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A B S T R A C T

Hash functions play a crucial role in digital forensics to mitigate data overload. In addition to traditional 
cryptographic hash functions, similarity hashes - also known as approximate matching schemes - have emerged 
as effective tools for identifying media files with similar content. However, despite their relevance in investi
gative settings, a fast and practical method for identifying files originating from similar sources is still lacking. 
For example, in Child Sexual Abuse Material (CSAM) investigations, it is critical to distinguish between down
loaded and potentially self-produced material. To address this gap, we introduce a Media Source Similarity Hash 
(MSSH), using JPEG images as a case study. MSSH leverages structural features of media files, converting them 
efficiently into Similarity Digests using n-gram representations. As such, MSSH constitutes the first syntactic 
approximate matching scheme. We evaluate the MSSH using our publicly available source code across seven 
datasets. The method achieves AUC scores exceeding 0.90 for native images — across device-, model-, and brand- 
level classifications, though the strong devicelevel performance likely reflects limitations in existing datasets 
rather than generalizable capability — and over 0.85 for samples obtained from social media platforms. Despite 
its lightweight design, MSSH delivers a performance comparable to that of resourceintensive, established Source 
Camera Identification (SCI) approaches, and surpasses them on a modern dataset, achieving an AUC of 0.97 
compared to their AUCs, which range from 0.74 to 0.94. These results underscore MSSH’s effectiveness for media 
source analysis in digital forensics, while preserving the speed and utility advantages typical of hash-based 
methods.

1. Introduction

Hash functions are a fundamental concept in computer science with a 
wide variety of potential applications. From a forensic point of view 
(Institute, 2018), their utility is particularly evident in the areas of data 
integrity verification and data aggregation. The latter can be achieved 
with cryptographic hash functions, which facilitate the identification of 
exact duplicates with remarkable accuracy and efficiency. However, 
identifying similar data is a crucial objective, too, hence, the community 
has developed similarity hashes also referred to as approximate 
matching schemes (Kornblum, 2006; Roussev, 2010; Breitinger et al., 
2013, 2014). Unlike cryptographic hash functions, which operate 
exclusively at the byte level, similarity hashes can also be used at the 
syntactical or semantic level (Breitinger et al., 2013). In the context of 
media files, the primary focus in forensics is to find similar depicted 
content for which perceptual hashes are a well-established approach 
(Steinebach, 2023) and of utmost importance, e.g. to cope with the flood 

of Child Sexual Abuse Material (CSAM) cases.
For example, in 2023 alone, the National Center for Missing and 

Exploited Children (NCMEC) received approximately 36 million reports 
of CSAM uploads (National Center for Missing and Exploited Children, 
2024), placing an immense burden on digital forensic laboratories 
worldwide. While investigators can rely on cryptographic and percep
tual hash functions to detect exact duplicates or visually similar content, 
they lack effective technical tools for the automatic and rapid differen
tiation of content origin—such as distinguishing between downloaded 
and self-produced material. As a result, investigators often resort to 
searching the Exif metadata of CSAM for camera models that are linked 
to a suspect (Orozco et al., 2013), a process that is time-consuming, 
error-prone, and easily thwarted by removed metadata.

Due to constrained forensic resources and despite the ethical impli
cations of potentially overlooking victims, investigators regard such 
compromises, as the lesser of two evils (Casey et al., 2009). Conse
quently, enabling the aggregation of media files by their source—the last 
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processing pipeline component—seamlessly and at scale, as with hash 
functions may allow investigators to uncover more cases of ongoing 
child sexual abuse without requiring additional resources. To this end, 
we propose our concept of a Media Source Similarity Hash (MSSH).

After we introduce the key concepts of similarity hashing and the 
related field of Source Camera Identification (SCI) (see Section 2), we 
contribute: 

• The lightweight concept of our MSSH, presented on the example of 
JPEG files, which is based on the extraction of structural data, rep
resented as a set of n-grams (see Section 3).

• A publicly available Python implementation of MSSH.1

• An evaluation based on JPEG files from seven publicly available data 
sets on camera devices, models and brands, as well as social media 
networks, in which our MSSH scored AUC values exceeding 0.9 in 49 
out of 50 evaluations (see Section 4).

• A discussion on the potential for expansion to further formats, the 
identification granularity and the MSSHs placement among other 
similarity hashes (see Section 5).

Finally, we conclude our paper in Section 6.

2. Background and related work

After the introduction of the characteristics of similarity hashes and 
particular examples, we regard the domain of Source Camera Identifi
cation which techniques have been extended toward screening 
applications.

2.1. About similarity hashing

The general principles of similarity or approximate matching have 
been defined by Breitinger et al. (2014). They propose, that a similarity 
hash function serves to find similarities between two digital artifacts, by 
providing a value in the range of [0, 1]. Furthermore, similarity hashes 
use extracted features, and while “a feature can be any value derived 
from an artifact”, the comparison of two features must yield a binary 
decision whether it matches or not. These features are embraced in a 
feature set represented as a similarity digest eligible to be compared to 
the similarity digest of another digital artifact. This framework is 
applicable on similarity functions, regardless on the abstraction layer 
they operate on, hence, whether they operate bytewise, syntactically or 
semantically. However, syntactical similarity hashes are merely seen as 
a computationally cheap pre-processing step (Breitinger et al., 2014), of 
which, to the best of our knowledge, no approach is available.

2.2. Established similarity hash functions for media files

Established similarity hash functions, specifically for media files, 
operate on the semantic level, e.g. PhotoDNA (Steinebach, 2023). Here, 
the primary aim is to resemble the human perception of visual content 
which is contrary to our goal to find the source that generated the media 
file. In contrast, similarity hashes which are generally applicable to any 
file, such as TLSH (Oliver et al., 2013), ssdeep (Kornblum, 2006) or 
sdhash (Roussev, 2010), operate on the byte level. Consequently, they 
are based on the assumption that the similarity of interest is reflected in 
byte-level encodings. However, this is not valid in our case, as media 
files are predominantly made out of compressed visual content.

2.3. Source Camera Identification with Sensor Pattern Noise

The primary focus of SCI is the verification of a physical camera as 
the producer of an image or video. Here, the Sensor Pattern Noise (SPN) 

approach (Lukas et al., 2006) which extracts specific noise components 
from an image that can be attributed to a specific imaging sensor, is the 
most prominent (Klier and Baier, 2025). Traditionally, the SPN 
approach is expected to achieve a False Acceptance Rate (FAR) of below 
2.4 ⋅ 10− 5 and a False Negative Rate (FNR) of less than 0.0238 (Goljan 
et al., 2009). However, the necessary calculations are computationally 
expensive and the yielded SPN is hard to compress which poses a 
challenge for storage. Although, there are approaches available that 
tackle these issues (Valsesia et al., 2015; Li et al., 2018; Bernacki, 2022; 
Goljan et al., 2010), the overall usability of these adapted SPN methods 
remain unsatisfactory.

2.4. Source identification with metadata

Metadata based approaches have been proposed which are charac
terized by their minimal computational costs. For example, Mullan et al. 
(2019) considered exclusively the number of Exif fields set per Image 
File Directory (IFD) in images captured with iPhones and achieved a 
classification accuracy of 0.62 and 0.80 for the model and the iOS 
version, respectively. A similar approach (Mullan et al., 2020) achieves 
median accuracies for brand classification in the order of 90 %. Also, 
post-processing software was identified with an accuracy between 10 % 
and 75 %. However, this approach can easily be circumvented, by de
leting or not recording a few Exif entries, such as the GPS information.

Otherwise, the approach of Iuliani et al. (2018) uses structural 
metadata of MP4 files for brand identification and classification. More 
precisely, the field-value attributes, are used to calculate a likelihood 
ratio for a specific video file based on a set of known brands. In contrast, 
the approach of López et al. (2020) also extracts the MP4’s tree struc
ture, but more comprehensively and uses the obtained information for 
clustering by brand, model and social media platform, hence a closed set 
of known target classes is not needed. In contrast, the structure of JPEG 
images was examined by Gloe (2012) in 2012 from an observational 
perspective, focusing on image authenticity.

3. Concept

In this section we introduce our MSSH for JPEG files. MSSH is a 
syntactical approximate matching scheme based on structural features 
which are saved in a Feature Set and used to generate a Similarity Digest 
(SD) which can be compared using one of the two provided functions.

3.1. Scope and layer of operation

The primary objective of the MSSH is to convey the resemblance 
between two sources of media files. However, the term source can refer 
to different things, e.g. the source can be a physical device captured the 
media file, but also a social media network. Therefore, in the scope of 
MSSH the source is the last processing pipeline component that may have 
altered the syntactic structure of the file at hand.

Therefore, we propose to use structural information of a media file 
due to the promising results of the works presented in Section 2.4, as 
well as the appealing cost-effectiveness. Consequently, our MSSH 
operates on the syntactical layer, and is, to the best of our knowledge, 
the only similarity hash of this kind. Furthermore, the computational 
cost of hash generation exhibits a linear time complexity, contingent on 
the file size, which represents the most efficient achievable scaling.

However, media files are structured based on their respective format 
which in turn means that each format needs a dedicated implementa
tion. Due to its dominant position, we concentrate on the JPEG file 
format and discuss the extension to further formats in Section 5.

3.2. Structure extraction

The structure of a JPEG file (Hamilton, 1992; International Organi
zation for Standardization (ISO) and International Electrotechnical 1 https://github.com/SamKlier/mssh.
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Commission (IEC), 1994) has several segments of which some exhibit 
further sub-structures, hence, is organized hierarchically, as shown in 
Fig. 1.

3.2.1. Top-level JPEG structure
Overview
Each of the segments is instantiated by a dedicated marker, of which 

a totality of 64 are available. Therefore, each JPEG file is required to 
start with a Start of Image (SOI) marker (FF D8) and to end with the End 
of Image (EOI) marker (FF D9) (see Fig. 1). In between the remaining 62 
markers may appear, however, only few are mandatory, such as the Start 
of Frame (SOF), Define Quantization Table (DQT) and Define Huffman 
Table (DHT) (CIPA, 2012; International Organization for Standardiza
tion (ISO) and International Electrotechnical Commission (IEC), 1994). 
Additionally, the order in which they may be saved or their quantity is 
only partially specified which allows a considerable amount of variation 
in a particular implementation. This is the individual source property, 
leveraged for the MSSH.

Image selection
We illustrate the procedure based on five smartphone models from 

three brands, which were selected from the PrnuModernDevices2

(Albisani et al., 2021) data set, due to the availability of JPEGs captured 
in standard and bokeh mode. Consequently, the extent to which a 
non-standard capturing mode affects the file structure and whether 
different, yet similar, sources indeed exhibit differentiating file struc
tures can be studied.

Example generation
Therefore, Fig. 2 shows the structures of the examples, as extracted 

by our implementation, which are returned in order of appearance. 
Moreover, markers that are stripped by metadata removal3 are marked 
in red, which applies to all Application Segment (APP) segments here. 
Moreover, many cameras save unspecified data beyond the EOI marker, 
referred to as slack.

Ideal case
Although the P20 pro and P20 lite from Huawei are related models, 

they save their JPEGs with a discriminable structure, as shown in Fig. 2. 
Moreover, the structure is independent of the selected capturing mode and even after the deletion of all metadata, which discards all APP 

structures, the models are differentiable. Interestingly, the P20 pro sets 
the Define Restart Interval (DRI) marker without using the associated 
Restart Interval Termination (RST) markers which are expected by the 
specification, hence, may be particularly revealing. In conclusion, this 
example denotes an ideal outcome for our MSSH.

Capturing modes
In contrast, the closely related but different models, Galaxy S9 and 

S9+ from Samsung, share the same JPEG structure. However, only the 
S9 uses a different structure in bokeh mode. Similarly, the structure for 
the Apple iPhone 11, depends on the capturing mode, in particular, two 
versions of APP1 and APP2, and an APP0 are only available in bokeh 
mode. Therefore, a one-to-one comparison of media files should only be 
executed for images captured with the same mode and sources are more 
discriminable when images from more than one capturing mode are 
considered. These implications are considered when building the feature 
set for the MSSH, as proposed in Section 3.3.

RST markers
The amount of available RST markers depends on the number of 

Minimum Coded Units (MCUs) used by the producer of the JPEG file, as 
well as on the encoded visual data. Therefore, while RST markers likely 
provide information about the source, their expected dependency on the 
visual content is problematic. For now, we leave it by the observation 
that some models, such as the iPhone 11 repeat the RST0-RST7 cycle 
several times whereas other models, such as the Galaxy S9, do not.

Summary
Consequently, distinct sources exhibit discriminative structures in 

their JPEG files, even in the presence of anti-forensic measures, such as 
the complete removal of common metadata. However, capturing modes 

Fig. 1. Basic structure of compressed JPEG files due to CIPA (CIPA, 2012).

Fig. 2. Examples of extracted markers that represent the structures of JPEG 
files. Markers which are marked red, may be easily removed by a user. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

2 First JPEG (alphabetical order) of each category (flat, nat, bokeh) from C02, 
C07, C14, C15 and C20.

3 executed with Exiftool 12.65.
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and the visual content depending RST markers have to be considered.

3.2.2. APP1 structure extraction
Overview
The most interesting subordinate structures are the Application 

Segments (APPs), which are used to save application-specific data, 
commonly referred to as image metadata. In total, 16 APP markers are 
available of which some are only used by a few devices or applications 
(e.g. APP14 by Adobe). Therefore, while the existence of a rare APPs has 
a high discriminative value on the top-level, they are cumbersome to 
parse due to proprietary structures. However, the mandatory APP1 has a 
specified structure, hence, is the only APP considered further.

Interestingly, in bokeh mode, the Apple iPhone 11 saves two APP1 
segments of which the second one saves XMP data, instead of Exif, which 
is at this point not handled further.

Exif metadata
The APP1 segments, hold Image File Directories (IFDs), as shown in 

Fig. 3 and contain, among other factors the well-known Exif metadata 
(CIPA, 2012). Finally, each IFD is further divided into entries of 12 Bytes 
which respectively start with a marker. In contrast to Mullan et al. 
(2019) who counted the number of entries per IFD, we consider the 
markers themselves. Although the Exif standard defines some markers, 
many more are prevalent due to its extensibility. To illustrate, Fig. 4
shows the extracted IFD tags in the order of appearance, for the selected 
JPEGs (see Section 3.2.1).

Observations
In contrast to the previous results, the extracted Exif markers are 

independent of the capturing mode. Also, this time the Samsung S9 and 
S9+ exhibit different markers whereas the Huawei models are non 
distinguishable. Noteworthy, the marker 87 69 is present in all examples 
and is commonly known as “Maker Notes” which can be seen as an 
additional non-official IFD. Accordingly, although this may represent 
the most distinctive Exif information, its use is hindered by proprietary 
data structures that prevent general parsing; hence, it is excluded from 
further consideration here.

Therefore, combined with the results from Section 3.2.1, all the 
models in the considered examples are differentiable based solely on 
their structural composition.

3.3. Feature set generation

It is essential that the feature set accurately reflects the underlying 
structure which entails not only the inclusion of the existence of a 

feature, but also the order or context of its appearance. Therefore, we 
generate n-grams (Jurafsky and Martin, 2025), which are linked se
quences of n items, similar to those used in natural language processing. 
In Fig. 5 we show the mapping of an extracted structure, by the example 
of 2-g. Due to the fact that every JPEG marker starts with the same Byte, 
we omit the FF. In contrast, the Exif tags are concatenated, as is. Sub
sequently, the n-grams are saved in a set, as shown in Listing 1. 

Listing 1 The Feature Set F for the example in Fig. 5.

F = {D8E1, E1E0, E0DB, DBDB, DBC0, C0C4, C4C4, C4DD, 

Fig. 3. APP1 structure that holds Exif metadata, as specified by CIPA 
(CIPA, 2012).

Fig. 4. Exif Markers apparent in the example JPEGs.

Fig. 5. Creating 2-grams from the JPEG structure of the Huawei P20 pro.
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DDDA, DAD9, D900, 01000101, 01010102, 0102010F, 

010F0110, 01100112, 0112011A, 011A011B, 011B0128, 

01280131, 01310132, 01320213, 02138769, 87698825, 

8825A40B, A40B0180}

Consequently, this means that duplicate n-grams are discarded. 
Arguably, the repetition of an n-gram may hold additional information 
about the structure. However, some parts of the structure, as the 
repeated RST markers depend on the content size, as discussed in Sec
tion 3.2.1. Instead, longer n-grams (e.g. 3-grams) may model the 
structure better which is evaluated in Section 4.2. So far, the feature set 
is based on one media file which enables a one-to-one comparison of 
JPEGs. However, due to differences in the capturing process (see Section 
3.2.1), a feature set that represents a source holistically must be built 
from several files. Therefore, we construct feature sets for each media 
file and aggregate them via set union. Consequently, to get a compre
hensive view on the source, the selected media files should be diverse, e. 
g different capturing modes (e.g. bokeh, night mode, action pan) should 
be used, as well as, different scenes (e.g. macro, landscape) and settings. 
However, due to the binary nature of sets, there is no value in repeating 
the same shot.4 Subsequently, we denote Similarity Digests (SDs) based 
on such a feature set of several diverse images, as source SD.

3.4. Similarity digest generation

An Similarity Digest (SD) is derived from a Feature Set, obtained 
from one or multiple JPEG files, by concatenating all n-grams of equal 
length, sorted alphabetically to improve readability. However, infor
mation is not lost by re-ordering, as we operate on sets, as required by 
the definition of a similarity hash (Breitinger et al., 2014), and the order 
of the markers is captured due to the use of n-grams.

Consequently, the SD has two parts, which are shown in Listing 2, 
separated by an empty line. In total, the two parts in the example have a 
length of 82 Bytes, due to the 164 characters, of which each 2 characters 
can be represented as 1 Byte by design. 

Listing 2 Similarity Digest for the example in Fig. 5.

3.5. Similarity calculation

Finally, to calculate the similarity between two digests, the under
lying Feature Sets must be reconstructed; therefore, the chosen n-gram 
size must be known. To compare the similarity of two sets, the Jaccard 
Index is commonly used, as shown in Equation (1), where the feature 
sets FA and FB are derived from JPEG files A and B, respectively. 

J(FA, FB) =
|FA ∩ FB|

|FA ∪ FB|
(1) 

However, the Jaccard Index is symmetrical, hence, makes no dif
ference whether FA deviates more from FB or vice versa which is 
favorable, when two images are compared to each other. But, if a source 
SD, denoted as FS, was generated based on several diverse JPEGs, the 
expectation is that the entirety of possible features is represented in the 
feature set. Consequently, it is expected that FS contains features which 

are not present in FA, even when FA has been captured by the given 
source. In contrast, if FA contains features that are not present in FS, this 
is a strong indicator that A was not produced by the considered source. 
Here, a symmetrical similarity metric is disadvantageous.

Along those lines, the asymmetric Tversky Index (Tversky, 1977) 
compares a variant to a prototype, as shown in Equation (2). Basically, 
the Tversky Index introduces weights (α and β) to the Jaccard Index to 
differentiate on which side a mismatch is prevalent. Consequently, when 
the weights are both set to 1, the Tversky Index equals the Jaccard Index. 
Therefore, in our use case, any features that are exclusively apparent in 
FS should be tolerated, whereas features exclusively in FA should be 
detrimental. Consequently, to measure the similarity between an image 
and a source, we set α = 0 and β = 1 which is shown in Equation (3).

Both the Jaccard and Tversky indices yield values in the range [0, 1], 
though a similarity score of 1.0 does not necessarily indicate that the 
sources are truly identical. Specifically, a Jaccard Index of 1.0 signifies 
that the two feature sets are identical, while for the Tversky Index used 
in this work (see Equation (3)), it indicates that FA contains no features 
absent from FS. A comparative evaluation of both indices is presented in 
Section 4.3. 

Tα,β(FS, FA) =
|FS ∩ FA|

|FS ∩ FA| + α|FS\FA| + β|FA\FS|
(2) 

T(FS, FA) =
|FS ∩ FA|

|FS ∩ FA| + |FA\FS|
(3) 

4. Evaluation

After introducing our data-set, we evaluate our approach two-fold on 
our publicly available implementation.5 First we consider the unique
ness of the generated source SDs, depending on n-gram length. Then, we 
compare the results of the two proposed functions for comparison and 
their respective classification performance.

4.1. Data sets for evaluation

For the evaluation, our selection criteria on the published image sets 
are twofold, that is the set provides a ground truth and models repre
sented with more than one device. In all, our search yields seven data 
sets meeting these requirements and providing in total 87, 739 images, 
from 287 unique devices of 189 models, as shown in Table 1.

All data sets include, so-called “nat” images which are natural shots, 
including indoor and outdoor scenes captured from various distances. In 
contrast, “flat” images, depict exclusively a flat and uniformly lit scene, 
such as a blue sky and are not available for the Forchheim Image 
Database (FODB) (Hadwiger and Riess, 2021), IMAGIng seNsor idEnti
fication (IMAGINE) (Bernacki and Scherer, 2023) database, as well as, 
for the Dresden Image Database (DIDB) (Gloe and Böhme, 2010). 
Although, “flat” images are important for the SPN approach to create a 
strong reference pattern, they are not introducing the necessary di
versity to generate a strong MSSH source SD (see Section 3.3). However, 
the PrnuMD (Albisani et al., 2021) and the HDR (Al Shaya et al., 2018) 
data sets also contain images captured in bokeh and High Dynamic 
Range (HDR) mode, which in turn does allow building a strong source 
SD.

Additionally, the FODB and VISION (Shullani et al., 2017) provide 
for each image a variant which was post processed with social-media 
networks. In total, images are available from five social media net
works, namely Facebook (FB), WhatsApp (WA), Instagram (IG), Tele
gram (TG) and Twitter (TW).

4 Refers to multiple images captured with nearly identical scene content, 
composition, and camera settings—for example, the flat images used in the 
referenced datasets. 5 https://github.com/SamKlier/mssh.
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4.2. Source similarity digest

Several source types are considered and evaluated separately, 
namely devices, models, brands and social media networks. Therefore, 
to calculate the source SD for a device, one image per available image 
type (see Section 4.1) is selected6 and processed, as described in Section 
3, respectively, with 2-grams and 3-grams. In contrast, for the model 
SDs, we select one image per available device and image type. Accord
ingly, the brands and the social media networks are processed.

However, due to the varying availability of images, the quality of the 
source SDs is not constant, e.g. six files can be used for the model SD of 
the iPhone SE, but only one for the iPhone 11 Pro Max. Particularly, all 
device SDs of IMAGINE, FODB and DIDB are based on only one image, 
hence, are maximally weak. In contrast, the source SDs of each social 
media network is strong, as they are based on at least 27 images from 
distinct devices. Furthermore, the brand SDs of Samsung, Huawei, Apple 
and Xiaomi are also strong, as they are based on 35 images or more from 
different devices in the ALL data set.

First, the uniqueness of the SDs among the ALL data set with regards 
to the n-gram size is evaluated, as shown in Table 2. Accordingly, 
increasing the n-gram size from two to three increases the mean SD 
length significantly by 40 − 80 %, but, the number of unique SDs per 
source type remains unchanged. Consequently, 3-grams will not be 
considered any further. However, the differentiation of devices and 
models is suboptimal with 49.5 % and 69.3 %, respectively.

4.3. Similarity functions

Both proposed similarity functions are evaluated based on their Area 
Under Curve (AUC) of the respective Receiver Operating Curves (ROCs) 

(True Positive Rate and False Positive Rate) per data set and source type, 
as shown in Table 3. Here, the left side of the table presents the outcomes 
conducted on the JPEG and APP1 structure. In contrast, the right side 
illustrates the results of the JPEG structure alone, hence, disregarding 
any conventional metadata, e.g. due to anti-forensic measures.

Therefore, the proposed Tversky index (ST) outperforms the Jaccard 
index (SJ), when a strong source SDs can be calculated, such as for 
diverse data sets (e.g. PrnuMD) or social media networks and brands. In 
contrast, the Jaccard index (SJ) is superior when little diversity is 
available, as for the FODB and IMAGINE datsets or when the APP1 

Table 1 
ALL consists of the JPEG images of every other data set.

Data Set Publ. Mod. Dev. JPEGs Image T. Social M.

FloreView (Baracchi et al., 2023) 2023 42 45a 6,763 flat, nat ​
IMAGINE (Bernacki and Scherer, 2023) 2023 53 67 2,465 nat ​
PrnuMD (Iuliani et al., 2021) 2021 17 22 550 flat, nat, 

bokeh
​

FODB (Hadwiger and Riess, 2021) 2021 25 27 23,106 nat FB, WA, IG, 
TG, TW

HDR (Al Shaya et al., 2018) 2018 21 23 5,415 flat, nat, 
HDR

​

VISION (Shullani et al., 2017) 2017 29 35 34,427 flat, nat FB, WA
DIDB (Gloe and Böhme, 2010) 2010 24 68 14,713 nat ​

ALL ​ 189b 287 87,439 flat, nat, 
bokeh, HDR

FB, WA, IG, 
TG, TW

a Device D22 (iPhone X) has been excluded due to providing only HEIC images.
b Unique models across all data sets, hence, is not the sum of the column.

Table 2 
Evaluation of source SDs in terms of uniqueness and length with respect to the 
selected n-gram size.

Source n-gram size mean SD length (B) n/o SDs unique SDs

Device 2 67.0 B 287 142/49.5 %
3 94.0 B 287 142/49.5 %

Model 2 69.2 B 189 131/69.3 %
3 97.9 B 189 131/69.3 %

Brand 2 105.9 B 32 32/100.0 %
3 170.2 B 32 32/100.0 %

Social M. 2 28.4 B 5 5/100.0 %
3 51.6 B 5 5/100.0 %

Table 3 
Evaluation of MSSH in terms of AUC, using the two proposed similarity func
tions, across classification levels: individual devices, models, brands, and social 
media platforms. Similarity Digests are derived either from both JPEG and APP1 
structures, or from the JPEG structure alone. The best result for each category is 
underlined.

JPEG & APP1 JPEG

SJ ST SJ ST

DEVICE Data Set DEVICE

0.9906 0.9918 ALL 0.9745 0.9684
0.9846 0.9849 FloreView 0.9590 0.9546
0.9737 0.9719 IMAGINE 0.9457 0.9386
0.9846 0.9838 FODB 0.9827 0.9729
0.9173 0.9426 PrnuMD 0.8976 0.9263
0.9762 0.9837 HDR 0.9693 0.9688
0.9682 0.9642 VISION 0.9246 0.9187
0.9687 0.9914 DIDB 0.9237 0.9037

MODEL Data Set MODEL

0.9889 0.9906 ALL 0.9739 0.9689
0.9726 0.9720 FloreView 0.9576 0.9516
0.9766 0.9753 IMAGINE 0.9482 0.9421
0.9873 0.9864 FODB 0.9859 0.9755
0.9365 0.9562 PrnuMD 0.9239 0.9420
0.9781 0.9862 HDR 0.9723 0.9689
0.9736 0.9694 VISION 0.9410 0.9327
0.9860 0.9859 DIDB 0.9381 0.9236

BRAND Data Set BRAND

0.7595 0.9893 ALL 0.7593 0.9306
0.9652 0.9935 FloreView 0.9023 0.9447
0.9386 0.9986 IMAGINE 0.8482 0.9607
0.8998 0.9868 FODB 0.8347 0.9615
0.9920 0.9943 PrnuMD 0.9543 0.9773
0.9616 0.9983 HDR 0.8783 0.9486
0.9365 0.9956 VISION 0.8485 0.9457
0.9656 0.9866 DIDB 0.9255 0.9073

SOCIAL MEDIA Data Set SOCIAL MEDIA

FODB 0.7816 0.8505
VISION 1.0000 1.00006 Files selected for SD calculation are excluded from the evaluation.
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segment is not available. Therefore, the two similarity indices behave in 
accordance with the proposed hypothesis. However, when the Jaccard 
Index is superior the difference to the Tversky index is consistently 
imperceptible, but not vice-a-versa (e.g. Brand classification of ALL). 
Therefore, in general the used Tversky Index (see Equation (3)) is the 
better choice.

4.4. Classification performance

4.4.1. Devices and models
The classification performance of the proposed MSSH is evaluated 

for individual devices and models using the AUC values presented in 
Table 3. Across all evaluations, the AUCs for ST exceed 0.9, indicating 
excellent performance.

In addition, Table 4 presents device classification results reported for 
SPN-based approaches on the IMAGINE, VISION, and DIDB datasets for 
comparison. The classic SPN method by Goljan et al. (2009) achieves 
slightly better performance on VISION’s native images compared to the 
proposed approach. However, the proposed MSSH outperforms eight 
established SPN methods—each optimized for efficiency—on the more 
recent IMAGINE dataset. Furthermore, Bernacki (2022) report results on 
a subset of the DIDB dataset, which is not reconstructible. Therefore, we 
report the AUC of the proposed method on the complete DIDB dataset. 
For a discussion of these results, please refer to Section 5.

4.4.2. Brands and social media
In the case of brands, again, the AUCs for ST exceeds a value of 0.9 for 

each experiment which is considered excellent. Additionally, the pro
posed approach yields an AUC of 0.9935 for the complete FloreView 
dataset on which the SPN approach yielded values in the range of 0.80 −
0.99, depending on the brand and computational cost, as reported by 
Baracchi et al. (2023). In contrast, the AUC for Social Media networks is 
considerably lower with a minimum value of 0.85 due to the fact that the 
Instagram’s source SD is a sub-set of Facebook’s source SD on the FODB 
data set.

5. Discussion

The goal of the MSSH is to provide a hash function that preserves the 
similarity of a media file’s source. While the source is not necessarily a 
physical device, as is the case in Source Camera Identification, the re
sults remain competitive even at the individual device level (see Section 
4.4, Table 4). However, these strong results are likely influenced by the 
limitations of the datasets, which are not well-suited for evaluating true 
device-level discrimination. But, this means that the “efficient” SCI 
approaches—unlike the classical SPN-method (Goljan et al., 2009)— 
have yet to demonstrate conclusive evidence of their ability to distin
guish individual devices.

While initial results are promising, a key limitation lies in the lack of 
representative real-world data. Existing SCI datasets do not adequately 
capture long-term device usage, user behaviour, or system upda
tes—factors that may influence MSSH-based analysis more significantly 
than traditional hardware-focused SCI methods. These influences could 
potentially be beneficial, but further investigation is required to accu
rately assess the method’s actual differentiation granularity.

Currently, the number of unique SDs is relatively low, underscoring 
the need to enhance the method’s ability to differentiate between 
sources. Notably, substantial structural information remains unex
ploited, such as additional APP segments, Maker Notes, embedded im
ages, RST marker spacing, and endian encoding—all of which could 
improve source discrimination.

However, these results support extending the MSSH concept to other 
media formats, particularly HEIC and MP4, given their widespread 
practical relevance. Although structural extraction must be tailored to 
each format, prior studies (see Section 2.4) suggest that the approach is 
generalizable to complex media container formats.

Furthermore, according to NIST, syntactic similarity hashes—such as 
MSSH—are primarily designed as computationally efficient pre- 
processing tools (see Section 2.1). However, MSSH’s performance 
challenges this classification, as it achieves results comparable to 
established semantic similarity hashes such as TLSH, ssdeep, and 
sdhash, which report AUCs ranging from 0.65 to 0.98 (Oliver et al., 
2013) in their respective domains.

6. Conclusion and future work

Similarity hashes are a valuable component of the digital forensic 
toolkit, primarily used to reduce the overwhelming volume of data. 
Traditionally, these hashes focus on visual content similarity, enabling 
rapid identification of known media. However, early in an inves
tigation—particularly in Child Sexual Abuse Material case
s—investigators often face the critical challenge of determining the 
source of media files, such as distinguishing downloaded material from 
potentially self-produced content.

To address this, we introduce the first Media Source Similarity Hash, 
by the example of JPEG files. Our hash leverages structural features, 
making it computationally efficient and the first of its kind. The method 
is adaptable to different kinds of sources and extensible, allowing the 
incorporation of additional structural data. As a result, MSSH enables 
investigators to assess the source of a media file with the same high 
usability that conventional hash functions are known for. Notably, 
MSSH achieves a AUC classification performance that is comparable to, 
and often exceeds, established Source Camera Identification methods, 
while avoiding their substantial resource demands.

Nonetheless, further research is needed to assess the method’s reli
ability and differentiation granularity on real-world image sets, along 

Table 4 
Comparison of AUC values of MSSH and previously reported approaches, evaluated at the individual device level. Best result per data set is underlined.

IMAGINE VISION DIDB subset DIDB

Reported by Bernacki (Bernacki, 2022)
Bernacki (Bernacki, 2022) 0.94 – 0.93 –
Valsesia et al. (Valsesia et al., 2015) 0.78 – 0.81 –
Li et al. (Li et al., 2018) 0.84 – 0.84 –
Lukas et al. (Lukas et al., 2006) 0.89 – 0.90 –
Bondi et al. (Bondi et al., 2016) 0.89 – 0.88 –
Tuama et al. (Tuama et al., 2016) 0.88 – 0.86 –
Mandelli et al. (Mandelli et al., 2020) 0.83 – 0.87 –
Kirchner and Johnson (Kirchner and Johnson, 2019) 0.74 – 0.75 –

Reported by Shullani et al. (Shullani et al., 2017)

Goljan et al. (Goljan et al., 2009) – 0.99 – –

Own Experiments

Proposed 0.97 0.97 – 0.99
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with a detailed evaluation of its performance. Additionally, future work 
should investigate the applicability of MSSH to other file formats and 
examine whether incorporating additional structural features can 
further improve differentiation granularity.
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