

Towards a standardized methodology and dataset for
evaluating LLM-based digital forensic timeline analysis

By:

Hudan Studiawan, Frank Breitinger, Mark Scanlon

From the proceedings of
The Digital Forensic Research Conference

DFRWS APAC 2025
Nov 10-12, 2025

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.
https://dfrws.org

DFRWS APAC 2025 - Selected Papers from the 5th Annual Digital Forensics Research Conference APAC

Towards a standardized methodology and dataset for evaluating LLM-based
digital forensic timeline analysis

Hudan Studiawan a,*, Frank Breitinger b, Mark Scanlon c

a Department of Informatics, Institut Teknologi Sepuluh Nopember, Indonesia
b Chair for Cybersecurity, University of Augsburg, Augsburg, Germany
c Forensics and Security Research Group, School of Computer Science, University College Dublin, Ireland

A R T I C L E I N F O

Keywords:
LLM evaluation
Forensic timeline analysis
Large language models
ChatGPT
log2timeline/plaso

A B S T R A C T

Large language models (LLMs) have widespread adoption in many domains, including digital forensics. While
prior research has largely centered on case studies and examples demonstrating how LLMs can assist forensic
investigations, deeper explorations remain limited, i.e., a standardized approach for precise performance eval
uations is lacking. Inspired by the NIST Computer Forensic Tool Testing Program, this paper proposes a stan
dardized methodology to quantitatively evaluate the application of LLMs for digital forensic tasks, specifically in
timeline analysis. The paper describes the components of the methodology, including the dataset, timeline
generation, and ground truth development. In addition, the paper recommends the use of BLEU and ROUGE
metrics for the quantitative evaluation of LLMs through case studies or tasks involving timeline analysis.
Experimental results using ChatGPT demonstrate that the proposed methodology can effectively evaluate LLM-
based forensic timeline analysis. Finally, we discuss the limitations of applying LLMs to forensic timeline
analysis.

1. Introduction

Forensic investigations often require the reconstruction of a timeline
of events and activities related to a digital device or users (Hargreaves
and Patterson, 2012). Such timelines can provide valuable insights into
various criminal activities, including malware, brute-force attacks, or
attacker post-exploitation activities. The timeline analysis process is
complex and time-consuming, particularly when dealing with large
amounts of digital data from multiple sources (Breitinger et al., 2025).
Traditional methods for timeline analysis are based on manual analysis,
which can be subjective and prone to errors, and can lead to missing
critical information (Studiawan et al., 2020).

The development of large language models (LLMs), such as OpenAI’s
GPT-3 (Brown et al., 2020) has opened up many possibilities, including
in digital forensic research. The model has been implemented in the
ChatGPT application and instantly gained many users (Buchholz, 2023).
LLMs performed remarkably in various natural language processing
tasks, including language generation and question-answering.
Leveraging these capabilities, natural language processing techniques
can be applied to digital data sources to analyze temporal information
and investigate timelines of events. Other studies also suggest that

artificial intelligence should provide more assistance in forensic inves
tigation (Hall et al., 2022; Studiawan et al., 2019).

An editorial article by Scanlon et al. (2023b) discusses the increasing
demand for expert digital forensic analysts and the potential use of LLMs
such as ChatGPT in this domain. They emphasize the importance of
maintaining the “AI-assisted investigation” and “human-in-the-loop”
mantras when using LLMs in digital forensics. The article suggests that
LLMs could lead to a new career specialization of digital forensic prompt
engineers. Wickramasekara et al. (2025) provides a comprehensive
overview of where LLMs may assist digital forensics.

Various studies explored the application of LLMs in digital forensics.
For instance, Scanlon et al. (2023a) assessed ChatGPT’s impact on tasks
such as understanding artifacts, evidence searching, and anomaly
detection. Although ChatGPT shows promise in several low-risk forensic
applications, concerns arise about evidence security and the model’s
occasional inaccuracies. Experts must exercise caution and have a deep
understanding of the subject to effectively use ChatGPT in forensic
scenarios. Furthermore, ChatGPT has been explored for digital evidence
investigations (Henseler and van Beek, 2023), virtual forensic assistants
(Dinis-Oliveira and Azevedo, 2023), and report writing (Michelet and
Breitinger, 2024). Based on our literature review, existing work in this

* Corresponding author.
E-mail addresses: hudan@its.ac.id (H. Studiawan), frank.breitinger@uni-a.de (F. Breitinger), mark.scanlon@ucd.ie (M. Scanlon).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2025.301982

Forensic Science International: Digital Investigation 54 (2025) 301982

Available online 3 November 2025
2666-2817/© 2025 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:hudan@its.ac.id
mailto:frank.breitinger@uni-a.de
mailto:mark.scanlon@ucd.ie
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301982
https://doi.org/10.1016/j.fsidi.2025.301982
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301982&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

area has not discussed standardized evaluation for LLM-based digital
investigation.

1.1. Contribution

The contributions of this paper are as follows:

1. This paper proposes a standardized methodology to quantitatively
evaluate the performance of LLMs in forensic timeline analysis tasks,
such as event summarization.

2. This study presents a case study of forensic timeline analysis using
LLM, e.g., ChatGPT.

3. We created forensic timeline datasets and ground truth from Win
dows 11 using Plaso and these are publicly available on Zenono1 for
research and education purposes.

The proposed methodology is not fully autonomous. Instead, it
functions as an LLM-assisted framework that depends on structured
prompts, external libraries, and curated inputs. The current imple
mentation emphasizes feasibility and standardization, rather than full
automation.

The remainder of the paper is organized as follows: Sec. 2 provides
related research. Sec. 3 describes the proposed approach for standard
methodology and quantitative evaluation for LLM-based timeline anal
ysis. Sec. 4 presents the case study that demonstrates the application of
the proposed method and a discussion of the results. Finally, Sec. 5
concludes this study.

2. Related work

2.1. Forensic tool testing and validation

To effectively validate digital forensic tools and methods, a proper
validation test plan should include laboratory use in the real world,
controlled internal tests based on scientific principles, and peer review.
Brunty (2023) provides an overview of the foundational scientific as
pects of forensic validations and describes the recommended steps to
conduct a forensically sound validation method.

The Computer Forensics Tool Testing (CFTT) Program at NIST aims
to establish a methodology for testing computer forensic tools, including
developing specifications, test procedures, and criteria (NIST, 2019).
The program helps to ensure the reliability of forensic software tools,
helping tool makers, users, and interested parties. CFTT methodology
involves breaking down forensic tasks into discrete functions and
creating test methodologies for each.

Hughes and Karabiyik (2020) discuss the need for rigorous valida
tion practices in digital forensics to establish accuracy and reliability.
They highlight challenges in developing statistical confidence for
forensic tools, such as the lack of reference data, validation methods,
and precise definitions of measurement. The authors propose a method
for generating data procedures, virtual machine-based validation, and
empirical models to guide the analysis.

Another study discusses the challenges of scientifically validating
digital forensic evidence (Arshad et al., 2018). The authors emphasize
the lack of standard datasets, formal testing procedures, and established
error rates. Horsman (2019) examines the challenges of ensuring reli
ability in digital forensic tools. The paper discusses the lack of stan
dardized validation methods and the issues of transparency from
software vendors. A survey of practitioners reveals widespread concerns
about tool reliability and a need for improved testing standards and
error rate reporting.

The related study on tool testing and validation shows a research gap
where we need a method to evaluate and validate LLMs as tools in digital

forensics. This paper aims to fulfill this need specifically for the task of
forensic timeline analysis.

2.2. Forensic timeline analysis

Forensic timeline analysis involves reconstructing the sequence of
events and activities related to a user or a system. Therefore, a variety of
artifacts, such as browsing history, log files, or file metadata, are being
parsed, and relevant information is extracted (Palmbach and Breitinger,
2020). The analysis of the timeline is then conducted using tools and
data visualization techniques (Inglot and Liu, 2014). If tools do not yield
expected results, a manual examination of data sources may be required.
However, this approach can be time-consuming, labor-intensive, and
prone to errors (Breitinger et al., 2025).

Timeline generation tools, such as log2timeline/Plaso, Autopsy, and
Magnet AXIOM, can automate the timeline analysis process to some
extent by extracting relevant temporal information from digital data
sources. However, these tools are limited by the quality of the extracted
data and may not be able to capture all relevant events and activities
from acquired artifacts (Studiawan et al., 2022a).

The approach by Hargreaves and Patterson (2012) can automatically
reconstruct or summarize high-level events from low-level events. Pre
vious techniques focus on extracting times from a disk image into a
timeline, which can produce several million “low-level” events (e.g., file
modification or Registry key update) for a single disk. In contrast, this
approach can automatically reconstruct high-level events (e.g.,
connection of a USB stick) from this set of low-level events. The
knowledge representation model presented in Chabot et al. (2014) al
lows a semantically rich representation of events related to the incident.
It includes the identification of correlated events that can highlight
valuable information for investigators.

The construction of a timeline array using time information from
web browser log files is one way to perform forensic timeline analysis
(Nalawade et al., 2016). Different data types of timelines can be con
structed from web browser artifacts such as web history, cache, cookies,
download history, and search term timelines. Furthermore, Bhandari
and Jusas (2020) propose an abstraction-based approach to reconstruct
a timeline of events and artifacts. The method enhances the relevance of
the timeline by reconstructing it into four levels of depth, from general
to specific, to reduce complexity and extract information.

The use of deep learning techniques, e.g., autoencoders, improves
anomaly detection in a forensic timeline by establishing a baseline for
normal activities (Studiawan and Sohel, 2021). Another tool, namely
Drone Timeline, constructs a timeline from a drone device and considers
time extracted not only from file metadata, but also from various source
artifacts of a drone or its control devices (Studiawan et al., 2022b).

2.3. LLMs for digital forensics

In the case of LLM application for digital forensics, Henseler and van
Beek (2023) discuss how ChatGPT can assist investigators by writing
structured queries, summarizing and evaluating large volumes of
communication data, and analyzing search results. The authors high
light that ChatGPT can transform natural language queries into struc
tured formats, summarize, and visualize chat logs to reveal key
relationships. The study notes limitations, such as hallucinations and the
need for expert guidance. Another work explores the potential of using
LLMs, e.g., ChatGPT and Llama, to assist in the generation of forensic
reports in digital investigations (Michelet and Breitinger, 2024). The
authors assess the ability of LLMs to automate parts of the report writing
process, focusing on sections such as the introduction, items received,
methodology, and results. They found that while ChatGPT performs well
and generates relatively accurate drafts, Llama struggles with accuracy
and completeness. The results show that LLM outputs still require
proofreading and corrections.

Dinis-Oliveira and Azevedo (2023) also explore the potential and 1 https://zenodo.org/records/15493424.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

2

https://zenodo.org/records/15493424

challenges of using ChatGPT in forensic sciences. The authors highlight
the advantages of ChatGPT, such as assisting forensic professionals in
drafting reports, analyzing forensic data, performing literature searches,
and serving as a virtual forensic assistant. However, the paper also raises
concerns about the ethical and legal challenges associated with using AI
in this field, such as credibility issues, inaccuracies, plagiarism, and the
risk of overreliance on AI in judicial decisions.

Finally, Scanlon et al. (2023a) describes the potential applications of
ChatGPT and LLMs in digital forensics. The authors assess how ChatGPT
can assist in various forensic tasks, such as identifying digital artifacts,
generating code for forensic activities, and detecting anomalies in logs.
LLMs present challenges, including issues with hallucinations, inaccur
acies, and limitations when dealing with sensitive data. The study shows
that ChatGPT can be a useful tool for investigators when used with
caution, but human expertise remains important to ensure reliability in
forensic investigations.

The application of LLMs in digital forensics has the potential to
enhance investigators’ capabilities to handle digital evidence and help
solve cases with greater accuracy. However, it is important to remember
that LLMs are not a replacement for human expertise, but rather a
valuable tool that complements and assists forensic professionals.
Therefore, we need a methodology and a dataset to evaluate LLMs as a
forensic tool, particularly for timeline analysis, as discussed in this
paper.

3. Proposed standardized methodology

To assess the performance of an LLM for timeline analysis, several
aspects are important as depicted in Fig. 1. Note that we are not
intending to replace forensic tools, but rather to assess the LLM’s ability
to follow structured instructions in a forensic context. We must define
one or more tasks (Sec. 3.2) that we expect the LLM to perform. This
involves designing a prompt to interact with the system, such as sum
marizing events into high-level insights or identifying indicators of
compromise. In addition, a ground-truth dataset is needed that can be
used to assess the outcome of an LLM (Sec. 3.3). Lastly, evaluation
metrics are required that allow us to compare the ground truth with LLM
output (Sec. 3.1). While starting with the tasks may seem natural, we
recommend beginning with the evaluation metric, as it defines the
required output, which in turn influences the task and prompt. This
proposed methodology is designed to be flexible so that additional tasks
and evaluation metrics can be incorporated in the future.

3.1. Evaluation metrics

We decided to use BLEU (Bilingual Evaluation Understudy) and
ROUGE (Recall-Oriented Understudy for Gisting Evaluation). They were
selected due to their widespread acceptance and established method
ologies in machine translation and summarization. These metrics pro
vide a way to quantify the quality of generated text and allow for
comparisons across different models and tasks.

3.1.1. BLEU – Bilingual Evaluation Understudy
BLEU assesses the quality of machine-generated outputs by

comparing them to human-curated reference texts (ground truth)
(Papineni et al., 2002). The score focuses on how accurately and
completely the machine or LLM has replicated the human ground truth.
It is calculated as follows:

BLEU = BP × exp

(
∑N

n=1
wnlogpn

)

(1)

where pn is the precision for each n-gram, wn is the weight for each n-
gram, and BP is the brevity penalty (BP). BP is designed to penalize
generated text that is too short. The idea is that shorter text might
artificially increase precision, but may not capture the full meaning of
the original text. The brevity penalty is calculated as:

BP =

{
1 if ​ c > r
e(1− r/c) if ​ c ≤ r (2)

where c is the length of the candidate (machine) translation and r is the
reference length.

3.1.2. ROUGE – Recall-Oriented Understudy for Gisting Evaluation
ROUGE is a collection of metrics designed to evaluate automatic

summarization and machine translation systems (Lin, 2004). It focuses
on the quality of the output generated by these systems. In our case, the
essence of ROUGE is to provide a quantitative measurement of the
quality of an automatically generated text from an LLM by comparing it
with reference data or ground truth created by humans.

ROUGE includes several metrics, each serving a unique purpose in
evaluating text. Two of the key metrics are ROUGE-N and ROUGE-L.
ROUGE-N assesses the overlap of n-grams between the machine-
generated text and the reference, where n is 1 and 2 in our experi
ments. ROUGE-L focuses on the longest common subsequence (LCS)
between the LLM-generated n and the reference.

ROUGE-N is based on the n-gram overlap between the machine-
generated text and the reference as follows:

ROUGE − N =

∑
s∈{Reference}

∑
n− gram∈sCountmatch(n − gram)

∑
s∈{Reference}

∑
n− gram∈sCount(n − gram)

(3)

where Countmatch(n-gram) is the count of n-grams in the machine-
generated text that matches the ground truth. Count(n-gram) is the
count of n-grams in the ground truth. On the other hand, ROUGE-L
evaluates the LCS between the machine-generated text and the refer
ence as follows:

ROUGE − L =

∑
s∈{Reference}LCS(s,Machine)
∑

s∈{Reference}Length(s)
(4)

where LCS(s, Machine) refers to the length of the LCS between the
system-generated text and the reference s. Finally, Length(s) is the
length of the reference text. For both, BLEU and ROUGE, the higher the
score, the better. We implemented both metrics using Hugging Face
evaluate library (Hugging Face, 2024a,b). Note that we evaluate the
text from the LLM’s answer that is generated in a downloadable file, not
from the text-based responses.

3.1.3. Considerations
Achieving high BLEU and ROUGE scores requires a significant

overlap between the LLM’s output and our ground truth data, where
‘overlap’ means identical wording. These metrics do not assess meaning
but only textual similarity. For example, the sentences ‘He is 25’ and ‘He
was born in 2000’ would yield low scores despite conveying the same
information. To mitigate hallucinations, we must ensure that the LLM
returns data in a specific format, which we also use in our ground truth.
To achieve this, we designed largely deterministic tasks (solvable by
traditional software) and provided examples within the prompt to guide
the LLM. In the future, we plan to explore fine-tuning an LLM, which
could enhance the user experience. However, this study focuses on
feasibility, and fine-tuning is beyond its scope.

Fig. 1. The proposed methodology for quantitative evaluation of LLM-based
timeline analysis.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

3

3.2. Common tasks for forensic timeline analysis

Given the considerations and to quantitatively evaluate the capa
bilities of an LLM, we selected the following four tasks:

1. Running grep for specific terms, i.e., assess how well the LLM
handles a straightforward task such as running grep.

2. Rule-based anomaly detection, i.e., looking for patterns that could
also be identified using rules, such as multiple failed login attempts,
could mean a brute-force attack.

3. Event summarization, i.e., combining several low-level events into a
more meaningful event, such as if events A and B are found (low-
level), this means a new user was created (meaningful event).

4. Exploratory data analysis.

Tasks have been carefully chosen to be realistic and deterministic
(besides task four), but also allow for validation, e.g., for running grep,
we can develop our own grep expression. Note that only the first three
tasks require a ground truth. With respect to the prompts, we follow the
prompt style of Scanlon et al. (2023b) and the OpenAI prompt engi
neering guides (OpenAI, 2024b). More details are provided in the sub
sequent sections.

3.2.1. Prompts for running grep of specific terms
This task simulates a grep command to ensure that it can handle

basic tasks without making critical errors. The example prompts are
shown below:

1. “I am a forensic investigator. I need to find these terms: \b[A-Za-
z0-9_\\:.]+\.exe\b in the given CSV file to get all entries related
to executable files (.exe). The CSV file is a forensic timeline gener
ated from the log2timeline/Plaso tool.”

2. “For your references, the grep command is: grep -E “\b[A-Za-z0-
9_\\:.]+\.exe\b” timeline.csv.”

3. “Do not include the first line of the file containing column names.
Include all columns in the results, not only the message column.
Export the results into plain text.”

The prompt asks an LLM to replicate the functionality of a grep
command, which is commonly used to search for patterns in the text.
The goal is to search the CSV file for all entries that contain executable
files with the.exe extension. In total, five terms need to be found, the
system is expected to identify these entries and save the results in plain
text format. In addition, we ask the system to exclude the header row
and include all column values in the results. This task checks whether
the LLM can effectively search through the forensic timeline using a
regular expression to filter out relevant entries.

3.2.2. Prompts for rule-based anomaly detection
The goal of this task is to enable more natural queries against the

timeline. This simulates providing a timeline and then asking about
specific aspects, such as ‘Have there been failed login attempts?’ or ‘Was
registry.exe executed?’ Rather than posing these queries one by one, we
opted to include multiple elements of interest in a file (keyword list),
which the user uploads. This approach effectively cross-references a
keyword list with the CSV-based timeline.

Specifically, we provide the following prompt: ‘I am a forensic
investigator. Read this list of keywords to find suspicious events.’ The
user uploads a keyword list, allowing the system to focus on specific
patterns or terms that may indicate anomalous or potentially adversarial
behavior within the timeline.

As we require the output in a specific format, the uploaded file is in
reality a JSON file which includes elements of the prompt (event) as
well as what to look for (keyword). This helps the LLM to detect sus
picious events in a timeline CSV file. Note, the keyword is extracted from
the message column from the timeline data, i.e., it exists in the timeline

CSV. The event is our creation.

The LLM is expected to return a JSON-formatted response that in
cludes the timestamp of the detected event (date time), the name of the
matched event (event), the keyword that triggered the match (keyword),
and the full log message (message) from the timeline. This structured
format facilitates automated comparison with ground truth data and
supports downstream forensic analysis. This format also maintains
consistency and interpretability to allow for an accurate evaluation
using BLEU and ROUGE. An example output structure is shown below:

3.2.3. Prompts for event summarization
A user action (high-level event) causes many entries in a timeline

(low-level events). This task looks at the possibility of summarizing low-
level tasks to high-level tasks. To solve this task without fine-tuning, we
provide a code (a Python library) that can be used (executed) by the
LLM.

The interaction between the user and ChatGPT is outlined in Fig. A.1.
We provide a persona, such as stating a role (e.g., forensic investigator),
including detailed information about the task (e.g., event type or data
format), and offer additional tools to improve accuracy. These steps help
the system manage responses more accurately. The prompt uses a space
delimiter to provide suitable spacing to separate key pieces of infor
mation. In the third-to-last box (“Specify steps to run an event summa
rization”), the user outlines the exact procedure for summarizing events.
This involves uploading the CSV file, selecting the type of event (such as
“last-shutdown”), and executing the summarization using the given li
braries. The expected return value for this task is as follows:

3.2.4. Prompts for exploratory data analysis
This task analyzes exploratory data analysis (EDA), which allows

gaining valuable insights into the dataset as a whole. This task is a
qualitative module and is not part of the core quantitative benchmark.
For instance, EDA may help investigators grasp the structure, distribu
tion, and key features. It may also enable the identification of patterns
and relationships between events, such as how user behaviors might be
interconnected. In addition, it facilitates the visualization of temporal
data, which is an important aspect of timeline analysis. Using diagrams

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

4

such as histograms and heatmaps, investigators can acquire a clearer
understanding of trends and cycles in the data. These visualizations
pinpoint periods of interest and aid in the identification of suspicious
activities for further investigation.

The example EDA prompt is: “Explore patterns of event occurrences
based on the datetime field per second (e.g., busiest times, significant
gaps), use a bar chart. Write the hour:minute:second in the x axis”. An
LLM will generate Python code to create the bar chart, and we can
download the chart as a PNG file.

In this proposed standardized LLM evaluation, event summarization
comprises two scenarios: summarizing a single event or multiple events.
Summarizing a single event means the method extracts one specific
event from the provided timeline, such as a Google search (full list see
Sec. 3.3.5). Consequently, multiple events mean the LLM is tasked with
summarizing all defined events.

3.3. Ground truth

To assess the quality of output (LLM response), we require a ground
truth dataset, i.e., documentation of the underlying dataset (Göbel et al.,
2023; Breitinger and Jotterand, 2023). A peculiarity in our scenario is
that we need the ground truth in a specific format so that it is compa
rable with the output of an LLM (automated). Specifically, there is no
easy way to compare a disk image or its corresponding timeline against
the LLM output. Consequently, the underlying dataset must be con
verted into a text-based format (ground truth), allowing an automated
comparison with the LLM output.

To accomplish this, we first must create a dataset (Sec. 3.3.1) where
the creation process is documented or recorded. Next, we generate a
timeline of the disk image (Sec. 3.3.2) which serves as an input for the
LLM. Lastly, using the documentation and timeline, we manually create
the expected outcome which represents our ground truth (Sec. 3.3.5 to
3.3.3).

3.3.1. Scenario and dataset generation
The first step was to create a dataset, as no appropriate dataset was

available. The procedure is illustrated in Fig. 2, and the dataset is shared
through the Zenodo. Our test bed was a Windows 11 machine within a
virtual environment simulating regular computer usage. All activities
were recorded using screen capture (video) and are documented (writ
ten notes). We emphasize that this dataset was deliberately designed to
be synthetic and single-user to serve as a controlled feasibility testbed.
The goal was to validate the operation and reliability of the proposed
standardized evaluation methodology using a timeline with clear
ground truth and minimal ambiguity.

The scenario follows a sequence of opening applications, down
loading software, and accessing websites. The user begins by opening
the Edge browser and then navigates to Bing. They perform a search
query for “Mozilla Firefox download” on Bing and visit Mozilla’s official
website to download the Firefox browser. After that, the user opens the
File Explorer to navigate the downloaded installer. The user runs the
Firefox installer and opens the newly installed Firefox browser. After
ward, they navigate to Google, perform a search related to SQL injection,
and open a tutorial on the W3Schools website. The session ends with a
system shutdown, indicating that the user has completed all activities.

There is no strict rule determining the number of ground truth entries
used. The number provides sufficient variation to evaluate the model’s
ability to run different types of tasks while keeping the dataset size
manageable for manual validation.

3.3.2. Timeline generation
To generate the timeline, we ran log2timeline/Plaso (Metz et al.,

2024) on the vmdk file. The tool (Plaso) analyzes all known artifacts2

and compiles them into a single unified timeline. By default, the tool
processes all partitions from a vmdk file and generates a Plaso storage
file (*.plaso, a database file) containing the forensic timeline. To
convert plaso file to a CSV timeline file, we ran psort.

3.3.3. Ground truth for task 1: running grep for specific terms
Building the ground truth requires manually running grep on the

dataset and taking note of the output. This was done for the following
five keywords:

1. RegisteredApplications: obtaining events related to registered
applications in the Windows registry.

2. (OneDrive OneDrive\.exe): finding events related to Microsoft
OneDrive application.

3. \b[A-Za-z0-9_\\:.]+\.exe\b: looking for all entries related to
executable files (.exe).

4. 4616 /: finding Windows event ID 4616, which is related to system
time change without regex.

5. \[4616 / 0x1208\].*Microsoft-Windows-Security
-Auditing.*svchost.exe: finding Windows event ID 4616 with
regex.

The command to generate this ground truth is grep -E keyword
timeline.csv, where -E indicates that extended regular expressions
are being used with the grep command.

3.3.4. Ground truth for task 2: rule-based anomaly detection
The second ground truth requires matching keywords (or phrases)

with events. We create the keywords as a rule-based approach by first
checking the date and time of the event we performed earlier in the
Windows test-bed. Next, we manually look for related entries in the
timeline CSV file. Once we find the relevant entry, such as registry
launch, we extract the keywords linked to the event. Finally, we format
these keywords into a JSON format as shown below:

In the evaluation, we can ask questions in natural language because
the event and the keyword the LLM searches for are already defined.
Unlike an event summarization task, no script or library is provided, and
the LLM handles the matching on its own. These keywords collected are
a useful technique to identify suspicious events in the forensic timeline.
There are seven keywords in total, and the full list of keywords in JSON
format is available on the Zenodo.

3.3.5. Ground truth for task 3: event summarization
Event summarization aims at combining low-level events to obtain

high-level events as proposed by Hargreaves and Patterson (2012).
Forming the ground truth was accomplished by implementing the
dftpl tool3 as described by the authors. Given a CSV timeline, our
prototype can extract certain high-level events and return a JSON file.

Fig. 2. Building ground truth for LLM evaluation.

2 Plaso consists of various parsers for different artifacts. Artifacts unknown to
Plaso are ignored.

3 https://github.com/studiawan/dftpl.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

5

https://github.com/studiawan/dftpl

There are eight predefined events, grouped into three categories:

1. Web: Google search, Bing search, and web visit
2. Windows: last shutdown, process creation, and program opened
3. User activity: file download, and recent file access

We chose JSON because it is human-readable, making it easier for
investigators to interpret and manually validate results. JSON also fa
cilitates straightforward comparison with evaluation metrics due to its
structured nature for efficient parsing. Moreover, its compatibility with
various programming languages and tools further supports automation
and quantitative evaluation in forensic analysis workflows.

To create the high-level events, we ran the dftpl command as fol
lows: dftpl -i timeline-input.csv -o summarization-

output.json -t last-shutdown, where -i is a Plaso CSV file, -o
is the output (in JSON), and -t specifies the event of interest. The -t
option can be omitted to summarize multiple events. The list of high-
level events was then manually validated to ensure it was correct.

A sample ground truth in JSON format is provided below:

The sample includes the following high-level activities:

1. id: A unique identifier for the event, which is a number that dif
ferentiates this event from others.

2. date_time_min: The earliest possible timestamp for when the event
could have occurred.

3. date_time_max: The latest possible timestamp for when the event
could have occurred.

4. evidence_source: Refers to the Plaso message that provides infor
mation about the event.

5. type: The nature of the event, such as Google Search, File
Download, or any other high-level event type.

6. description: A human-readable explanation or summary of the
event.

7. category: A higher-level classification or tag for filtering or orga
nizing events.

8. plugin: Identifies the Plaso plugin used to parse the source file
from which the event was extracted.

9. files: Refers to the file(s) related to the event, such as the log file,
binary file, or any other data source.

10. keys: Stores additional key–value pairs related to the event, such
as specific attributes or metadata.

11. supporting: Stores a list of five low-level events before and after
the main event for context.

12. trigger: Refers to the reasoning artifact or piece of evidence that
caused the event to be recognized.

4. Experimental results and analyses

This section details the experimental settings, along with the anal
ysis, results, and discussion of our case study.

4.1. Experimental settings

We used the version of log2timeline/Plaso, which was the Docker
image version 20230717. The target operating system was Microsoft
Windows 11 Enterprise. The OS was sourced from the Microsoft
Developer Network, specifically the evaluation virtual machine (VM)
version 2311 (Microsoft Developer, 2024). For virtualization, we opted
for VMWare Fusion 13.5.0. For the LLM, we selected ChatGPT-4o, one of
the most advanced models available at the time of writing this paper.
This study focuses on ChatGPT-4o to demonstrate the feasibility and
structure of a standardized evaluation methodology, rather than to
benchmark performance across multiple LLMs. To facilitate container
ized environments, we use Docker Desktop version 4.22.1 (118664).

The extracted full timeline is too large to be handled by ChatGPT due
to token limitations. Consequently, we only provided ChatGPT with
about 2000 lines of Plaso entries as a timeline of interest. We have
experimented with different sizes (e.g., 1000, 2000, 3000 lines) and
found 2000 lines to be a manageable amount that balances input size
and processing efficiency. We understand that real-world forensic
timelines often span millions of lines. In practice, deployment would
require preprocessing techniques, such as time-window-based segmen
tation, event-type filtering, or sliding windows, to divide large timelines
into manageable subunits for LLM processing.

4.2. Timeline analysis with ChatGPT

The Advanced Data Analysis feature of ChatGPT, previously called
Code Interpreter, is now integrated into ChatGPT versions 4 and 4o
(OpenAI, 2024a). This feature allows users to analyze data and interpret
code directly within the platform. This enhances the user experience by
supporting data uploads, where users can write, test, and execute code
seamlessly. The supported file formats include text, image files, PDFs,
and Word documents, code or other data files, as well as audio and
video. In this study, we used the CSV file generated by Plaso. Once the
data is uploaded, we can use the prompts to instruct ChatGPT to read or
analyze the timeline.

We employ ChatGPT in two scenarios: with and without additional
knowledge. In the first scenario, we provided ChatGPT with specific
information related to the task, such as a library for event summariza
tion (Sec. 3.3.5) or a list of keywords to detect suspicious activities (Sec.
3.3.4). In the latter scenario, we did not provide any additional infor
mation and relied solely on ChatGPT’s existing language model to
analyze the timeline.

4.3. Results and analysis

To quantitatively evaluate ChatGPT for forensic timeline analysis,
we developed four tasks, including ground-truth data. For example, the
event summarization task has 14 event types, the rule-based anomaly
detection task has seven rules, and the search task for specific terms has
five keywords. Note that the exploratory data analysis task does not have
evaluation metrics because there is no ground truth data for this task.

A sample result of the given prompts and the ChatGPT answers is
depicted in Fig. A.1. The evaluation results for the used datasets are
shown in Table 1, where the metric values represent the mean values for
each task.

4.3.1. Results of running grep for specific terms
It is important to note that when asked to search for specific terms,

ChatGPT does not run the grep command. Instead, it generates Python
code to perform the search. The results of this task are shown in Table 1.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

6

The results indicate that ChatGPT performs this task effectively, espe
cially when provided with additional knowledge, i.e., the corresponding
grep command. Without additional knowledge, the BLEU score is
0.847, and both ROUGE-1 and ROUGE-L are 1.000. The results suggest
that the system accurately identifies specific terms most of the time, but
with minor variations that affect the BLEU score. With additional
knowledge, the BLEU, ROUGE-1, and ROUGE-L scores all reach 1.000,
and they demonstrate that the model can perfectly match the specific
terms when it has more context or knowledge about the data. These
findings imply that the performance of ChatGPT in conducting targeted
searches is enhanced when it is given relevant prior information.
Therefore, it produces consistent and fully accurate results.

ChatGPT can detect all entries correctly when provided with addi
tional knowledge or information. However, the grep output from
ChatGPT does not contain commas, whereas the ground truth does, as
the timeline is a comma-separated file. In addition, the model’s output
has extra spaces that are not present in the original data. Furthermore, it
gives inconsistent output when no additional knowledge is provided. In
several cases, it only produces incomplete results, displaying only the
“message” column without including all other columns.

4.3.2. Results of rule-based anomaly detection
As mentioned in Sec. 4.2, there are two scenarios: one with addi

tional knowledge and one without. In the case without additional
knowledge, the prompt is slightly different because it does not include
instructions to read the uploaded keywords file. In this task, we can
instruct ChatGPT to format the answers in a specific format, such as
JSON. The prompt would be “Format your answer using this JSON
format:” and we can give an example format as follows:

Moreover, we instruct the system to export all results to a down
loadable file, with “I need all entries of suspicious entries. Export to a
JSON file for all of the results”.

In the task of rule-based anomaly detection without additional
knowledge, the performance was poor: The BLEU score is 0.147, and the
ROUGE scores range from 0.141 to 0.192, indicating that the model’s
output is significantly different from the expected output. The keywords

generated by ChatGPT are as follows: ‘delete’, ‘clear’, ‘wipe’, ‘remove’,
‘malware’, and ‘unauthorized’. These low scores reflect minimal overlap
between the system’s output and the expected results, both in terms of
individual words and word sequences. However, it is important to note
that these evaluation metrics are based on word matching and do not
account for semantic similarity. Although the wording used by ChatGPT
may differ from the predefined ground truth, the underlying interpre
tation or intent of the result may still be forensically relevant or correct.

In contrast, the results improve when additional knowledge is pro
vided. Specifically, the BLEU score rises to 0.945, and the ROUGE scores
increase to nearly perfect values (ranging from 0.996 to 0.997). This
means that the generated outputs closely match the expected results.
This highlights the importance of providing context or specialized
knowledge to improve performance in more complex forensic analysis
tasks.

Even with additional information or knowledge, ChatGPT can still
make mistakes. The errors are mainly due to differences in how char
acters are escaped. For example, the ground truth uses two backslashes
to escape regular expressions (regex), while ChatGPT’s output uses four
backslashes to escape the “\” character.

4.3.3. Results of event summarization
Summarizing a single event means the method extracts one specific

event from the provided timeline, such as a Google search (see full list in
Sec. 3.3.5). Consequently, multiple events mean the LLM is tasked with
summarizing all defined events.

Our research indicates that ChatGPT uses a virtual environment to
run Python code when responding to user prompts. This means we can
install the dftpl Python wheel installer within that virtual environ
ment. Note that in the “with additional knowledge” setting, the LLM is
instructed to use the dftpl library to perform the summarization. This
means the LLM is not independently interpreting the event semantics,
but rather acting as an automation agent that follows structured in
structions to run a pre-existing summarization tool. This setup allows us
to evaluate the model’s ability to accurately execute forensic tools and
follow code-level prompts, rather than to perform semantic reasoning or
event abstraction on its own.

To respond to the user prompts, ChatGPT generates Python code as
shown in Fig. A.1. For example, if the parser example is designed to work
for all supported events, ChatGPT can summarize a specific event, such
as the last shutdown event on Windows. One can click the ‘[>_]’-button
to view the generated Python source code. Thus, experienced in
vestigators may validate the code and, with it, the answer. Finally, the
results can be downloaded in a JSON format, and this file will be
quantitatively evaluated based on the ground truth from Sec. 3.3.5.

The result of event summarization on single and multiple events
without additional knowledge shows a low performance, with a BLEU
score of 0.077, indicating limited precision in generating a summari
zation that closely matches the expected events. The ROUGE-1 score of
0.192 suggests that around 19.2 % of single words in the generated
output matched the reference, while the ROUGE-2 score of 0.129 shows
even lower overlap in bigrams (two-word sequences). The ROUGE-L
score of 0.136 reflects a moderate match in terms of the longest
sequence of matching words. However, we conclude that without
additional knowledge, the system cannot accurately summarize events.

In contrast, the result for a single event with additional knowledge, i.
e., using the dftpl library, shows near-perfect performance, with a
BLEU score of 0.999 and ROUGE-1, ROUGE-2, and ROUGE-L scores, all
at 1.000. This indicates that the ChatGPT output almost exactly matched
the reference in terms of precision, word overlap, and sequence struc
ture. The high scores suggest that, with additional knowledge, the sys
tem was able to mimic the expected results. The reason is that we gave a
Python library that can summarize events based on the method
described in Hargreaves and Patterson (2012) to ChatGPT (Fig. A.1).
Although we did not explicitly instruct ChatGPT to follow a particular
order, the ground truth output produced by the dftpl library is

Table 1
Evaluation results of various tasks given to ChatGPT for forensic timeline
analysis.

Task BLEU ROUGE-
1

ROUGE-
2

ROUGE-
L

Mean

Without additional knowledge
Event summarization

(single)
0.077 0.192 0.129 0.136 0.134

Event summarization
(multiple)

0.001 0.171 0.120 0.132 0.106

Rule-based anomaly
detection

0.147 0.144 0.075 0.141 0.127

Run grep for specific
terms

0.847 1.000 1.000 1.000 0.962

With additional knowledge
Event summarization

(single)
0.999 1.000 1.000 1.000 1.000

Event summarization
(multiple)

0.743 0.786 0.786 0.786 0.775

Rule-based anomaly
detection

0.945 0.997 0.996 0.997 0.984

Run grep for specific
terms

0.847 1.000 1.000 1.000 0.962

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

7

chronologically ordered by timestamp. For the multiple event summa
rization task, the evaluation scores were lower because ChatGPT
generated the correct events but in a different order than the ground
truth. The beginning of the file displays timestamps that increase or
remain the same, indicating a mostly sorted order. Similarly, the end of
the file follows a chronological pattern. However, the middle sections
break this order, with some events appearing earlier than preceding
ones. This discrepancy in ordering affected the BLEU and ROUGE scores,
which are sensitive to the sequence of words or structures. Importantly,
while the order differed, the extracted content was sometimes seman
tically correct and forensically valid. Future work may include imple
menting order-invariant evaluation metrics or normalizing the output
order before comparison to address this issue.

4.3.4. Results of exploratory data analysis
This section aims to explore how ChatGPT can assist forensic in

vestigators in identifying patterns or anomalies within large timelines
through exploratory data analysis (EDA). Specifically, we evaluate the
model’s ability to generate useful visualizations that support investiga
tive tasks. The example of a generated bar chart is shown in Fig. 3. The
chart shows the number of event occurrences per second within a spe
cific time range, where each bar corresponds to a second in the format:
hour:minute:second. The data reveal variability in event activity, with
most seconds seeing between 50 and 150 events. However, there is a
noticeable spike at 00:45:55, where the event count exceeds 250, which
indicates a sudden surge in activity during that particular second. The
concentration of events at specific seconds may point to important ac
tions or incidents that require further investigation, especially during
periods of relatively low activity that are punctuated by intense bursts
(Studiawan and Sohel, 2021).

Another chart generated by ChatGPT using Python is a heatmap
shown in Fig. 4. The heatmap illustrates the flow of the event sequence,
showing the transitions between various types of events based on their
timestamps. The rows represent the current event types, while the col
umns represent the next event types, with each cell indicating how often
a specific event type is followed by another. The color intensity, as
shown by the legend, reflects the frequency of these transitions, with
darker shades showing more frequent sequences. The heatmap high
lights common flows in the event timeline and provides valuable insight
into which events tend to trigger others. Therefore, it can help to un
derstand the sequences of events within the forensic timeline analysis.

Key patterns can be observed in this visualization. For example,
‘Metadata Modification Time’ transitions into itself 1079 times, sug
gesting that it frequently repeats or is followed by itself in the sequence
of events. There are also noticeable transitions from ‘Creation Time’ to
‘Metadata Modification Time’ (118 times) and from ‘Last Access Time’
to ‘Metadata Modification Time’ (98 times).

The heatmap reveals typical patterns in the event timeline by
showing how certain events frequently follow others. This visualization
helps investigators better understand the sequence and relationship
between events during forensic timeline analysis. In short, EDA can be

done by a human investigator, but using ChatGPT can help speed up this
manual work.

4.4. Discussion

4.4.1. Overall quantitative evaluation
Without additional knowledge, tasks such as ‘Event summarization

(single)’ and ‘rule-based anomaly detection’ have mean scores of 0.134
and 0.127, respectively, indicating limited accuracy. However, ‘run grep
for specific terms’ achieves a much higher mean score of 0.962, sug
gesting that ChatGPT can handle searches for specific terms relatively
well, even without prior information. With additional knowledge, mean
scores improve across all tasks. Single event summarization tasks ach
ieved a perfect mean score of 1.000, while the multiple event one ob
tained 0.775. The results demonstrate inconsistent accuracy scores, even
when provided with relevant context. The mean score for the rule-based
anomaly detection task also increases to 0.984. The consistent mean
score of 0.962 for “run grep for specific terms” shows that the task is
already handled effectively regardless of additional knowledge. In the
grep task, providing prior information does not lead to further
improvement. Future work will incorporate secondary human expert
review of LLM outputs that differ lexically but appear plausible.

4.4.2. API-based and BERTScore implementations
Our experiments were conducted using the ChatGPT web interface to

evaluate feasibility and task alignment under realistic investigator in
teractions. However, forensic analysts aiming to operationalize or scale
these evaluations would rely more on API-based implementations. We
acknowledge that BLEU and ROUGE are limited in capturing semantic
equivalence, particularly in forensic tasks involving reasoning and
inference. Their use in this study was motivated by the need for an
initial, automated, and deterministic evaluation protocol. To address
their limitations, we are incorporating semantic-aware metrics such as
BERTScore (Zhang et al., 2020), which better account for meaning
despite syntactic variation. API-based and BERTScore implementations
are provided as work in progress on a GitHub repository.4

4.4.3. CSV file size of a forensic timeline
While ChatGPT is advertised as being capable of handling CSV files

Fig. 3. A bar chart generated by ChatGPT in an exploratory data analysis task.

Fig. 4. A heatmap generated by ChatGPT for event sequence flow.

4 https://github.com/studiawan/llm-forensic-timeline.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

8

https://github.com/studiawan/llm-forensic-timeline

up to 50 MB in size,5 we found that in practice, it struggles to process
files of that size. Throughout our experiments, we observed that
ChatGPT could successfully analyze smaller CSV files, but when
attempting to work with larger files (10 MB or more), the model often
encountered errors or failed to provide results. This discrepancy suggests
that, despite the claims in the documentation, there are practical limi
tations when analyzing larger datasets. LLMs are limited by input size
constraints and context window lengths, which restrict their ability to
reason over extensive forensic timelines without segmenting the data or
relying on iterative processing techniques.

5. Conclusion and future work

The proposed methodology and dataset have demonstrated their
potential for quantitative evaluation of timeline analysis using LLMs.
Using the proposed standardized methodology and dataset, researchers
can apply and expand the test and evaluation of LLM-based forensic
timeline analysis. By employing the advantages of natural language
processing on LLMs, e.g., ChatGPT, the presented case studies show that
it can assist in analyzing events and temporal information from a
forensic timeline. It also provides valuable information for forensic

investigators, particularly in the task of exploratory data analysis.
However, based on the quantitative evaluation, ChatGPT performs
worse than a rule-based approach or a regular expression-based
approach accompanied by a human investigator.

For future work, we plan to add more datasets and tasks, such as real-
world malware scenarios. We also plan to explore the use of other
commercial LLM services, such as Google Gemini and Claude, to eval
uate the robustness of our approach. In addition, to address concerns
about the confidentiality of digital evidence, we can deploy open-source
LLMs, such as LLaMA (Touvron et al., 2023) and Mixtral (Jiang et al.,
2024) on a local device as shown by Sharma et al. (2025). By keeping the
forensic timeline on the local computer, we aim to avoid the need to
upload sensitive data to cloud-based LLM services, thus ensuring the
privacy of the investigation.

Acknowledgments

We would like to thank Christopher Hargreaves for his valuable
comments and feedback. This research is supported by the Institut
Teknologi Sepuluh Nopember, Indonesia through the ITS Research
Funding scheme.

Appendix A. A conversation sample between an investigator and ChatGPT

5 https://help.openai.com/en/articles/8555545-file-uploads-faq.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

9

https://help.openai.com/en/articles/8555545-file-uploads-faq

Fig. A.1. Example of ChatGPT interaction for summarizing high-level events from a forensic timeline.

References

Arshad, H., Jantan, A.B., Abiodun, O.I., 2018. Digital forensics: review of issues in
scientific validation of digital evidence. J. Informat. Process. Syst. 14, 346–376.

Bhandari, S., Jusas, V., 2020. An abstraction based approach for reconstruction of
timeline in digital forensics. Symmetry 12, 104.

Breitinger, F., Jotterand, A., 2023. Sharing datasets for digital forensic: a novel taxonomy
and legal concerns. Forensic Sci. Int.: Digit. Invest. 45, 301562.

Breitinger, F., Studiawan, H., Hargreaves, C., 2025. Sok: timeline based event
reconstruction for digital forensics: terminology, methodology, and current
challenges. URL. https://arxiv.org/abs/2504.18131,arXiv:2504.18131.

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

10

http://refhub.elsevier.com/S2666-2817(25)00122-2/sref1
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref1
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref2
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref2
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref3
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref3
https://arxiv.org/abs/2504.18131,arXiv:2504.18131

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot learners.
Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Brunty, J., 2023. Validation of Forensic Tools and Methods: a Primer for the Digital
Forensics Examiner, 5. Wiley Interdisciplinary Reviews: Forensic Science, e1474.

Buchholz, K., 2023. One million users: threads shoots past one million user mark at
lightning speed. https://www.statista.com/chart/29174/time-to-one-million-users/.

Chabot, Y., Bertaux, A., Nicolle, C., Kechadi, M.T., 2014. A complete formalized
knowledge representation model for advanced digital forensics timeline analysis.
Digit. Invest. 11, S95–S105.

Dinis-Oliveira, R.J., Azevedo, R.M., 2023. ChatGPT in forensic sciences: a new Pandora’s
box with advantages and challenges to pay attention. Forens. Sci. Res. 8, 275–279.

Göbel, T., Baier, H., Breitinger, F., 2023. Data for digital forensics: why a discussion on
“how realistic is synthetic data” is dispensable. Digit. Threat.: Res. Pract. 4, 1–18.

Hall, S.W., Sakzad, A., Choo, K.K.R., 2022. Explainable Artificial Intelligence for Digital
Forensics, 4. Wiley Interdisciplinary Reviews: Forensic Science, e1434.

Hargreaves, C., Patterson, J., 2012. An automated timeline reconstruction approach for
digital forensic investigations. Digit. Invest. 9 (Suppl. m), S69–S79.

Henseler, H., van Beek, H., 2023. ChatGPT as a copilot for investigating digital evidence.
In: Proceedings of the Third International Workshop on Artificial Intelligence and
Intelligent Assistance for Legal Professionals in the Digital Workplace, pp. 58–69.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics.
Digit. Invest. 28, 163–175.

Hugging Face, 2024a. Metric: bleu. https://huggingface.co/spaces/evaluate-metric/ble
u.

Hugging Face, 2024b. Metric: rouge. https://huggingface.co/spaces/evaluate-metric/ro
uge.

Hughes, N., Karabiyik, U., 2020. Towards reliable digital forensics investigations through
measurement science. Wiley Interdisciplin. Rev.: Forensic Sci. 2, e1367.

Inglot, B., Liu, L., 2014. Enhanced timeline analysis for digital forensic investigations.
Inf. Secur. J. A Glob. Perspect. 23, 32–44.

Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D.S.,
Casas, D.d.l., Hanna, E.B., Bressand, F., et al., 2024. Mixtral of Experts arXiv:
2401.04088.

Lin, C.Y., 2004. ROUGE: a package for automatic evaluation of summaries. In: Text
Summarization Branches out, pp. 74–81.

Metz, J., Gudjonsson, K., White, D., et al., 2024. log2timeline Plaso: super timeline all the
things. https://github.com/log2timeline/plaso.

Michelet, G., Breitinger, F., 2024. ChatGPT, Llama, can you write my report? An
experiment on assisted digital forensics reports written using (local) large language
models. Forensic Sci. Int.: Digit. Invest. 48, 301683.

Microsoft Developer, 2024. Get a windows 11 development environment. https
://developer.microsoft.com/en-us/windows/downloads/virtual-machines/.

Nalawade, A., Bharne, S., Mane, V., 2016. Forensic analysis and evidence collection for
web browser activity. In: 2016 International Conference on Automatic Control and
Dynamic Optimization Techniques (ICACDOT), pp. 518–522.

NIST, 2019. Computer forensics tool testing program (CFTT). https://www.nist.gov/it
l/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt.

OpenAI, 2024a. Data analysis with ChatGPT. https://help.openai.com/en/articl
es/8437071-data-analysis-with-chatgpt.

OpenAI, 2024b. Prompt engineering. https://platform.openai.com/docs/guides/promp
t-engineering.

Palmbach, D., Breitinger, F., 2020. Artifacts for detecting timestamp manipulation in ntfs
on windows and their reliability. Forensic Sci. Int.: Digit. Invest. 32, 300920.

Papineni, K., Roukos, S., Ward, T., Zhu, W.J., 2002. BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pp. 311–318.

Scanlon, M., Breitinger, F., Hargreaves, C., Hilgert, J.N., Sheppard, J., 2023a. ChatGPT
for digital forensic investigation: the good, the bad, and the unknown. Forensic Sci.
Int.: Digit. Invest. 46, 301609.

Scanlon, M., Nikkel, B., Geradts, Z., 2023b. Digital forensic investigation in the age of
ChatGPT. Forensic Sci. Int.: Digit. Invest. 44, 301543.

Sharma, B., Ghawaly, J., McCleary, K., Webb, A.M., Baggili, I., 2025. Forensicllm: a local
large language model for digital forensics. Forensic Sci. Int.: Digit. Invest. 52,
301872.

Studiawan, H., Ahmad, T., Santoso, B.J., Pratomo, B.A., 2022a. Forensic timeline
analysis of iOS devices. In: 2022 International Conference on Engineering and
Emerging Technologies (ICEET), pp. 1–5.

Studiawan, H., Ahmad, T., Santoso, B.J., Shiddiqi, A.M., Pratomo, B.A., 2022b.
DroneTimeline: forensic timeline analysis for drones. SoftwareX 20, 101255.

Studiawan, H., Sohel, F., 2021. Anomaly detection in a forensic timeline with deep
autoencoders. J. Inf. Secur. Appl. 63, 103002.

Studiawan, H., Sohel, F., Payne, C., 2019. A survey on forensic investigation of operating
system logs. Digit. Invest. 29, 1–20.

Studiawan, H., Sohel, F., Payne, C., 2020. Sentiment analysis in a forensic timeline with
deep learning. IEEE Access 8, 60664–60675.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al., 2023. Llama: Open and Efficient Foundation
Language Models, 13971 arXiv:2302.

Wickramasekara, A., Breitinger, F., Scanlon, M., 2025. Exploring the potential of large
language models for improving digital forensic investigation efficiency. Forensic Sci.
Int.: Digit. Invest. 52, 301859.

Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y., 2020. BERTScore: evaluating
text generation with BERT. In: International Conference on Learning Representations
(ICLR).

H. Studiawan et al. Forensic Science International: Digital Investigation 54 (2025) 301982

11

http://refhub.elsevier.com/S2666-2817(25)00122-2/sref5
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref5
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref5
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref6
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref6
https://www.statista.com/chart/29174/time-to-one-million-users/
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref8
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref8
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref8
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref9
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref9
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref10
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref11
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref11
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref12
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref12
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref13
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref13
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref13
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref14
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref14
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref17
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref17
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref18
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref18
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref19
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref19
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref19
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref20
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref20
https://github.com/log2timeline/plaso
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref22
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref22
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref22
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref24
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref24
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref24
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://help.openai.com/en/articles/8437071-data-analysis-with-chatgpt
https://help.openai.com/en/articles/8437071-data-analysis-with-chatgpt
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref28
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref28
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref29
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref29
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref29
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref30
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref30
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref30
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref31
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref31
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref32
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref32
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref32
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref33
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref33
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref33
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref34
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref34
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref35
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref35
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref36
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref36
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref37
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref37
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref38
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref38
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref38
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref39
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref39
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref39
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref40
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref40
http://refhub.elsevier.com/S2666-2817(25)00122-2/sref40

	Towards a standardized methodology and dataset for evaluating LLM-based digital forensic timeline analysis
	1 Introduction
	1.1 Contribution

	2 Related work
	2.1 Forensic tool testing and validation
	2.2 Forensic timeline analysis
	2.3 LLMs for digital forensics

	3 Proposed standardized methodology
	3.1 Evaluation metrics
	3.1.1 BLEU – Bilingual Evaluation Understudy
	3.1.2 ROUGE – Recall-Oriented Understudy for Gisting Evaluation
	3.1.3 Considerations

	3.2 Common tasks for forensic timeline analysis
	3.2.1 Prompts for running grep of specific terms
	3.2.2 Prompts for rule-based anomaly detection
	3.2.3 Prompts for event summarization
	3.2.4 Prompts for exploratory data analysis

	3.3 Ground truth
	3.3.1 Scenario and dataset generation
	3.3.2 Timeline generation
	3.3.3 Ground truth for task 1: running grep for specific terms
	3.3.4 Ground truth for task 2: rule-based anomaly detection
	3.3.5 Ground truth for task 3: event summarization

	4 Experimental results and analyses
	4.1 Experimental settings
	4.2 Timeline analysis with ChatGPT
	4.3 Results and analysis
	4.3.1 Results of running grep for specific terms
	4.3.2 Results of rule-based anomaly detection
	4.3.3 Results of event summarization
	4.3.4 Results of exploratory data analysis

	4.4 Discussion
	4.4.1 Overall quantitative evaluation
	4.4.2 API-based and BERTScore implementations
	4.4.3 CSV file size of a forensic timeline

	5 Conclusion and future work
	Acknowledgments
	Appendix A A conversation sample between an investigator and ChatGPT
	References

