Authors: Hudan Studiawan, Frank Breitinger, Mark Scanlon
DFRWS APAC 2025
Abstract
Large language models (LLMs) have widespread adoption in many domains, including digital forensics. While prior research has largely centered on case studies and examples demonstrating how LLMs can assist forensic investigations, deeper explorations remain limited, i.e., a standardized approach for precise performance evaluations is lacking. Inspired by the NIST Computer Forensic Tool Testing Program, this paper proposes a standardized methodology to quantitatively evaluate the application of LLMs for digital forensic tasks, specifically in timeline analysis. The paper describes the components of the methodology, including the dataset, timeline generation, and ground truth development. In addition, the paper recommends the use of BLEU and ROUGE metrics for the quantitative evaluation of LLMs through case studies or tasks involving timeline analysis. Experimental results using ChatGPT demonstrate that the proposed methodology can effectively evaluate LLM-based forensic timeline analysis. Finally, we discuss the limitations of applying LLMs to forensic timeline analysis.