAlalldllasaa 220250427 17:43:02.768000 UTC 5976 DEBUG
GetEngineByM250427 17:43:04.654000 UTC 5976 DEBUG
I ChatLogs| IConﬁgurationsI T § K —

Fig. 8. An excerpt from sample verbose logs of Jan identified and extracted by
LangurTrace

Msty, the msty_db.x1sx includes a custom_prompts sheet that re-
veals the user-defined default prompts. Interpreting these application-
specific results may require a deeper understanding of each applica-
tion’s internal structure, beyond what is needed for reviewing the
configuration and conversation parsing outputs. If investigators require
customized parsing or reporting workflows, the provided Python source
code can be used independently of KAPE, enabling flexible adaptation to
case-specific needs.

5.3. Evaluation

To validate the practical functionality of LangurTrace, we tested
whether the tool can reliably collect and parse key artifacts from each
application, and whether such data remains recoverable even after being
deleted through the application’s user interface.

Typical user actions—such as downloading models, chatting and
uploading files—were performed as summarized in Table 7. In each
case, a subset of the generated artifacts was explicitly deleted via the
built-in UIL. We then examined whether these artifacts remained on disk
and whether LangurTrace could successfully parse them into struc-
tured outputs. Accordingly, Table 8 summarizes the number of artifacts
that were successfully recovered and parsed per application, following
Ul-level deletion by the user. The results for undeleted data are omitted,
as all artifacts not deleted through the application’s UI were consistently
parsed with 100 % success.

More specifically, for Ollama, server_log.csv generated by

Table 7
Number of user actions for evaluation setup with deleted item counts in
parentheses.

Application Model Chats File File
Download Uploads Generation

Backend Runtime 10 (5) - - -

Client Interface - 100 (50) 100 (50) 100 (50)

Integrated 10 (5) 100 (50) 100 (50) -
Platform
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Table 8
Recovery results after user-level deletion. Values in parentheses indicate the
number of items successfully recovered out of total deleted.

Application  Deleted Artifacts
Model Chats File Uploads File
Download Generation
Ollama 100 %(5/5) - - -
Chatbox - 58 %(29/50) 100 %(50/ 100 %(50/50)
50)
LM Studio 100 %(5/5) 0 %(0/50) 0 %(0/50) -
Msty 100 %(5/5) 0 %(0/50) 100 %(50/ -
50)
Jan 100 %(5/5) 100 %(50/ - -
50)
GPT4All 0 %(0/5) 0 %(0/50) - -

LangurTrace includes detailed records of model downloads, including
timestamps, model names, and manifest information. These allow in-
vestigators to identify which models were installed, even after deletion.
In Chatbox, although some chat sessions could not be recovered due to
the application’s non-periodic backup behavior, both uploaded and
generated files remained recoverable. These were extracted as Base64-
encoded blobs and automatically decoded in the final HTML report.
For LM Studio, model_setup_history.csv contains model down-
load URLs and timestamps, enabling verification of previously down-
loaded models. However, since deleted chat records and file uploads left
no recoverable traces in the file system, they were also absent from the
parsing results generated by LangurTrace. For Msty, model setup logs
embedded in main_history.csv (with the “Model setup” log type)
allowed us to identify deleted models. Uploads were also recovered in a
separate directory. In Jan, LangurTrace extracted and parsed the
verbose logs into a structured Excel report. Deleted conversations were
listed in the “Chatlogs” sheet, while model download history, including
deleted records, appeared in the “Configurations” sheet. Lastly, GPT4All
did not yield any recoverable artifacts after deletion. However, unde-
leted artifacts from all applications including GPT4All were fully parsed
and reported, as shown in Figs. 7 and 8.

In summary, the results presented in Table 8 align with the artifacts
described in Section 4.4 through Section 4.6, including those listed in
Table 5. This consistency confirms that LangurTrace successfully
identifies most key artifacts that remain recoverable after user-level
deletion. However, since the current implementation focuses specif-
ically on key artifacts, manual analysis may still uncover additional
information particularly from components previously marked as
“generally not recoverable” in earlier sections. For example, API caches
in Chatbox are collected by the current version of LangurTrace, but
are not included in the final report, as they are not classified as key
artifacts. Nevertheless, analyzing these caches can, in some cases, reveal
model listing API calls, providing potential evidence of which models
were downloaded by the user.

6. Discussion
6.1. Implications of findings

We proposed a structured LLM application environment that con-
tributes to a systematic understanding of how LLMs are used through
applications and how data flows across components. Using this
approach, we classified various applications into distinct environmental
components and investigated the types of forensic artifacts generated by
each component. To the best of our knowledge, this is the first study
focusing on forensic artifacts generated by different types of local LLM
applications.

Artifacts generated by LLM applications provide valuable insights
into user behavior and intent, similar to how web browsers have long
served as key forensic targets. They include records of conversations
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between the user and the LLM, which can be pivotal for understanding
user actions. LLM-generated files can serve as direct evidence in criminal
investigations, particularly in cases involving the creation or distribu-
tion of illicit media, such as CSAM. Additionally, metadata regarding the
pre-trained models that users downloaded and utilized can reveal
important information about user intent.

Furthermore, applications not explicitly targeted in this study can be
mapped to components within the proposed structured environment,
enabling the prediction and investigation of potential forensic artifacts
based on these results. Although this research primarily focuses on in-
dividual users’ local environments, the findings are equally applicable to
larger-scale organizational users who employ LLMs in similar ways.
Differences in available computing resources (e.g., greater GPU capac-
ity) do not fundamentally affect the applicability of these findings.

6.2. Limitations

This study primarily focuses on the LLM application environment of
individual users. Therefore, the findings may not be directly applicable
to non-standard usage scenarios where LLMs are utilized beyond simple
conversational interfaces. For instance, organizations or technically
skilled users might develop customized front-end services, or multiple
users might share a centralized LLM service within an enterprise envi-
ronment. However, understanding the distinction between artifacts
generated by backend runtime and client interface applications can still
offer valuable guidance for forensic investigations in such cases.

Due to the wide range of target applications, our experiments were
limited to a single operating system (Windows 11 Pro). While the exact
format and storage location of artifacts may vary across other operating
systems such as Linux or macOS, the types of artifacts and their forensic
significance are expected to remain largely consistent.

Our definition of “recoverable” is deliberately confined to disk-level
reconstruction achievable with the current LangurTrace workflow.
We did not evaluate established recovery techniques such as Volume
Shadow Copy (VSC) acquisition or live-memory forensics. Conse-
quently, artifacts labeled unable to recover may still be partially
retrievable. For structured stores like SQLite 3 or LevelDB, investigators
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could leverage slack-space analysis or freelist/WAL carving to salvage
deleted records. A systematic assessment of these generic data-recovery
methods, however, is beyond the scope of this study and is left for future
work.

7. Conclusion and future directions

This study proposed a structured approach to analyze forensic arti-
facts from LLM application environments. By categorizing applications
into distinct components and experimentally validating artifact types
across representative applications, we demonstrated that valuable
forensic data can be recovered at both the local and the cloud levels. We
also introduced LangurTrace, an open-source tool that automates the
collection and analysis of these artifacts.

Our findings highlight that chat records, uploaded and generated
files, and model usage histories serve as critical evidence of user
behavior and intent. Furthermore, the structured environment model
enables investigators to anticipate and map artifacts even in applications
not directly studied. This work lays foundation for the emerging field of
LLM forensics, offering practical methodologies for both individual and
organizational investigations.

Future research could extend this study by investigating LLM appli-
cation artifacts across other operating systems such as Linux and macOS.
Additionally, customized LLM usage environments—such as self-
developed front-end services or enterprise-level shared LLM plat-
forms—could be explored to broaden applicability. Finally, a more
detailed method for leveraging recovered API keys and login credentials
in cloud-related forensic investigations could be developed to enhance
practical forensic investigations.
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Appendix A. Full paths of artifacts related to local LLM applications in Windows

Application Artifact Location

Ollama Server logs %LocalAppData%,/Ollama/server.log

Ollama Model manifest %UserProfile%;/.ollama/models/manifests/registry.ollama.ai/library/{model name}/{parameters}
Ollama Model layers %UserProfile%;/.ollama/models/blobs/sha256-{hash digest}

Ollama App logs %LocalAppData%,/Ollama/app.log

Ollama Upgrade logs %LocalAppData%,/Ollama/upgrade.log

Ollama CLI history %UserProfile%/.ollama/history

Chatbox config.json %AppData%/xyz.chatboxapp.app/config.json

Chatbox Uploaded files %AppData%/xyz.chatboxapp.app/chatbox-blobs/{type}input{filename}

Chatbox Generated files %AppData%/xyz.chatboxapp.app/chatbox-blobs/{type}{filename}

Chatbox Main logs %AppData%/xyz.chatboxapp.app/logs/main.log

Chatbox API caches %AppData%/xyz.chatboxapp.app/Cache/Cache_Data

LM Studio Model setup history %UserProfile%/.Imstudio/.internal/download-jobs-info.json

LM Studio Model files %UserProfile%/.lmstudio/models/

LM Studio Conversations %UserProfile%/.lmstudio/conversations/{ID}.json

LM Studio Uploaded files %UserProfile%/.Imstudio/user-files/{filename}

LM Studio File metadata %UserProfile%/.lmstudio/user-files/{filename}.metadata.json

LM Studio Main logs %AppData%/LM Studio/logs/main.log

Msty Main history %AppData%,/Msty/logs/app.log

Msty Model manifest %AppData%,/Msty/models/manifests/registry.ollama.ai/library/{model name}/{parameters}
Msty Model layers %AppData%,/Msty/models/blobs/sha256-{hash digest}

Msty Conversations %AppData%,/Msty/msty.db

Msty Uploaded files %AppData%,/Msty/attachments/

Jan Model files %AppData%/Jan/data/models/{hub name}/{model name}/{parameter}/model.gguf
Jan Model metadata %AppData%,/Jan/data/models/{hub name}/{model name}/{parameter}/model.yml
Jan Model configurations %AppData%/Jan/data/cortex.db

Jan Chat configurations %AppData%/Jan/data/threads/{ID}/thread.json

(continued on next page)
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(continued)
Application Artifact Location
Jan Chat sessions %AppData%,/Jan/data/threads/{ID}/messages.jsonl
Jan Verbose logs %AppData%/Jan/data/logs/cortex.log
Jan Local storage %AppData%/Jan/Local Storage/leveldb/
GPT4ALL Model files %LocalAppData%,/nomic.ai/GPT4ALL/{model name}.gguf
GPT4ALL Remote model conf. %LocalAppData%,/nomic.ai/GPT4ALL/gpt4all-{ID}.rmodel
GPT4ALL Conversations %LocalAppData%,/nomic.ai/GPT4ALL/gpt4all-{ID}.chat

Appendix B. List of forensically interesting artifacts generated by integrated platform applications

Application Artifact Format Description
LM Studio Model setup history JSON Model name, Download URL, SHA-256 value, Size
LM Studio Model files GGUF GGUF file, Name of model (include deleted)
LM Studio Conversations JSON Configurations, Chat sessions
LM Studio Uploaded files Original format Uploaded files
LM Studio File metadata JSON Type, Size, Original name, SHA-256 value
LM Studio Main logs Text Update log, Error log
Msty Main history Text Model setup, Model loading history, Attachment upload and deletion history
Msty Model manifest Docker V2 manifest Metadata of model layers
Msty Model layers Binary Model, Template, License, Parameters
Msty Conversations SQLite 3 Configurations, Chat sessions, API keys
Msty Uploaded files Original format Uploaded files (include deleted)
Jan Model files GGUF GGUF file
Jan Model metadata YAML Metadata of model
Jan Model configurations SQLite 3 API Keys, Model information
Jan Chat configurations JSON Chat session name, Selected model
Jan Chat sessions JSONL Chat history, Selected model, Timestamps
Jan Verbose logs Text Model setup history, Chat sessions, API keys(include deleted)
Jan Local storage LevelDB Chat sessions, Downloaded models (include part of deleted)
GPT4all Model files GGUF GGUF file
GPT4all Remote model conf. JSON API Key, Model provider
GPT4all Conversations .chat (proprietary) Configurations, Chat sessions, Uploaded file
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