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Hash functions play a crucial role in digital forensics to mitigate data overload. In addition to traditional
cryptographic hash functions, similarity hashes - also known as approximate matching schemes - have emerged
as effective tools for identifying media files with similar content. However, despite their relevance in investi-
gative settings, a fast and practical method for identifying files originating from similar sources is still lacking.
For example, in Child Sexual Abuse Material (CSAM) investigations, it is critical to distinguish between down-
loaded and potentially self-produced material. To address this gap, we introduce a Media Source Similarity Hash
(MSSH), using JPEG images as a case study. MSSH leverages structural features of media files, converting them
efficiently into Similarity Digests using n-gram representations. As such, MSSH constitutes the first syntactic
approximate matching scheme. We evaluate the MSSH using our publicly available source code across seven
datasets. The method achieves AUC scores exceeding 0.90 for native images — across device-, model-, and brand-
level classifications, though the strong devicelevel performance likely reflects limitations in existing datasets
rather than generalizable capability — and over 0.85 for samples obtained from social media platforms. Despite
its lightweight design, MSSH delivers a performance comparable to that of resourceintensive, established Source
Camera Identification (SCI) approaches, and surpasses them on a modern dataset, achieving an AUC of 0.97
compared to their AUCs, which range from 0.74 to 0.94. These results underscore MSSH’s effectiveness for media
source analysis in digital forensics, while preserving the speed and utility advantages typical of hash-based
methods.

of Child Sexual Abuse Material (CSAM) cases.
For example, in 2023 alone, the National Center for Missing and

1. Introduction

Hash functions are a fundamental concept in computer science with a
wide variety of potential applications. From a forensic point of view
(Institute, 2018), their utility is particularly evident in the areas of data
integrity verification and data aggregation. The latter can be achieved
with cryptographic hash functions, which facilitate the identification of
exact duplicates with remarkable accuracy and efficiency. However,
identifying similar data is a crucial objective, too, hence, the community
has developed similarity hashes also referred to as approximate
matching schemes (Kornblum, 2006; Roussev, 2010; Breitinger et al.,
2013, 2014). Unlike cryptographic hash functions, which operate
exclusively at the byte level, similarity hashes can also be used at the
syntactical or semantic level (Breitinger et al., 2013). In the context of
media files, the primary focus in forensics is to find similar depicted
content for which perceptual hashes are a well-established approach
(Steinebach, 2023) and of utmost importance, e.g. to cope with the flood

* Corresponding author.

Exploited Children (NCMEC) received approximately 36 million reports
of CSAM uploads (National Center for Missing and Exploited Children,
2024), placing an immense burden on digital forensic laboratories
worldwide. While investigators can rely on cryptographic and percep-
tual hash functions to detect exact duplicates or visually similar content,
they lack effective technical tools for the automatic and rapid differen-
tiation of content origin—such as distinguishing between downloaded
and self-produced material. As a result, investigators often resort to
searching the Exif metadata of CSAM for camera models that are linked
to a suspect (Orozco et al., 2013), a process that is time-consuming,
error-prone, and easily thwarted by removed metadata.

Due to constrained forensic resources and despite the ethical impli-
cations of potentially overlooking victims, investigators regard such
compromises, as the lesser of two evils (Casey et al., 2009). Conse-
quently, enabling the aggregation of media files by their source—the last
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processing pipeline component—seamlessly and at scale, as with hash
functions may allow investigators to uncover more cases of ongoing
child sexual abuse without requiring additional resources. To this end,
we propose our concept of a Media Source Similarity Hash (MSSH).

After we introduce the key concepts of similarity hashing and the
related field of Source Camera Identification (SCI) (see Section 2), we
contribute:

o The lightweight concept of our MSSH, presented on the example of
JPEG files, which is based on the extraction of structural data, rep-
resented as a set of n-grams (see Section 3).

A publicly available Python implementation of MSSH."

e An evaluation based on JPEG files from seven publicly available data
sets on camera devices, models and brands, as well as social media
networks, in which our MSSH scored AUC values exceeding 0.9 in 49
out of 50 evaluations (see Section 4).

e A discussion on the potential for expansion to further formats, the
identification granularity and the MSSHs placement among other
similarity hashes (see Section 5).

Finally, we conclude our paper in Section 6.
2. Background and related work

After the introduction of the characteristics of similarity hashes and
particular examples, we regard the domain of Source Camera Identifi-
cation which techniques have been extended toward screening
applications.

2.1. About similarity hashing

The general principles of similarity or approximate matching have
been defined by Breitinger et al. (2014). They propose, that a similarity
hash function serves to find similarities between two digital artifacts, by
providing a value in the range of [0, 1]. Furthermore, similarity hashes
use extracted features, and while “a feature can be any value derived
from an artifact”, the comparison of two features must yield a binary
decision whether it matches or not. These features are embraced in a
feature set represented as a similarity digest eligible to be compared to
the similarity digest of another digital artifact. This framework is
applicable on similarity functions, regardless on the abstraction layer
they operate on, hence, whether they operate bytewise, syntactically or
semantically. However, syntactical similarity hashes are merely seen as
a computationally cheap pre-processing step (Breitinger et al., 2014), of
which, to the best of our knowledge, no approach is available.

2.2. Established similarity hash functions for media files

Established similarity hash functions, specifically for media files,
operate on the semantic level, e.g. PhotoDNA (Steinebach, 2023). Here,
the primary aim is to resemble the human perception of visual content
which is contrary to our goal to find the source that generated the media
file. In contrast, similarity hashes which are generally applicable to any
file, such as TLSH (Oliver et al., 2013), ssdeep (Kornblum, 2006) or
sdhash (Roussev, 2010), operate on the byte level. Consequently, they
are based on the assumption that the similarity of interest is reflected in
byte-level encodings. However, this is not valid in our case, as media
files are predominantly made out of compressed visual content.

2.3. Source Camera Identification with Sensor Pattern Noise
The primary focus of SCI is the verification of a physical camera as

the producer of an image or video. Here, the Sensor Pattern Noise (SPN)

! https://github.com/SamKlier/mssh.
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approach (Lukas et al., 2006) which extracts specific noise components
from an image that can be attributed to a specific imaging sensor, is the
most prominent (Klier and Baier, 2025). Traditionally, the SPN
approach is expected to achieve a False Acceptance Rate (FAR) of below
2.4 -107° and a False Negative Rate (FNR) of less than 0.0238 (Goljan
et al., 2009). However, the necessary calculations are computationally
expensive and the yielded SPN is hard to compress which poses a
challenge for storage. Although, there are approaches available that
tackle these issues (Valsesia et al., 2015; Li et al., 2018; Bernacki, 2022;
Goljan et al., 2010), the overall usability of these adapted SPN methods
remain unsatisfactory.

2.4. Source identification with metadata

Metadata based approaches have been proposed which are charac-
terized by their minimal computational costs. For example, Mullan et al.
(2019) considered exclusively the number of Exif fields set per Image
File Directory (IFD) in images captured with iPhones and achieved a
classification accuracy of 0.62 and 0.80 for the model and the iOS
version, respectively. A similar approach (Mullan et al., 2020) achieves
median accuracies for brand classification in the order of 90 %. Also,
post-processing software was identified with an accuracy between 10 %
and 75 %. However, this approach can easily be circumvented, by de-
leting or not recording a few Exif entries, such as the GPS information.

Otherwise, the approach of Iuliani et al. (2018) uses structural
metadata of MP4 files for brand identification and classification. More
precisely, the field-value attributes, are used to calculate a likelihood
ratio for a specific video file based on a set of known brands. In contrast,
the approach of Lopez et al. (2020) also extracts the MP4’s tree struc-
ture, but more comprehensively and uses the obtained information for
clustering by brand, model and social media platform, hence a closed set
of known target classes is not needed. In contrast, the structure of JPEG
images was examined by Gloe (2012) in 2012 from an observational
perspective, focusing on image authenticity.

3. Concept

In this section we introduce our MSSH for JPEG files. MSSH is a
syntactical approximate matching scheme based on structural features
which are saved in a Feature Set and used to generate a Similarity Digest
(SD) which can be compared using one of the two provided functions.

3.1. Scope and layer of operation

The primary objective of the MSSH is to convey the resemblance
between two sources of media files. However, the term source can refer
to different things, e.g. the source can be a physical device captured the
media file, but also a social media network. Therefore, in the scope of
MSSH the source is the last processing pipeline component that may have
altered the syntactic structure of the file at hand.

Therefore, we propose to use structural information of a media file
due to the promising results of the works presented in Section 2.4, as
well as the appealing cost-effectiveness. Consequently, our MSSH
operates on the syntactical layer, and is, to the best of our knowledge,
the only similarity hash of this kind. Furthermore, the computational
cost of hash generation exhibits a linear time complexity, contingent on
the file size, which represents the most efficient achievable scaling.

However, media files are structured based on their respective format
which in turn means that each format needs a dedicated implementa-
tion. Due to its dominant position, we concentrate on the JPEG file
format and discuss the extension to further formats in Section 5.

3.2. Structure extraction

The structure of a JPEG file (Hamilton, 1992; International Organi-
zation for Standardization (ISO) and International Electrotechnical
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Commission (IEC), 1994) has several segments of which some exhibit
further sub-structures, hence, is organized hierarchically, as shown in
Fig. 1.

3.2.1. Top-level JPEG structure

Overview

Each of the segments is instantiated by a dedicated marker, of which
a totality of 64 are available. Therefore, each JPEG file is required to
start with a Start of Image (SOI) marker (FF D8) and to end with the End
of Image (EOI) marker (FF D9) (see Fig. 1). In between the remaining 62
markers may appear, however, only few are mandatory, such as the Start
of Frame (SOF), Define Quantization Table (DQT) and Define Huffman
Table (DHT) (CIPA, 2012; International Organization for Standardiza-
tion (ISO) and International Electrotechnical Commission (IEC), 1994).
Additionally, the order in which they may be saved or their quantity is
only partially specified which allows a considerable amount of variation
in a particular implementation. This is the individual source property,
leveraged for the MSSH.

Image selection

We illustrate the procedure based on five smartphone models from
three brands, which were selected from the PrnuModernDevices®
(Albisani et al., 2021) data set, due to the availability of JPEGs captured
in standard and bokeh mode. Consequently, the extent to which a
non-standard capturing mode affects the file structure and whether
different, yet similar, sources indeed exhibit differentiating file struc-
tures can be studied.

Example generation

Therefore, Fig. 2 shows the structures of the examples, as extracted
by our implementation, which are returned in order of appearance.
Moreover, markers that are stripped by metadata removal® are marked
in red, which applies to all Application Segment (APP) segments here.
Moreover, many cameras save unspecified data beyond the EOI marker,
referred to as slack.

Ideal case

Although the P20 pro and P20 lite from Huawei are related models,
they save their JPEGs with a discriminable structure, as shown in Fig. 2.
Moreover, the structure is independent of the selected capturing mode

Structure of Compressed file Structure of APP1
SOl Start of Image APP1 Marker
APP1 Application Marker APP1 Length
Segment 1 : "
(Exif Attribute Information) ExifIdentifier Code
TIFF Header
(APP2) (Application Marker oth IFD
Segment 2)
(FlashPix Extension data)
Oth IFD Value
1stIFD
DQT Quantization Table
DHT Huffman Table 1stIFD Value
(DRI) (Restart Interval) 1stIFD Image Data
SOF Frame Header
SOS Scan Header
Compressed Data
EOI End of Image

Fig. 1. Basic structure of compressed JPEG files due to CIPA (CIPA, 2012).

2 First JPEG (alphabetical order) of each category (flat, nat, bokeh) from €02,
C07, C14, C15 and C20.
3 executed with Exiftool 12.65.
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Huawei Samsung Apple
P20 pro P20 lite S9 S9+ iPhone 11
2’:"‘(; Z’;‘te‘: std. bokeh Z":;;ei std.  bokeh
SOI SEI SOI SOI SO (SO SOI
APP1  APPI APP1 APP1 APPI APP] APPO
APPO  APPO APP4 APP5 APP4 APP2 APP1
DQT DQT APP5 APP4 APP5 APP10 APP1
DQT DQT APP11 SOF0 APP11 DQT APP2
SOF0  SOF0 DHT DQT DHT DRI APP2
DHT DHT DQT DHT DQT SOF0 APP10
DHT DHT SOF0 DRI SOFO DHT DQT
DHT DHT S0Os S0S S0S 505 DRI
DHT DHT EOI RSTO0 EOI RSTO SOF0
DRI s0s St RSN Siocial RISIR DHT
SOS EOTI BT RST2 S@©S
EOI slack RST3 RST3 RSTO
slack EOI RST4 RST1

slack RSHES RS2
RST6 RST3
RST7 RST4
[repeat...] RSTS
EOI RST6
slack RST7
[repeat...]
EOT
slack

Fig. 2. Examples of extracted markers that represent the structures of JPEG
files. Markers which are marked red, may be easily removed by a user. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

and even after the deletion of all metadata, which discards all APP
structures, the models are differentiable. Interestingly, the P20 pro sets
the Define Restart Interval (DRI) marker without using the associated
Restart Interval Termination (RST) markers which are expected by the
specification, hence, may be particularly revealing. In conclusion, this
example denotes an ideal outcome for our MSSH.

Capturing modes

In contrast, the closely related but different models, Galaxy S9 and
S9+ from Samsung, share the same JPEG structure. However, only the
S9 uses a different structure in bokeh mode. Similarly, the structure for
the Apple iPhone 11, depends on the capturing mode, in particular, two
versions of APP1 and APP2, and an APPO are only available in bokeh
mode. Therefore, a one-to-one comparison of media files should only be
executed for images captured with the same mode and sources are more
discriminable when images from more than one capturing mode are
considered. These implications are considered when building the feature
set for the MSSH, as proposed in Section 3.3.

RST markers

The amount of available RST markers depends on the number of
Minimum Coded Units (MCUs) used by the producer of the JPEG file, as
well as on the encoded visual data. Therefore, while RST markers likely
provide information about the source, their expected dependency on the
visual content is problematic. For now, we leave it by the observation
that some models, such as the iPhone 11 repeat the RST0-RST7 cycle
several times whereas other models, such as the Galaxy S9, do not.

Summary

Consequently, distinct sources exhibit discriminative structures in
their JPEG files, even in the presence of anti-forensic measures, such as
the complete removal of common metadata. However, capturing modes
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and the visual content depending RST markers have to be considered.

3.2.2. APPI] structure extraction

Overview

The most interesting subordinate structures are the Application
Segments (APPs), which are used to save application-specific data,
commonly referred to as image metadata. In total, 16 APP markers are
available of which some are only used by a few devices or applications
(e.g. APP14 by Adobe). Therefore, while the existence of a rare APPs has
a high discriminative value on the top-level, they are cumbersome to
parse due to proprietary structures. However, the mandatory APP1 has a
specified structure, hence, is the only APP considered further.

Interestingly, in bokeh mode, the Apple iPhone 11 saves two APP1
segments of which the second one saves XMP data, instead of Exif, which
is at this point not handled further.

Exif metadata

The APP1 segments, hold Image File Directories (IFDs), as shown in
Fig. 3 and contain, among other factors the well-known Exif metadata
(CIPA, 2012). Finally, each IFD is further divided into entries of 12 Bytes
which respectively start with a marker. In contrast to Mullan et al.
(2019) who counted the number of entries per IFD, we consider the
markers themselves. Although the Exif standard defines some markers,
many more are prevalent due to its extensibility. To illustrate, Fig. 4
shows the extracted IFD tags in the order of appearance, for the selected
JPEGs (see Section 3.2.1).

Observations

In contrast to the previous results, the extracted Exif markers are
independent of the capturing mode. Also, this time the Samsung S9 and
S9+ exhibit different markers whereas the Huawei models are non
distinguishable. Noteworthy, the marker 87 69 is present in all examples
and is commonly known as “Maker Notes” which can be seen as an
additional non-official IFD. Accordingly, although this may represent
the most distinctive Exif information, its use is hindered by proprietary
data structures that prevent general parsing; hence, it is excluded from
further consideration here.

Therefore, combined with the results from Section 3.2.1, all the
models in the considered examples are differentiable based solely on
their structural composition.

3.3. Feature set generation

It is essential that the feature set accurately reflects the underlying
structure which entails not only the inclusion of the existence of a

Exif Compressed File APP1 Marker

SOl APP1 Marker
APP1 Length
Exif

DQT TIFF Header
DHT 0th IFD
SOF

Exif IFD
SOS

Compressed Data 1stIFD

I~ JPEGInterchangeFormat
|; JPEGInterchangeFormatLength

JPEG Thumbnail

EQI

Fig. 3. APP1 structure that holds Exif metadata, as specified by CIPA
(CIPA, 2012).
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Huawei Samsung Apple
P20 pro P20 lite S9 S9+ iPhone 11

0100 0100 0100 0112 O010F
0101 0101 0101 0213 0110
0102 0102 0112 011A 0112
010F 010F 0213 011B 011A
0110 0110 011A 0128 011B
0112 0112 011B 010F 0128
011A 011A 0IL2t3 |03L10) Ee0)l 51l
011B 011B 010F 0131 0132
0128 0128 0110 0132 0213
0131 03l 0131 8769 8769
0132 0132 0132 0006
0213 0213 8769

8769 8769

8825 8825

A40B A40B

0180 0180

Fig. 4. Exif Markers apparent in the example JPEGs.

feature, but also the order or context of its appearance. Therefore, we
generate n-grams (Jurafsky and Martin, 2025), which are linked se-
quences of n items, similar to those used in natural language processing.
In Fig. 5 we show the mapping of an extracted structure, by the example
of 2-g. Due to the fact that every JPEG marker starts with the same Byte,
we omit the FF. In contrast, the Exif tags are concatenated, as is. Sub-
sequently, the n-grams are saved in a set, as shown in Listing 1.

Listing 1 The Feature Set F for the example in Fig. 5.

F = {D8El, E1EO, EODB, DBDB, DBCO, C0C4, C4C4, C4DD,

Huawei P20 pro

JPEG Markers Exif Tags

Marker Name Magic 2-gram Magic 2-gram
S@In FF D8 01 00

APP1 FF E1 D8 E1 01 01 01 00 01 01
APPO FF EO0O E1 EO 01 02 01 01 01 02
DQT FF DB EO DB 01 OF 01 02 01 OF
DQT FF DB DB DB 01 10 01 OF 01 10
SOF0 EE €0 DB €0 01 12 01 10 01 12
DHT FF C4 CO Cc4 01 1A 01 12 01 1A
DHT FF C4 C4 C4 01 1B 01 1A 01 1B
DHT FF C4 Cc4 C4 01 28 01 1B 01 28
DHT FF C4 C4 c4 01 31 01 28 01 31
DRI FF DD C4 DD 01 32 |01 i Qi 32
S@S) EE DA DD DA 02 13 01 32 02 13
EOI FF D9 DA D9 87 69 02 13 87 69
slack 00 D9 00 88 25 87 69 88 25

A4 0B 88 25 A4 0B
01 80 A4 0B 01 80

Fig. 5. Creating 2-grams from the JPEG structure of the Huawei P20 pro.
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DDDA, DAD9, D900, 01000101, 01010102, 0102010F,
010rF0110, 01100112, 0112011A, 011A011B, 011B0128,
01280131, 01310132, 01320213, 02138769, 87698825,

8825A40B, A40B0180}

Consequently, this means that duplicate n-grams are discarded.
Arguably, the repetition of an n-gram may hold additional information
about the structure. However, some parts of the structure, as the
repeated RST markers depend on the content size, as discussed in Sec-
tion 3.2.1. Instead, longer n-grams (e.g. 3-grams) may model the
structure better which is evaluated in Section 4.2. So far, the feature set
is based on one media file which enables a one-to-one comparison of
JPEGs. However, due to differences in the capturing process (see Section
3.2.1), a feature set that represents a source holistically must be built
from several files. Therefore, we construct feature sets for each media
file and aggregate them via set union. Consequently, to get a compre-
hensive view on the source, the selected media files should be diverse, e.
g different capturing modes (e.g. bokeh, night mode, action pan) should
be used, as well as, different scenes (e.g. macro, landscape) and settings.
However, due to the binary nature of sets, there is no value in repeating
the same shot.* Subsequently, we denote Similarity Digests (SDs) based
on such a feature set of several diverse images, as source SD.

3.4. Similarity digest generation

An Similarity Digest (SD) is derived from a Feature Set, obtained
from one or multiple JPEG files, by concatenating all n-grams of equal
length, sorted alphabetically to improve readability. However, infor-
mation is not lost by re-ordering, as we operate on sets, as required by
the definition of a similarity hash (Breitinger et al., 2014), and the order
of the markers is captured due to the use of n-grams.

Consequently, the SD has two parts, which are shown in Listing 2,
separated by an empty line. In total, the two parts in the example have a
length of 82 Bytes, due to the 164 characters, of which each 2 characters
can be represented as 1 Byte by design.

Listing 2 Similarity Digest for the example in Fig. 5.

C0C4C4C4C4DDDS8E1D900DADODBCODBDBDDDAEODB E1EO

01000101010101020102010F010F011001100112
~—0112011A011A011B011B012801280131013101
<320132021302138769876988258825A40BA40B 0180

3.5. Similarity calculation

Finally, to calculate the similarity between two digests, the under-
lying Feature Sets must be reconstructed; therefore, the chosen n-gram
size must be known. To compare the similarity of two sets, the Jaccard
Index is commonly used, as shown in Equation (1), where the feature
sets F4 and Fp are derived from JPEG files A and B, respectively.

‘FA n FB‘
J(Fa,Fp) = TASA (@]

However, the Jaccard Index is symmetrical, hence, makes no dif-
ference whether F4 deviates more from Fg or vice versa which is
favorable, when two images are compared to each other. But, if a source
SD, denoted as Fs, was generated based on several diverse JPEGs, the
expectation is that the entirety of possible features is represented in the
feature set. Consequently, it is expected that Fs contains features which

4 Refers to multiple images captured with nearly identical scene content,
composition, and camera settings—for example, the flat images used in the
referenced datasets.
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are not present in F4, even when F4 has been captured by the given
source. In contrast, if F4 contains features that are not present in Fs, this
is a strong indicator that A was not produced by the considered source.
Here, a symmetrical similarity metric is disadvantageous.

Along those lines, the asymmetric Tversky Index (Tversky, 1977)
compares a variant to a prototype, as shown in Equation (2). Basically,
the Tversky Index introduces weights (@ and ) to the Jaccard Index to
differentiate on which side a mismatch is prevalent. Consequently, when
the weights are both set to 1, the Tversky Index equals the Jaccard Index.
Therefore, in our use case, any features that are exclusively apparent in
Fs should be tolerated, whereas features exclusively in F4 should be
detrimental. Consequently, to measure the similarity between an image
and a source, we set @ = 0 and = 1 which is shown in Equation (3).

Both the Jaccard and Tversky indices yield values in the range [0, 1],
though a similarity score of 1.0 does not necessarily indicate that the
sources are truly identical. Specifically, a Jaccard Index of 1.0 signifies
that the two feature sets are identical, while for the Tversky Index used
in this work (see Equation (3)), it indicates that F4 contains no features
absent from Fs. A comparative evaluation of both indices is presented in
Section 4.3.

|FS ﬂFA‘

= 2
|Fs N Fa| + alFs\Fa| + |Fa\Fs|

Tops(Fs,Fa)

|[Fs N Fa|

T(Fs,Fy) = —- 5“4
(Fs, Fa) |Fs N Fa| + |F4\Fg|

3

4. Evaluation

After introducing our data-set, we evaluate our approach two-fold on
our publicly available implementation.” First we consider the unique-
ness of the generated source SDs, depending on n-gram length. Then, we
compare the results of the two proposed functions for comparison and
their respective classification performance.

4.1. Data sets for evaluation

For the evaluation, our selection criteria on the published image sets
are twofold, that is the set provides a ground truth and models repre-
sented with more than one device. In all, our search yields seven data
sets meeting these requirements and providing in total 87, 739 images,
from 287 unique devices of 189 models, as shown in Table 1.

All data sets include, so-called “nat” images which are natural shots,
including indoor and outdoor scenes captured from various distances. In
contrast, “flat” images, depict exclusively a flat and uniformly lit scene,
such as a blue sky and are not available for the Forchheim Image
Database (FODB) (Hadwiger and Riess, 2021), IMAGIng seNsor idEnti-
fication (IMAGINE) (Bernacki and Scherer, 2023) database, as well as,
for the Dresden Image Database (DIDB) (Gloe and Bohme, 2010).
Although, “flat” images are important for the SPN approach to create a
strong reference pattern, they are not introducing the necessary di-
versity to generate a strong MSSH source SD (see Section 3.3). However,
the PrnuMD (Albisani et al., 2021) and the HDR (Al Shaya et al., 2018)
data sets also contain images captured in bokeh and High Dynamic
Range (HDR) mode, which in turn does allow building a strong source
SD.

Additionally, the FODB and VISION (Shullani et al., 2017) provide
for each image a variant which was post processed with social-media
networks. In total, images are available from five social media net-
works, namely Facebook (FB), WhatsApp (WA), Instagram (IG), Tele-
gram (TG) and Twitter (TW).

5 https://github.com/SamKlier/mssh.
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Table 1
ALL consists of the JPEG images of every other data set.
Data Set Publ. Mod. Dev. JPEGs Image T. Social M.
FloreView (Baracchi et al., 2023) 2023 42 45" 6,763 flat, nat
IMAGINE (Bernacki and Scherer, 2023) 2023 53 67 2,465 nat
PrnuMD (Iuliani et al., 2021) 2021 17 22 550 flat, nat,
bokeh
FODB (Hadwiger and Riess, 2021) 2021 25 27 23,106 nat FB, WA, IG,
TG, TW
HDR (Al Shaya et al., 2018) 2018 21 23 5,415 flat, nat,
HDR
VISION (Shullani et al., 2017) 2017 29 35 34,427 flat, nat FB, WA
DIDB (Gloe and Bohme, 2010) 2010 24 68 14,713 nat
ALL 189" 287 87,439 flat, nat, FB, WA, IG,
bokeh, HDR TG, TW

@ Device D22 (iPhone X) has been excluded due to providing only HEIC images.

b Unique models across all data sets, hence, is not the sum of the column.

4.2. Source similarity digest

Several source types are considered and evaluated separately,
namely devices, models, brands and social media networks. Therefore,
to calculate the source SD for a device, one image per available image
type (see Section 4.1) is selected® and processed, as described in Section
3, respectively, with 2-grams and 3-grams. In contrast, for the model
SDs, we select one image per available device and image type. Accord-
ingly, the brands and the social media networks are processed.

However, due to the varying availability of images, the quality of the
source SDs is not constant, e.g. six files can be used for the model SD of
the iPhone SE, but only one for the iPhone 11 Pro Max. Particularly, all
device SDs of IMAGINE, FODB and DIDB are based on only one image,
hence, are maximally weak. In contrast, the source SDs of each social
media network is strong, as they are based on at least 27 images from
distinct devices. Furthermore, the brand SDs of Samsung, Huawei, Apple
and Xiaomi are also strong, as they are based on 35 images or more from
different devices in the ALL data set.

First, the uniqueness of the SDs among the ALL data set with regards
to the n-gram size is evaluated, as shown in Table 2. Accordingly,
increasing the n-gram size from two to three increases the mean SD
length significantly by 40 — 80 %, but, the number of unique SDs per
source type remains unchanged. Consequently, 3-grams will not be
considered any further. However, the differentiation of devices and
models is suboptimal with 49.5 % and 69.3 %, respectively.

4.3. Similarity functions

Both proposed similarity functions are evaluated based on their Area
Under Curve (AUC) of the respective Receiver Operating Curves (ROCs)

Table 2
Evaluation of source SDs in terms of uniqueness and length with respect to the
selected n-gram size.

Source n-gram size mean SD length (B) n/o SDs unique SDs
Device 2 67.0 B 287 142/49.5 %
3 94.0 B 287 142/49.5 %
Model 2 69.2 B 189 131/69.3 %
3 97.9B 189 131/69.3 %
Brand 2 105.9 B 32 32/100.0 %
3 170.2 B 32 32/100.0 %
Social M. 2 28.4B 5 5/100.0 %
3 51.6 B 5 5/100.0 %

6 Files selected for SD calculation are excluded from the evaluation.

(True Positive Rate and False Positive Rate) per data set and source type,
as shown in Table 3. Here, the left side of the table presents the outcomes
conducted on the JPEG and APP1 structure. In contrast, the right side
illustrates the results of the JPEG structure alone, hence, disregarding
any conventional metadata, e.g. due to anti-forensic measures.
Therefore, the proposed Tversky index (St) outperforms the Jaccard
index (S;), when a strong source SDs can be calculated, such as for
diverse data sets (e.g. PrnuMD) or social media networks and brands. In
contrast, the Jaccard index (Sy) is superior when little diversity is
available, as for the FODB and IMAGINE datsets or when the APP1

Table 3

Evaluation of MSSH in terms of AUC, using the two proposed similarity func-
tions, across classification levels: individual devices, models, brands, and social
media platforms. Similarity Digests are derived either from both JPEG and APP1
structures, or from the JPEG structure alone. The best result for each category is
underlined.

JPEG & APP1 JPEG
Sy St Sy St

DEVICE Data Set DEVICE
0.9906 0.9918 ALL 0.9745 0.9684
0.9846 0.9849 FloreView 0.9590 0.9546
0.9737 0.9719 IMAGINE 0.9457 0.9386
0.9846 0.9838 FODB 0.9827 0.9729
0.9173 0.9426 PrnuMD 0.8976 0.9263
0.9762 0.9837 HDR 0.9693 0.9688
0.9682 0.9642 VISION 0.9246 0.9187
0.9687 0.9914 DIDB 0.9237 0.9037

MODEL Data Set MODEL
0.9889 0.9906 ALL 0.9739 0.9689
0.9726 0.9720 FloreView 0.9576 0.9516
0.9766 0.9753 IMAGINE 0.9482 0.9421
0.9873 0.9864 FODB 0.9859 0.9755
0.9365 0.9562 PrnuMD 0.9239 0.9420
0.9781 0.9862 HDR 0.9723 0.9689
0.9736 0.9694 VISION 0.9410 0.9327
0.9860 0.9859 DIDB 0.9381 0.9236

BRAND Data Set BRAND
0.7595 0.9893 ALL 0.7593 0.9306
0.9652 0.9935 FloreView 0.9023 0.9447
0.9386 0.9986 IMAGINE 0.8482 0.9607
0.8998 0.9868 FODB 0.8347 0.9615
0.9920 0.9943 PrnuMD 0.9543 0.9773
0.9616 0.9983 HDR 0.8783 0.9486
0.9365 0.9956 VISION 0.8485 0.9457
0.9656 0.9866 DIDB 0.9255 0.9073

SOCIAL MEDIA Data Set SOCIAL MEDIA

FODB 0.7816 0.8505
VISION 1.0000 1.0000
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Table 4
Comparison of AUC values of MSSH and previously reported approaches, evaluated at the individual device level. Best result per data set is underlined.
IMAGINE VISION DIDB subset DIDB
Reported by Bernacki (Bernacki, 2022)
Bernacki (Bernacki, 2022) 0.94 - 0.93 -
Valsesia et al. (Valsesia et al., 2015) 0.78 - 0.81 -
Li et al. (Li et al., 2018) 0.84 - 0.84 -
Lukas et al. (Lukas et al., 2006) 0.89 — 0.90 -
Bondi et al. (Bondi et al., 2016) 0.89 - 0.88 -
Tuama et al. (Tuama et al., 2016) 0.88 - 0.86 -
Mandelli et al. (Mandelli et al., 2020) 0.83 - 0.87 -
Kirchner and Johnson (Kirchner and Johnson, 2019) 0.74 - 0.75 -
Reported by Shullani et al. (Shullani et al., 2017)
Goljan et al. (Goljan et al., 2009) - 0.99 - -
Own Experiments
Proposed 0.97 0.97 - 0.99

segment is not available. Therefore, the two similarity indices behave in
accordance with the proposed hypothesis. However, when the Jaccard
Index is superior the difference to the Tversky index is consistently
imperceptible, but not vice-a-versa (e.g. Brand classification of ALL).
Therefore, in general the used Tversky Index (see Equation (3)) is the
better choice.

4.4. Classification performance

4.4.1. Devices and models

The classification performance of the proposed MSSH is evaluated
for individual devices and models using the AUC values presented in
Table 3. Across all evaluations, the AUCs for St exceed 0.9, indicating
excellent performance.

In addition, Table 4 presents device classification results reported for
SPN-based approaches on the IMAGINE, VISION, and DIDB datasets for
comparison. The classic SPN method by Goljan et al. (2009) achieves
slightly better performance on VISION’s native images compared to the
proposed approach. However, the proposed MSSH outperforms eight
established SPN methods—each optimized for efficiency—on the more
recent IMAGINE dataset. Furthermore, Bernacki (2022) report results on
a subset of the DIDB dataset, which is not reconstructible. Therefore, we
report the AUC of the proposed method on the complete DIDB dataset.
For a discussion of these results, please refer to Section 5.

4.4.2. Brands and social media

In the case of brands, again, the AUCs for St exceeds a value of 0.9 for
each experiment which is considered excellent. Additionally, the pro-
posed approach yields an AUC of 0.9935 for the complete FloreView
dataset on which the SPN approach yielded values in the range of 0.80 —
0.99, depending on the brand and computational cost, as reported by
Baracchi et al. (2023). In contrast, the AUC for Social Media networks is
considerably lower with a minimum value of 0.85 due to the fact that the
Instagram’s source SD is a sub-set of Facebook’s source SD on the FODB
data set.

5. Discussion

The goal of the MSSH is to provide a hash function that preserves the
similarity of a media file’s source. While the source is not necessarily a
physical device, as is the case in Source Camera Identification, the re-
sults remain competitive even at the individual device level (see Section
4.4, Table 4). However, these strong results are likely influenced by the
limitations of the datasets, which are not well-suited for evaluating true
device-level discrimination. But, this means that the “efficient” SCI
approaches—unlike the classical SPN-method (Goljan et al., 2009)—
have yet to demonstrate conclusive evidence of their ability to distin-
guish individual devices.

While initial results are promising, a key limitation lies in the lack of
representative real-world data. Existing SCI datasets do not adequately
capture long-term device usage, user behaviour, or system upda-
tes—factors that may influence MSSH-based analysis more significantly
than traditional hardware-focused SCI methods. These influences could
potentially be beneficial, but further investigation is required to accu-
rately assess the method’s actual differentiation granularity.

Currently, the number of unique SDs is relatively low, underscoring
the need to enhance the method’s ability to differentiate between
sources. Notably, substantial structural information remains unex-
ploited, such as additional APP segments, Maker Notes, embedded im-
ages, RST marker spacing, and endian encoding—all of which could
improve source discrimination.

However, these results support extending the MSSH concept to other
media formats, particularly HEIC and MP4, given their widespread
practical relevance. Although structural extraction must be tailored to
each format, prior studies (see Section 2.4) suggest that the approach is
generalizable to complex media container formats.

Furthermore, according to NIST, syntactic similarity hashes—such as
MSSH—are primarily designed as computationally efficient pre-
processing tools (see Section 2.1). However, MSSH’s performance
challenges this classification, as it achieves results comparable to
established semantic similarity hashes such as TLSH, ssdeep, and
sdhash, which report AUCs ranging from 0.65 to 0.98 (Oliver et al.,
2013) in their respective domains.

6. Conclusion and future work

Similarity hashes are a valuable component of the digital forensic
toolkit, primarily used to reduce the overwhelming volume of data.
Traditionally, these hashes focus on visual content similarity, enabling
rapid identification of known media. However, early in an inves-
tigation—particularly in Child Sexual Abuse Material case-
s—investigators often face the critical challenge of determining the
source of media files, such as distinguishing downloaded material from
potentially self-produced content.

To address this, we introduce the first Media Source Similarity Hash,
by the example of JPEG files. Our hash leverages structural features,
making it computationally efficient and the first of its kind. The method
is adaptable to different kinds of sources and extensible, allowing the
incorporation of additional structural data. As a result, MSSH enables
investigators to assess the source of a media file with the same high
usability that conventional hash functions are known for. Notably,
MSSH achieves a AUC classification performance that is comparable to,
and often exceeds, established Source Camera Identification methods,
while avoiding their substantial resource demands.

Nonetheless, further research is needed to assess the method’s reli-
ability and differentiation granularity on real-world image sets, along
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with a detailed evaluation of its performance. Additionally, future work
should investigate the applicability of MSSH to other file formats and
examine whether incorporating additional structural features can
further improve differentiation granularity.
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