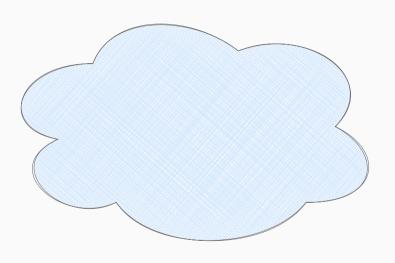
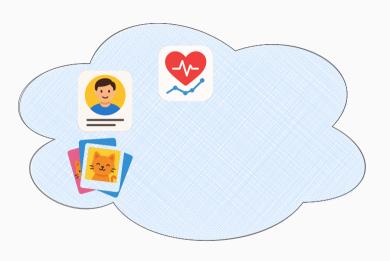


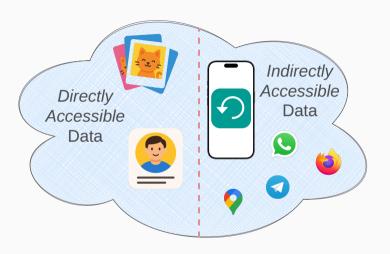
From Sync to Seizure:

A Binary Instrumentation-based Evaluation of the iCloud Backup Process

DFRWS APAC '25


Julian Geus Jan Gruber Jonas Wozar Felix Freiling

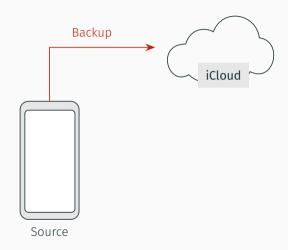

IT Security Infrastructures Lab Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)



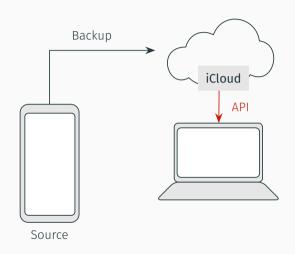
Directly Accessible Data on iCloud

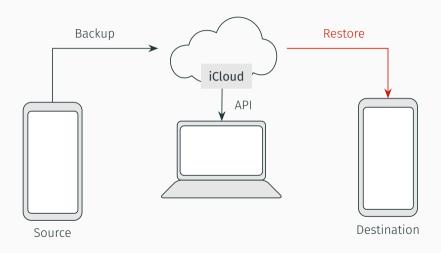
- iCloud Web-Interface
- · iCloud Client
- Unofficial Web API libraries (e.g., pyicloud¹)

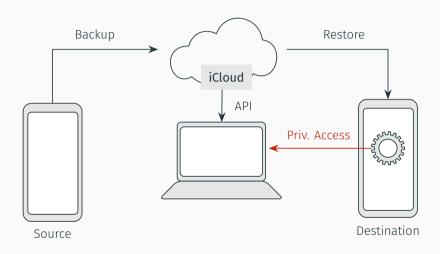
https://github.com/picklepete/pyicloud

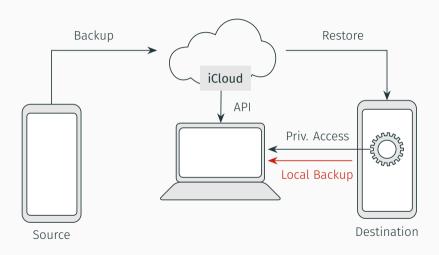

Indirectly Accessible Data on iCloud

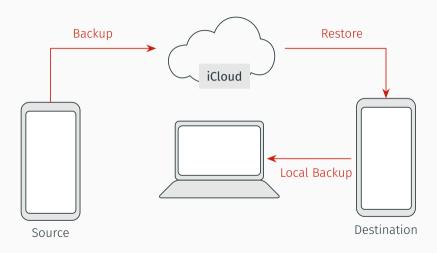
Questions:


- → How can we acquire indirectly accessible cloud data (especially backups)?
- → Are those methods suitable for forensics?


User creates backup in the cloud account


API access requires reverse engineering and API might change


Restore the backup onto an intermediate device for data acquisition


Privileged access enables full data access but identifying the data is challenging

Local backup acquisition is easy to use and should cover a similar data set

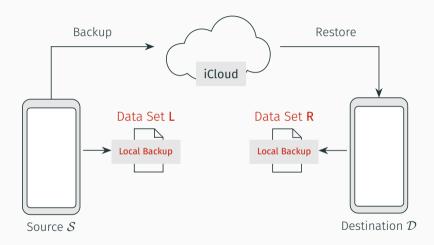
Focus: How well is the **cloud backup restore** acquisition suited for forensics?

Evaluation - Devices

Idea:

Compare local backups acquired from a source and a destination device!

 \rightarrow two iPhone 16e with iOS 18.4.1


Evaluation - Approach

Evaluation - Approach

Evaluation - Data Comparison

File-based Comparison

1. Identify the amount of counterparts in the data sets:

 $N_{both} \coloneqq$ overlapping files by full path

 $N_{Xonly} := files only in data set X$

2. Compare the files' contents using hash comparison:

 $V_{eq} := file-pairs$ with matching hash

 $V_{ch} := file-pairs$ with a hash mismatch

SQLite database semantic equality by comparing included tables:

 $V_{\sim eq} \coloneqq$ files with semantic equality

2. Determine semantic equality of the entire data set by processing it with *iLeapp*² and comparing the TSV reports.

Semantic Comparison

²https://github.com/abrignoni/iLEAPP

Evaluation - Data Comparison

File-based Comparison

1. Identify the amount of counterparts in the data sets:

 $N_{both} := \text{overlapping files by full path}$ $N_{Xonly} := \text{files only in data set } X$

2. Compare the files' contents using hash comparison:

 $V_{eq} :=$ file-pairs with matching hash $V_{ch} :=$ file-pairs with a hash mismatch

1. SQLite database semantic equality by comparing included tables:

 $V_{\sim eq} \coloneqq$ files with semantic equality

2. Determine semantic equality of the entire data set by processing it with *iLeapp*² and comparing the TSV reports.

Semantic Comparison

²https://github.com/abrignoni/iLEAPP

Evaluation Results - File-Based

	File Count						
	$ \mathscr{S}_{L} $	$ \mathscr{D}_R $					
$\overline{\sum}$	1231	1231	1207	24	25	816 (67.5%)	391 (32.5%)

The number of files is mostly similar between both local backup sets.

Evaluation Results - File-Based

			Name Comparison				
			$ N_{both} $	$ N_{Sonly} $	$ N_{Donly} $		
$\overline{\sum}$	1231	1231	1207	24	25	816 (67.5%)	391 (32.5%)

Most files have a counterpart, deviations might be caused by differing states (i.e., the phone's state is not completely restored).

Evaluation Results - File-Based

						Value Comparison	
						$ V_{eq} $	$ V_{ch} $
$\overline{\sum}$	1231	1231	1207	24	25	816 (67.5%)	391 (32.5%)

Only about two thirds of the files are hash-identical.

Evaluation Results - Content-Based

SQLite Semantic Comparison

iLEAPP (TSV) Comparison

	$ V_{ch} $	$ V_{\sim eq} $	full	partial	missing
$\overline{\sum}$	125	87			

About 70% of mismatching SQLite databases are actually content-equal.

Evaluation Results - Content-Based

			iLEAPP (TSV) Comparison		
			full	partial	missing
$\overline{\sum}$	125	87	30	31	5

Data changes are mainly related to device differences, missing data includes health and browsing information.

Evaluation Results - Remaining Question

Question:

Where do the changes originate from?

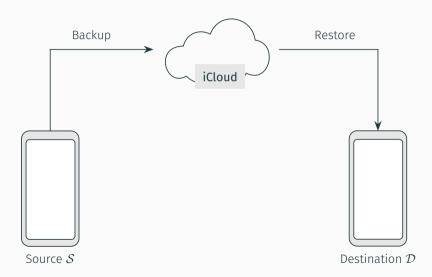
 \rightarrow cloud processing, the local backup, or restore processes on the device

Idea:

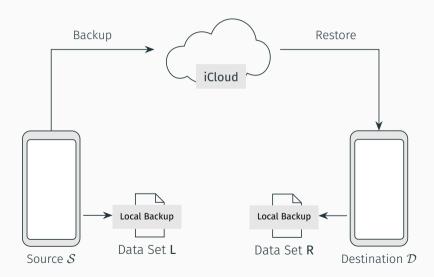
Add further measurement points!

ightarrow use jailbroken devices to obtain additional possibilities

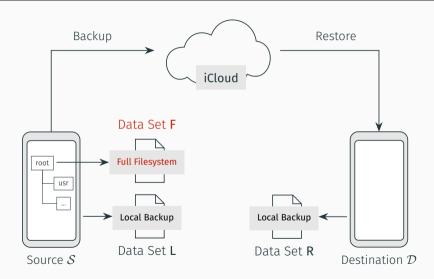
Extended Evaluation - Devices

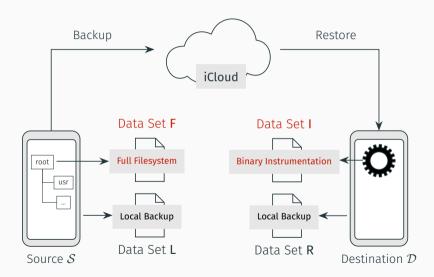

Idea:

Compare local backups from the source and destination device and add further measurement points in-between!


- \rightarrow two iPhone 8 with iOS 16.7.10
- \rightarrow jailbreak the devices using palera1n³

³https://github.com/palera1n/palera1n





Measurement Point - Binary Instrumentation

1. Reverse Engineering of the iCloud Restore Process

- identify involved processes with system utilities (e.g., htop, log files, ...)
 - → *cloudd*: communication with iCloud, *backupd*: restoring backup data
- implement strace for iOS using Frida⁴ skript
 - ightarrow identify system calls from the respective processes

⁴https://frida.re/

Measurement Point - Binary Instrumentation

1. Reverse Engineering of the iCloud Restore Process

- identify involved processes with system utilities (e.g., htop, log files, ...)
 - → *cloudd*: communication with iCloud, *backupd*: restoring backup data
- implement *strace* for iOS using *Frida*⁴ skript
 - ightarrow identify system calls from the respective processes

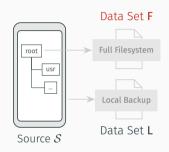
2. Process Instrumentation with Frida

- run custom code in cloudd and backupd context
 - ightarrow intercept all relevant $open(\dots)$ and $close(\dots)$ system calls
- · on each close(...) halt the process and create a copy of the file

⁴https://frida.re/

Measurement Point - Binary Instrumentation

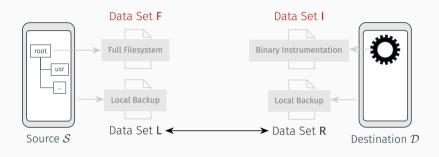
1. Reverse Engineering of the iCloud Restore Process


- identify involved processes with system utilities (e.g., htop, log files, ...)
 - → *cloudd*: communication with iCloud, *backupd*: restoring backup data
- implement strace for iOS using Frida⁴ skript
 - ightarrow identify system calls from the respective processes

2. Process Instrumentation with Frida

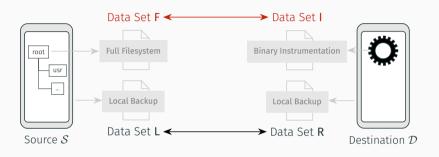
- run custom code in cloudd and backupd context
 - ightarrow intercept all relevant $open(\dots)$ and $close(\dots)$ system calls
- · on each close(...) halt the process and create a copy of the file
- ⇒ Acquisition of the entire (unprocessed) data set downloaded from iCloud!

⁴https://frida.re/



Comparison $L \leftrightarrow R$: Data changes due to the *entire process*.

Comparison $F \leftrightarrow I$: Data changes due to the cloud backup and restore process.



Comparison $L \leftrightarrow R$: Data changes due to the *entire process*.

Comparison $F \leftrightarrow I$: Data changes due to the cloud backup and restore process.

Comparison $L \leftrightarrow R$: Data changes due to the *entire process*.

Comparison $F \leftrightarrow I$: Data changes due to the *cloud backup and restore* process.

Results - File-Based

File Count							
	Source	Dest.					
	$ \mathscr{S}_{L} $	$ \mathscr{D}_R $		local	backup (L) v	s. local backup (R)	
$\overline{\sum}$	899	946	870	29	72	518 (59.5%)	352 (40.5%)
	$ \mathscr{S}_{F} $	$ \mathscr{D}_l $	full file system (F) vs. binary instrumentation (I)				
$\overline{\sum}$	13256	1123	732	12525	391	601 (82.1%)	130 (17.9%)

The number of files in the binary instrumented acquisition exceeds the local backup data set.

Results - File-Based

		Name Comparison					
			$ N_{both} $	$ N_{Sonly} $	$ N_{Donly} $		
	$ \mathscr{S}_{L} $	$ \mathscr{D}_R $	local backup (L) vs. local backup (R)				
$\overline{\sum}$	899	946	870	29	72	518 (59.5%)	352 (40.5%)
	$ \mathscr{S}_{F} $	$ \mathcal{D}_l $	full file system (F) vs. binary instrumentation (I)				
$\overline{\sum}$	13256	1123	732	12525	391	601 (82.1%)	130 (17.9%)

There are many files without a counterpart because temporary files are captured during the binary instrumentation.

Results - File-Based

					Value Comparison			
						$ V_{eq} $	$ V_{ch} $	
	$ \mathscr{S}_{L} $	$ \mathscr{D}_R $	local backup (L) vs. local backup (R)					
$\overline{\sum}$	899	946	870	29	72	518 (59.5%)	352 (40.5%)	
	$ \mathscr{S}_{F} $	$ \mathcal{D}_l $	full file system (F) vs. binary instrumentation (I)					
$\overline{\sum}$	13256	1123	732	12525	391	601 (82.1%)	130 (17.9%)	

Bigger percentage of hash-matches compared to the local backup comparison.

→ Some data is altered after the download.

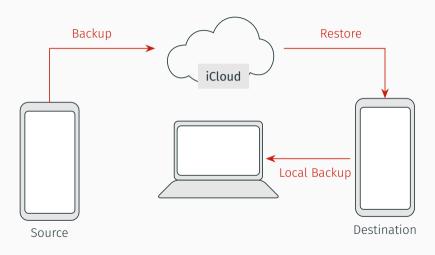
Results - Content-Based

	SQLite Seman	tic Comparison						
	$ V_{ch} $ $ V_{\sim eq} $							
	local backup (L) vs. local backup (R)							
$\overline{\sum}$	88	62						
	full file system (F) vs. binary instrumentation (I)							
$\overline{\sum}$	70	65						

Again, most mismatching SQLite databases are semantically equal.

ightarrow Database alterations are caused by the cloud backup process.

Results - Content-Based



			iLEAPP (TSV) Comparison					
			full	partial	missing			
	local backup (L) vs. local backup (R)							
$\overline{\sum}$			28	31	13			
	full file system (F) vs. binary instrumentation (I)							
$\overline{\sum}$	70	65	32	7	77			

A smaller data set compared to local backup acquisition.

→ Parsing errors from iLeapp and possibly unknown synchronization processes.

Focus: How well is the **cloud backup restore** acquisition suited for forensics?

- 1. iCloud backups include less data compared to (encrypted) local backups.
- \rightarrow More data can be accessed with synchronization!
- 2. SQLite databases are altered during the cloud backup process.
- \rightarrow Their content, however, stays the same.
- 3. No semantic changes were observed that limit the forensic usability!
- ightarrow Nevertheless, files are changed according to their hash values.

Thank you for your attention Any questions or comments?

- 1. iCloud backups include less data compared to (encrypted) local backups.
- → More data can be accessed with synchronization!
- 2. SQLite databases are altered during the cloud backup process.
- \rightarrow Their content, however, stays the same.
- 3. No semantic changes were observed that limit the forensic usability!
- ightarrow Nevertheless, files are changed according to their hash values.

Thank you for your attention!
Any questions or comments?

- 1. iCloud backups include less data compared to (encrypted) local backups.
- \rightarrow More data can be accessed with synchronization!
- 2. SQLite databases are altered during the cloud backup process.
- \rightarrow Their content, however, stays the same.
- 3. No semantic changes were observed that limit the forensic usability!
- \rightarrow Nevertheless, files are changed according to their hash values.

Thank you for your attention!

Any questions or comments?

- 1. iCloud backups include less data compared to (encrypted) local backups.
- → More data can be accessed with synchronization!
- 2. SQLite databases are altered during the cloud backup process.
- \rightarrow Their content, however, stays the same.
- 3. No semantic changes were observed that limit the forensic usability!
- ightarrow Nevertheless, files are changed according to their hash values.

Thank you for your attention!

Any questions or comments?